CN2446503Y - High-sensitivity interference imaging spectrum device - Google Patents
High-sensitivity interference imaging spectrum device Download PDFInfo
- Publication number
- CN2446503Y CN2446503Y CN 99256131 CN99256131U CN2446503Y CN 2446503 Y CN2446503 Y CN 2446503Y CN 99256131 CN99256131 CN 99256131 CN 99256131 U CN99256131 U CN 99256131U CN 2446503 Y CN2446503 Y CN 2446503Y
- Authority
- CN
- China
- Prior art keywords
- optical system
- imaging
- detector
- pentagonal prism
- angle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000003384 imaging method Methods 0.000 title claims abstract description 25
- 238000001228 spectrum Methods 0.000 title claims description 3
- 230000003287 optical effect Effects 0.000 claims abstract description 30
- 238000010008 shearing Methods 0.000 claims abstract description 19
- 239000007787 solid Substances 0.000 claims abstract description 9
- 238000000701 chemical imaging Methods 0.000 claims abstract description 7
- 238000012545 processing Methods 0.000 abstract description 11
- 230000004907 flux Effects 0.000 abstract description 7
- 230000003595 spectral effect Effects 0.000 description 12
- 230000005855 radiation Effects 0.000 description 5
- 238000013461 design Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000001427 coherent effect Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 238000004587 chromatography analysis Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Images
Landscapes
- Spectrometry And Color Measurement (AREA)
Abstract
一种高灵敏度干涉成像光谱装置,它由前置光学系统、实体型横向剪切干涉仪、成像镜光学系统、探测器和信号获取及处理系统构成,实体型横向剪切干涉仪由两块胶合的半五角棱镜组成,半五角棱镜有一定的角度范围,其一端放置前置光学系统,另一端放置成像镜光学系统,在成像镜光学系统的焦平面处放置探测器,探测器与信号获取及处理系统相连。本实用新型结构简单、高能量通量、多光谱通道、高信噪比、高稳定性,集时间调制与空间调制式优点于一体。
A high-sensitivity interference imaging spectroscopy device, which is composed of a front optical system, a solid type transverse shearing interferometer, an imaging mirror optical system, a detector, and a signal acquisition and processing system. The solid type transverse shearing interferometer is composed of two glued The half-pentagonal prism is composed of a half-pentagonal prism. The half-pentagonal prism has a certain angle range. One end of the half-pentagonal prism is placed on the front optical system, and the other end is placed on the imaging mirror optical system. The detector is placed at the focal plane of the imaging mirror optical system. The processing system is connected. The utility model has the advantages of simple structure, high energy flux, multi-spectral channels, high signal-to-noise ratio and high stability, and integrates the advantages of time modulation and space modulation.
Description
本实用新型涉及一种高灵敏度干涉成像光谱装置。适用于土地资源勘查、环境监测、海洋资源普查、自然灾害监测与评估、天文学研究、大气探测及获得被测目标的空间维和光谱维的丰富信息,能够在连续光谱段上对同一目标同时成像。The utility model relates to a high-sensitivity interference imaging spectrum device. It is suitable for land resource exploration, environmental monitoring, marine resource census, natural disaster monitoring and assessment, astronomical research, atmospheric detection, and obtaining rich information in the spatial and spectral dimensions of the measured target. It can simultaneously image the same target in continuous spectral segments.
成像光谱仪目前主要有三种类型。一种是色散型,色散型已处于应用阶段,它的特点是结构简单、性能稳定,但是能量利用率低;另一种是干涉型,干涉型具有高能量通量、多光谱通道和高光谱分辨率等优点,但同时又存在稳定性与能量通量的矛盾(即通量高的仪器具有差的稳定性,而提高稳定性又会降低能量通量);在一种是层析型,层析型具有空间与光谱维多通道优点以及变分辨率优点,但对大面阵探测器的过分依赖,又限制了它的实用性。There are currently three main types of imaging spectrometers. One is the dispersion type, the dispersion type is already in the application stage, it is characterized by simple structure, stable performance, but low energy utilization rate; the other is the interference type, the interference type has high energy flux, multi-spectral channels and hyperspectral resolution and other advantages, but at the same time there is a contradiction between stability and energy flux (that is, the instrument with high flux has poor stability, and improving the stability will reduce the energy flux); in one is the chromatography type, The tomographic type has the advantages of spatial and spectral dimensions, multi-channels and variable resolution, but its over-reliance on large area array detectors limits its practicability.
已出现的干涉成像光谱技术主要有两种,一种是基于迈克尔逊干涉仪的时间调制式(动态),另一种是基于横向剪切干涉仪的空间调制式(静态)。以他们为基础出现了许多种干涉成像光谱仪,美国、日本、欧洲多国都相继研制成功了用于航空航天遥感的干涉成像光谱仪。但是,他们各自都存在一定的缺陷:如时间调制式通量高、信噪比高、光谱分辨率高,但动镜扫描机构的精度要求非常高,光机稳定性差,不适于航空航天等恶劣环境;空间调制式稳定性高、实时性好、结构简单,在特定条件下具有高通量优点,但更多时候与色散型成像光谱仪能量通量相似,因此,仪器的灵敏度和空间分辨率受到很大的限制。There are mainly two kinds of interferometric imaging spectroscopy techniques that have emerged, one is time modulation (dynamic) based on Michelson interferometer, and the other is spatial modulation (static) based on transverse shear interferometer. Based on them, many kinds of interferometric imaging spectrometers have emerged. The United States, Japan, and many European countries have successfully developed interferometric imaging spectrometers for aerospace remote sensing. However, each of them has certain defects: such as time-modulated high throughput, high signal-to-noise ratio, and high spectral resolution, but the precision requirements of the moving mirror scanning mechanism are very high, and the optical-mechanical stability is poor, so it is not suitable for harsh conditions such as aerospace. Environment; spatial modulation has high stability, good real-time performance, simple structure, and has the advantages of high throughput under certain conditions, but more often it is similar to the energy flux of dispersive imaging spectrometers. Therefore, the sensitivity and spatial resolution of the instrument are limited. Very restrictive.
针对上述存在的缺陷,本实用新型的目的在于提供了一种高能量通量、多光谱通道、高信噪比、高稳定性、结构简单的干涉成像光谱仪,即集时间调制式与空间调制式主要优点于一体的高灵敏度于涉成像光谱装置。In view of the above-mentioned defects, the purpose of this utility model is to provide an interference imaging spectrometer with high energy flux, multi-spectral channels, high signal-to-noise ratio, high stability, and simple structure, that is, a combination of time modulation and space modulation The main advantages are high sensitivity and imaging spectroscopic devices in one body.
为了达到上述目的,本实用新型采用以下技术措施:高灵敏度干涉成像光谱装置由前置光学系统、实体型横向剪切干涉仪、成像镜光学系统、探测器和信号获取与处理系统组成。高灵敏度干涉成像光谱装置构思是:在实体型横向剪切干涉仪一端放置前置光学系统,另一端放置成像镜光学系统,目标发出的辐射经前置光学系统后一定为准直光进入实体型横向剪切干涉仪,实体型横向剪切干涉仪的作用是把进入的一根光线变成两根互相平行的相干光入射到成像镜系统,然后在成像镜系统的焦面处放置探测器,得到有条纹的目标的像,探测器把光信号变成电信号,探测器与信号获取与处理系统相连,经过信号获取与处理系统后就可以同时得到目标的图像信息和光谱信息。In order to achieve the above purpose, the utility model adopts the following technical measures: the high-sensitivity interference imaging spectroscopy device is composed of a front optical system, a solid type transverse shear interferometer, an imaging mirror optical system, a detector, and a signal acquisition and processing system. The idea of the high-sensitivity interference imaging spectroscopy device is to place a front optical system at one end of the solid-type transverse shearing interferometer and an imaging mirror optical system at the other end. The radiation emitted by the target must be collimated light and enter the solid-type Transverse shearing interferometer, the function of the solid type transverse shearing interferometer is to convert one incoming light into two parallel coherent light incident to the imaging mirror system, and then place a detector at the focal plane of the imaging mirror system, To obtain the image of the target with stripes, the detector converts the optical signal into an electrical signal, and the detector is connected to the signal acquisition and processing system. After passing through the signal acquisition and processing system, the image information and spectral information of the target can be obtained at the same time.
图1为高灵敏度干涉成像光谱装置示意图。Figure 1 is a schematic diagram of a high-sensitivity interference imaging spectroscopy device.
图2为半五角棱镜示意图。Figure 2 is a schematic diagram of a half pentagonal prism.
下面结合附图对本实用新型作进一步详细描述:Below in conjunction with accompanying drawing, the utility model is described in further detail:
根据图1、图2可知,实体型横向剪切干涉仪(2)一端放置前置光学系统1,前置光学系统1由前置物镜a、视场光阑c和准直镜b构成,前置物镜a和准直镜b可以采用折射式、折反射式或全反射式。目标发出的辐射经前置物镜首先成一次像,此像面称为一次像面,视场光阑c就放在一次焦面上,准直镜b的前焦面必须在一次像面上。前置光学系统1的作用有三个:一是准直作用,即从前置光学系统出射的光一定是准直光;二是调整接收到的光能量,若是弱辐射目标,调整前置光学系统1的内部参数后,可以使得进入光学系统的能量增加数倍;三是抑制杂散光,此作用是通过放在中间像面上的视场光阑c来实现的。实体型横向剪切干涉仪2由两块胶合的半五角棱镜d和e组成,其中一块半五角棱镜镀半透半反膜,这两块半五角棱镜的形状相似,对应的每一个角分别相等。半五角棱镜的结构示意图如图2所示,其中各个角度有多种选择都可以实现横向剪切的功能。半五角棱镜的角度范围是:角1在40°~60°之间,角2在100°~120°之间,角3在110°~130°之间,角4在80°~100°之间,角4取90°时更方便胶合。实体型横向剪切干涉仪2的作用是能将进入实体型横向剪切干涉仪2的光线剪切成完全平行且有一定距离(剪切量)的两根相干光线。实体型横向剪切干涉仪2另一端放置成像镜光学系统3,成像镜光学系统3将剪切后的目标辐射收集到位于其像面的探测器4上,辐射于此处发生干涉,干涉条纹方向与剪切干涉仪的剪切方向垂直,干涉光程差与剪切量、探测器有效尺寸成正比,与收集光学系统焦距成反比。光程差越大,光谱分辨率越高。成像镜光学系统3的作用就是成像。在成像镜光学系统3的焦平面处放置探测器4,探测器4是干涉信号的接收器,仪器可以使用面阵探测器,在推扫方式工作时,能够获得目标的两维空间和一维光谱信息。探测器4与信号获取及处理系统5相连,信号获取及处理系统5把从探测器获取的干涉图信号进行数字化,送入处理器中进行处理,最终得到目标的光谱信息和图像信息。前置光学系统1的光轴必须垂直与横向剪切干涉仪第一个半五角棱镜的一个平面,成像镜光学系统3的光轴也必须垂直于另一块半五角棱镜的对应平面。According to Fig. 1 and Fig. 2, it can be seen that the front
高灵敏度干涉成像光谱仪是一种全新原理的成像光谱仪,除定标切换需要运动机构外,不存在任何机械运动,具有高稳定度的特点。光谱仪采用Sagnac型立方体横向剪切干涉仪,利用被分割的两束光沿基本相同的光路反向传播,因此对干涉仪本身要求不高,但需要在结构设计上保证两面反射镜的位置和角度关系。结构设计要保证光学系统要求。电系统主要由于涉图像获取、中心控制器、图像帧存储、图像压缩、定标控制以及信号处理等部分组成,电路的设计采用大规模现场可编程门阵列芯片(FPGA),系统的精度和可靠性得以大大地提高。探测器是干涉信号的接收器,仪器在推扫方式(push-broom,一种典型的工作方式)工作时,线阵探测器可以获得目标的一维空间和一维光谱信息;面阵探测器能够获得目标的两维空间和一维光谱信息。信号处理是将其数字化的干涉图信号,送入处理器(如计算机)中进行处理,最终得到目标的超光谱图像。定标系统的主要功能是对整个仪器系统的光谱响应和辐射度响应进行标定,有光谱响应度定标、辐射度定标以及相对定标和绝对定标之分。The high-sensitivity interferometric imaging spectrometer is an imaging spectrometer with a new principle. Except for the movement mechanism required for calibration switching, there is no mechanical movement, and it has the characteristics of high stability. The spectrometer uses a Sagnac-type cube transverse shearing interferometer, which uses the two split beams to propagate in the opposite direction along basically the same optical path. Therefore, the requirements for the interferometer itself are not high, but it is necessary to ensure the position and angle of the two mirrors in the structural design relation. The structural design should ensure the requirements of the optical system. The electrical system is mainly composed of image acquisition, central controller, image frame storage, image compression, calibration control, and signal processing. The design of the circuit adopts a large-scale field programmable gate array chip (FPGA). performance is greatly improved. The detector is the receiver of the interference signal. When the instrument works in push-broom mode (a typical working method), the linear array detector can obtain the one-dimensional space and one-dimensional spectral information of the target; the area array detector The two-dimensional space and one-dimensional spectral information of the target can be obtained. Signal processing is to send the digitized interferogram signal to a processor (such as a computer) for processing, and finally obtain the hyperspectral image of the target. The main function of the calibration system is to calibrate the spectral response and radiometric response of the entire instrument system, which can be divided into spectral responsivity calibration, radiometric calibration, relative calibration and absolute calibration.
它是一种集时间调制式与空间调制式的优点于一体的高灵敏度干涉成像光谱装置。It is a high-sensitivity interference imaging spectroscopy device integrating the advantages of time modulation and space modulation.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 99256131 CN2446503Y (en) | 1999-12-28 | 1999-12-28 | High-sensitivity interference imaging spectrum device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 99256131 CN2446503Y (en) | 1999-12-28 | 1999-12-28 | High-sensitivity interference imaging spectrum device |
Publications (1)
Publication Number | Publication Date |
---|---|
CN2446503Y true CN2446503Y (en) | 2001-09-05 |
Family
ID=34039342
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 99256131 Expired - Lifetime CN2446503Y (en) | 1999-12-28 | 1999-12-28 | High-sensitivity interference imaging spectrum device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN2446503Y (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100455985C (en) * | 2007-09-03 | 2009-01-28 | 中国科学院西安光学精密机械研究所 | Gluing detection method with transverse shear interferometer |
CN102322954A (en) * | 2011-08-15 | 2012-01-18 | 苏州大学 | Hyper-spectral compression imaging method and system thereof |
CN105067119A (en) * | 2015-08-21 | 2015-11-18 | 中国科学院西安光学精密机械研究所 | Field-of-view segmentation interference imaging spectrometer and imaging method |
CN107796302A (en) * | 2017-10-16 | 2018-03-13 | 西安交通大学 | A kind of dual-purpose type telecentric structure digital holographic micro-measuring device based on optical fiber |
CN110488506A (en) * | 2019-08-28 | 2019-11-22 | 中国人民解放军国防科技大学 | A kind of Automatic laser collimation adjustment device and method |
-
1999
- 1999-12-28 CN CN 99256131 patent/CN2446503Y/en not_active Expired - Lifetime
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100455985C (en) * | 2007-09-03 | 2009-01-28 | 中国科学院西安光学精密机械研究所 | Gluing detection method with transverse shear interferometer |
CN102322954A (en) * | 2011-08-15 | 2012-01-18 | 苏州大学 | Hyper-spectral compression imaging method and system thereof |
CN105067119A (en) * | 2015-08-21 | 2015-11-18 | 中国科学院西安光学精密机械研究所 | Field-of-view segmentation interference imaging spectrometer and imaging method |
CN107796302A (en) * | 2017-10-16 | 2018-03-13 | 西安交通大学 | A kind of dual-purpose type telecentric structure digital holographic micro-measuring device based on optical fiber |
CN110488506A (en) * | 2019-08-28 | 2019-11-22 | 中国人民解放军国防科技大学 | A kind of Automatic laser collimation adjustment device and method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US12174070B2 (en) | Fabry-perot fourier transform spectrometer | |
CN106125090B (en) | Spectral apparatus is selected in a kind of light splitting for EO-1 hyperion laser radar | |
US9513166B2 (en) | Split field spectral imager | |
CN101609250B (en) | Swing mirror angle scanning characteristic test device for camera | |
CN207280591U (en) | Double entrance slit high-resolution imaging spectroscopic systems | |
CN101806625A (en) | Static Fourier transform interference imaging spectrum full-polarization detector | |
CN109141652A (en) | A kind of Multi spectral thermometry device based on digital micro-mirror | |
US11237056B2 (en) | Monolithic assembly of reflective spatial heterodyne spectrometer | |
CN104897282B (en) | A kind of practical thermal infrared hyperspectral imager load system | |
CN103323117B (en) | Mobile broadband Fourier transform infrared imaging spectrometer | |
CN205898295U (en) | Spectrometer | |
CN102141440A (en) | High-resolution micro broad-spectrum reflective optical system for spectrograph | |
CN2446503Y (en) | High-sensitivity interference imaging spectrum device | |
CN110501074B (en) | High-flux wide-spectrum high-resolution coherent dispersion spectrum imaging method and device | |
CN111208074A (en) | Optical system of differential absorption imaging spectrometer based on edge observation | |
CN110849829A (en) | Hyperspectral system for gas concentration detection | |
CN106526690A (en) | Extrasolar planetary space-based high-precision detection system and method for radial velocity measurement | |
CN101363755A (en) | Integrated Grating Fourier Spectrometer | |
US6721057B1 (en) | Spatially modulated interferometer and beam shearing device therefor | |
CN112326582A (en) | Optical System of Long Wave Infrared Imaging Spectrometer | |
CN108931298B (en) | Compact high-flux high-stability interference imaging spectrometer | |
CN108362379B (en) | Wide-spectrum high-resolution spectrum dispersion method and device | |
CN202267533U (en) | Interferometer shearing amount on-line detection system | |
CN211877754U (en) | Hyperspectral system for gas concentration detection | |
CN213689379U (en) | Long-wave infrared imaging spectrometer optical system based on plane reflection grating |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CX01 | Expiry of patent term |