CN218066289U - Distance measuring device for permanent magnet electromagnetic hybrid system - Google Patents
Distance measuring device for permanent magnet electromagnetic hybrid system Download PDFInfo
- Publication number
- CN218066289U CN218066289U CN202220920093.XU CN202220920093U CN218066289U CN 218066289 U CN218066289 U CN 218066289U CN 202220920093 U CN202220920093 U CN 202220920093U CN 218066289 U CN218066289 U CN 218066289U
- Authority
- CN
- China
- Prior art keywords
- permanent magnet
- electromagnet
- linear hall
- magnetic field
- operational amplifier
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
Abstract
本实用新型提供一种永磁电磁混合系统的测距装置,所述永磁电磁混合系统包括电磁铁和永磁体;所述测距装置包括:至少两个线性霍尔元件,间隔设置在电磁铁的吸附面上,其中一个线性霍尔元件位于吸附面正中位置,与永磁体位置相对,至少两个线性霍尔元件用于获取永磁体所激发的永磁磁场和电磁铁中励磁电流所激发的电磁磁场叠加后的混合磁场的磁场强度电信号;信号补偿模块,与每一线性霍尔元件电连接,用于对混合磁场的磁场强度电信号进行补偿以抵消来自电磁磁场的影响,并输出仅与永磁磁场相关的补偿后的磁场强度电信号,以表征电磁铁与永磁体之间的距离。本实用新型能有效降低测量过程中永磁体摇摆、侧偏对距离信号的影响、提高距离检测的准确度。
The utility model provides a distance measuring device of a permanent magnet electromagnetic hybrid system. The permanent magnet electromagnetic hybrid system includes an electromagnet and a permanent magnet; On the adsorption surface, one of the linear Hall elements is located in the middle of the adsorption surface, opposite to the position of the permanent magnet, and at least two linear Hall elements are used to obtain the permanent magnetic field excited by the permanent magnet and the excitation current excited by the electromagnet. The magnetic field strength electric signal of the mixed magnetic field after the electromagnetic field is superimposed; the signal compensation module is electrically connected with each linear Hall element, and is used to compensate the magnetic field strength electric signal of the mixed magnetic field to offset the influence from the electromagnetic field, and output only The compensated magnetic field strength electrical signal associated with the permanent magnetic field to characterize the distance between the electromagnet and the permanent magnet. The utility model can effectively reduce the influence of the swing and side deviation of the permanent magnet on the distance signal during the measurement process, and improve the accuracy of the distance detection.
Description
技术领域technical field
本实用新型涉及距离检测技术领域,具体地涉及一种永磁电磁混合系统的测距装置。The utility model relates to the technical field of distance detection, in particular to a distance measuring device of a permanent magnet electromagnetic hybrid system.
背景技术Background technique
在永磁电磁混合悬浮系统中,为了实现混合悬浮系统的稳定悬浮,需要实时获取永磁体与电磁铁之间的距离,以实现混合悬浮系统的动态平衡控制。现有技术中,通常采用激光测距、红外线传感器测距、超声波测距、光遮挡法测距和线性霍尔元件测距等技术。其中,激光测距虽精度高,但是单价昂贵、成本高;红外线传感器测距相比激光测距成本较低,但受环境光源的影响较大;超声波测距精度低且超声发生器体积较大,并不适用;光遮挡法测距结构复杂、且精度低,无法满足使用需求;线性霍尔元件单价较低、灵敏度高,所以现有混合悬浮系统常采用线性霍尔元件作为距离检测元件。但线性霍尔元件易受电磁铁产生的电磁磁场影响,使得测量结果产生偏差,故该问题亟待解决、以提高测量精度。In the permanent magnet electromagnetic hybrid levitation system, in order to realize the stable levitation of the hybrid levitation system, it is necessary to obtain the distance between the permanent magnet and the electromagnet in real time to realize the dynamic balance control of the hybrid levitation system. In the prior art, technologies such as laser distance measurement, infrared sensor distance measurement, ultrasonic distance measurement, light occlusion method distance measurement and linear Hall element distance measurement are usually used. Among them, laser ranging has high precision, but the unit price is expensive and the cost is high; infrared sensor ranging is less costly than laser ranging, but it is greatly affected by environmental light sources; ultrasonic ranging has low accuracy and the size of the ultrasonic generator is large , is not applicable; the optical occlusion method has a complex ranging structure and low precision, which cannot meet the needs of use; the linear Hall element has a low unit price and high sensitivity, so the existing hybrid suspension system often uses a linear Hall element as a distance detection element. However, the linear Hall element is easily affected by the electromagnetic field generated by the electromagnet, which will cause deviations in the measurement results. Therefore, this problem needs to be solved urgently to improve the measurement accuracy.
实用新型内容Utility model content
本实用新型实施例的目的是提供一种永磁电磁混合系统的测距装置,该设备用以解决上述的现有的线性霍尔元件测量距离时容易受到电磁铁产生的电磁磁场影响、使测量结果产生偏差的问题。The purpose of this utility model embodiment is to provide a distance measuring device of a permanent magnet electromagnetic hybrid system, which is used to solve the problem that the above-mentioned existing linear Hall element is easily affected by the electromagnetic field generated by the electromagnet when measuring distance, making the measurement The result is a problem of bias.
为了实现上述目的,本实用新型实施例提供一种永磁电磁混合系统的测距装置,所述永磁电磁混合系统包括电磁铁和永磁体,所述电磁铁的底面为水平的吸附面,所述永磁体位于所述电磁铁正下方且与所述电磁铁不接触;所述永磁电磁混合系统的测距装置包括:In order to achieve the above object, the embodiment of the present utility model provides a distance measuring device of a permanent magnet electromagnetic hybrid system, the permanent magnet electromagnetic hybrid system includes an electromagnet and a permanent magnet, the bottom surface of the electromagnet is a horizontal adsorption surface, so The permanent magnet is located directly below the electromagnet and is not in contact with the electromagnet; the distance measuring device of the permanent magnet electromagnetic hybrid system includes:
至少两个线性霍尔元件,间隔设置在所述电磁铁的吸附面上,其中一个线性霍尔元件位于所述吸附面正中位置并与所述永磁体位置相对,至少两个线性霍尔元件用于获取所述永磁体所激发的永磁磁场和所述电磁铁中励磁电流所激发的电磁磁场叠加后的混合磁场的磁场强度电信号;At least two linear Hall elements are arranged at intervals on the adsorption surface of the electromagnet, wherein one linear Hall element is located in the center of the adsorption surface and is opposite to the position of the permanent magnet, and at least two linear Hall elements are used for Obtaining the magnetic field intensity electric signal of the mixed magnetic field after the superposition of the permanent magnetic field excited by the permanent magnet and the electromagnetic field excited by the exciting current in the electromagnet;
信号补偿模块,与每一线性霍尔元件电连接,用于对所述混合磁场的磁场强度电信号进行补偿以抵消来自电磁磁场的影响,并输出仅与永磁磁场相关的补偿后的磁场强度电信号,用以表征所述电磁铁与所述永磁体之间的距离。The signal compensation module is electrically connected with each linear Hall element, and is used for compensating the magnetic field strength electric signal of the mixed magnetic field to offset the influence from the electromagnetic field, and outputting the compensated magnetic field strength only related to the permanent magnetic field The electric signal is used to represent the distance between the electromagnet and the permanent magnet.
可选的,所述电磁铁为E型电磁铁。Optionally, the electromagnet is an E-type electromagnet.
可选的,所述电磁铁为电磁吸盘。Optionally, the electromagnet is an electromagnetic chuck.
可选的,所述永磁体为钕铁硼永磁体、钐钴永磁体或铝镍钴永磁体,所述永磁体的形状为圆柱体、长方体或环形体。Optionally, the permanent magnet is a neodymium iron boron permanent magnet, a samarium cobalt permanent magnet or an alnico permanent magnet, and the shape of the permanent magnet is a cylinder, a cuboid or a ring.
可选的,所述线性霍尔元件的数量为三个,呈一字型等距间隔排列在所述吸附面上,且中间位置的线性霍尔元件位于所述吸附面正中位置并与所述永磁体位置相对。Optionally, the number of the linear Hall elements is three, which are arranged on the adsorption surface at equal intervals in a line, and the linear Hall element in the middle position is located in the middle of the adsorption surface and is connected to the adsorption surface. The permanent magnets are located relative to each other.
可选的,所述线性霍尔元件的数量为五个,且其中一个线性霍尔元件位于所述吸附面正中位置并与所述永磁体位置相对,其余四个线性霍尔元件呈等距的旋转对称设置在所述吸附面的外围。Optionally, the number of the linear Hall elements is five, and one of the linear Hall elements is located in the middle of the adsorption surface and opposite to the position of the permanent magnet, and the remaining four linear Hall elements are equidistant The rotational symmetry is arranged on the periphery of the adsorption surface.
可选的,所述信号补偿模块为数字控制器。Optionally, the signal compensation module is a digital controller.
可选的,所述信号补偿模块为模拟电路。Optionally, the signal compensation module is an analog circuit.
可选的,所述模拟电路包括:依次串联的输入信号处理模块和参数调整模块;Optionally, the analog circuit includes: an input signal processing module and a parameter adjustment module sequentially connected in series;
所述输入信号处理模块包括至少两个第一运算放大器,每一第一运算放大器的输出端通过第一电阻连接所述参数调整模块的输入端,每一第一运算放大器的同向输入端连接对应的线性霍尔元件的输出端,每一第一运算放大器的反向输入端连接各自的输出端;The input signal processing module includes at least two first operational amplifiers, the output terminal of each first operational amplifier is connected to the input terminal of the parameter adjustment module through a first resistor, and the same input terminal of each first operational amplifier is connected The output end of the corresponding linear Hall element, the inverting input end of each first operational amplifier is connected to the respective output end;
所述参数调整模块包括相互串联的第二运算放大器和第三运算放大器,所述第二运算放大器的反向输入端连接所述输入信号处理模块的输出端且还通过第二电阻连接所述第二运算放大器的输出端,所述第二运算放大器的同向输入端连接可调电位计,所述第二运算放大器的输出端连接所述第三运算放大器的同向输入端,所述第三运算放大器的反向输入端连接所述第三运算放大器的输出端,所述第三运算放大器的输出端输出补偿后的磁场强度电信号。The parameter adjustment module includes a second operational amplifier and a third operational amplifier connected in series, the inverting input terminal of the second operational amplifier is connected to the output terminal of the input signal processing module and is also connected to the first operational amplifier through a second resistor. The output terminals of the two operational amplifiers, the same input terminal of the second operational amplifier is connected with an adjustable potentiometer, the output terminal of the second operational amplifier is connected with the same input terminal of the third operational amplifier, and the third operational amplifier is connected with the same input terminal of the third operational amplifier. The inverting input terminal of the operational amplifier is connected to the output terminal of the third operational amplifier, and the output terminal of the third operational amplifier outputs a compensated magnetic field strength electric signal.
可选的,所述装置还包括:电源模块,与所述电磁铁、所述线性霍尔元件和所述信号补偿模块连接,用于向所述电磁铁、所述线性霍尔元件和所述信号补偿模块供电。Optionally, the device further includes: a power supply module, connected to the electromagnet, the linear Hall element and the signal compensation module, for providing power to the electromagnet, the linear Hall element and the The signal compensation module is powered.
本技术方案通过至少两个线性霍尔元件获取所述永磁磁场和所述电磁磁场叠加后的混合磁场的磁场强度电信号,并利用信号补偿模块,对混合磁场的磁场强度电信号进行补偿、以抵消来自电磁磁场的影响、并输出仅与永磁磁场相关的补偿后的磁场强度电信号,用以表征所述电磁铁与所述永磁体之间的距离,避免线性霍尔元件受到所述电磁磁场的干扰,使信号测量更加准确,提高距离检测精度;另外,通过设置至少三个线性霍尔元件能有效降低测量过程中永磁体摇摆、侧偏对距离信号的影响、提高距离检测的准确度。In this technical solution, at least two linear Hall elements are used to obtain the electric signal of the magnetic field strength of the mixed magnetic field after the superposition of the permanent magnetic field and the electromagnetic field, and the signal compensation module is used to compensate the electric signal of the magnetic field strength of the mixed magnetic field, To counteract the influence from the electromagnetic field, and output a compensated magnetic field strength electrical signal only related to the permanent magnetic field, to characterize the distance between the electromagnet and the permanent magnet, to avoid the linear Hall element being affected by the The interference of the electromagnetic field makes the signal measurement more accurate and improves the distance detection accuracy; in addition, by setting at least three linear Hall elements, it can effectively reduce the influence of the permanent magnet swing and side deviation on the distance signal during the measurement process, and improve the accuracy of the distance detection Spend.
本实用新型实施例的其它特征和优点将在随后的具体实施方式部分予以详细说明。Other features and advantages of the embodiments of the present invention will be described in detail in the following part of specific embodiments.
附图说明Description of drawings
附图是用来提供对本实用新型实施例的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本实用新型实施例,但并不构成对本实用新型实施例的限制。在附图中:The accompanying drawings are used to provide a further understanding of the embodiments of the utility model, and constitute a part of the description, and are used together with the following specific embodiments to explain the embodiments of the utility model, but do not constitute a limitation to the embodiments of the utility model. In the attached picture:
图1是本实用新型提供的第一种永磁电磁混合系统的测距装置的结构示意图;Fig. 1 is the structural representation of the distance measuring device of the first kind of permanent magnet electromagnetic hybrid system provided by the utility model;
图2是本实用新型提供的第一种永磁电磁混合系统的测距装置的部分结构示意图;Fig. 2 is a partial structural schematic diagram of the distance measuring device of the first permanent magnet electromagnetic hybrid system provided by the utility model;
图3是本实用新型提供的第二种永磁电磁混合系统的测距装置的结构示意图;Fig. 3 is the structural representation of the ranging device of the second permanent magnet electromagnetic hybrid system provided by the utility model;
图4是本实用新型提供的第二种永磁电磁混合系统的测距装置的部分结构示意图;Fig. 4 is a partial structural schematic diagram of the distance measuring device of the second permanent magnet electromagnetic hybrid system provided by the utility model;
图5是本实用新型提供的永磁电磁混合系统的测距装置的信号补偿模块的结构示意图;Fig. 5 is a schematic structural view of the signal compensation module of the ranging device of the permanent magnet electromagnetic hybrid system provided by the utility model;
图6是本实用新型提供的补偿后的磁场强度电信号与电磁铁和永磁体之间距离的变化关系示意图。Fig. 6 is a schematic diagram of the relationship between the electric signal of the magnetic field strength after compensation and the distance between the electromagnet and the permanent magnet provided by the utility model.
附图标记说明Explanation of reference signs
1-电磁铁; 2-永磁体; 3-线性霍尔元件;1-Electromagnet; 2-Permanent magnet; 3-Linear Hall element;
4-信号补偿模块; 41-输入信号处理模块; 42-参数调整模块;4-signal compensation module; 41-input signal processing module; 42-parameter adjustment module;
411-第一运算放大器; 412-第一电阻; 421-第二运算放大器;411-the first operational amplifier; 412-the first resistor; 421-the second operational amplifier;
422-第三运算放大器; 423-第二电阻; 424-可调电位计。422-the third operational amplifier; 423-the second resistor; 424-an adjustable potentiometer.
具体实施方式detailed description
以下结合附图对本实用新型实施例的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本实用新型实施例,并不用于限制本实用新型实施例。The specific implementation manners of the embodiments of the present invention will be described in detail below in conjunction with the accompanying drawings. It should be understood that the specific implementation manners described here are only used to illustrate and explain the embodiments of the present utility model, and are not intended to limit the embodiments of the present utility model.
在本实用新型实施例中,在未作相反说明的情况下,使用的方位词如“上、下、左、右”通常是指基于附图所示的方位或位置关系,或者是该实用新型产品使用时惯常摆放的方位或位置关系。In the embodiments of the present utility model, unless otherwise stated, the orientation words used such as "up, down, left, right" usually refer to the orientation or positional relationship shown in the drawings, or the utility model The orientation or positional relationship in which the product is usually placed in use.
术语“第一”、“第二”、“第三”等仅用于区分描述,而不能理解为指示或暗示相对重要性。The terms "first", "second", "third", etc. are only used for distinguishing descriptions, and should not be construed as indicating or implying relative importance.
术语“平行”、“垂直”等并不表示要求部件绝对平行或垂直,而是可以稍微倾斜。如“平行”仅仅是指其方向相对“垂直”而言更加平行,并不是表示该结构一定要完全平行,而是可以稍微倾斜。The terms "parallel", "perpendicular", etc. do not mean that the components are absolutely parallel or perpendicular, but may be slightly inclined. For example, "parallel" only means that its direction is more parallel than "vertical", and does not mean that the structure must be completely parallel, but can be slightly inclined.
术语“水平”、“竖直”、“悬垂”等术语并不表示要求部件绝对水平、竖直或悬垂,而是可以稍微倾斜。如“水平”仅仅是指其方向相对“竖直”而言更加水平,并不是表示该结构一定要完全水平,而是可以稍微倾斜。The terms "horizontal", "vertical", "overhanging" and the like do not imply that the part is absolutely horizontal, vertical or overhanging, but may be slightly inclined. For example, "horizontal" only means that its direction is more horizontal than "vertical", and it does not mean that the structure must be completely horizontal, but can be slightly inclined.
此外,“大致”、“基本”等用语旨在说明相关内容并不是要求绝对的精确,而是可以有一定的偏差。例如:“大致相等”并不仅仅表示绝对的相等,由于实际生产、操作过程中,难以做到绝对的“相等”,一般都存在一定的偏差。因此,除了绝对相等之外,“大致等于”还包括上述的存在一定偏差的情况。以此为例,其他情况下,除非有特别说明,“大致”、“基本”等用语均为与上述类似的含义。In addition, terms such as "approximately" and "basically" are intended to indicate that the relevant content does not require absolute precision, but may have certain deviations. For example: "approximately equal" does not only mean absolute equality, because it is difficult to achieve absolute "equal" in the actual production and operation process, generally there is a certain deviation. Therefore, in addition to being absolutely equal, "approximately equal to" also includes the above-mentioned situation where there is a certain deviation. Take this as an example, and in other cases, unless otherwise specified, terms such as "approximately" and "basically" have similar meanings to the above.
在本实用新型的描述中,还需要说明的是,除非另有明确的规定和限定,术语“设置”、“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本实用新型中的具体含义。In the description of the present utility model, it should also be noted that, unless otherwise specified and limited, the terms "setting", "installation", "connection" and "connection" should be understood in a broad sense, for example, it can be a fixed connection , can also be detachably connected, or integrally connected; can be directly connected, can also be indirectly connected through an intermediary, and can be internal communication between two components. Those of ordinary skill in the art can understand the specific meanings of the above terms in the present utility model in specific situations.
图1是本实用新型提供的第一种永磁电磁混合系统的测距装置的结构示意图;图2是本实用新型提供的第一种永磁电磁混合系统的测距装置的部分结构示意图;图3是本实用新型提供的第二种永磁电磁混合系统的测距装置的结构示意图;图4是本实用新型提供的第二种永磁电磁混合系统的测距装置的部分结构示意图。Fig. 1 is the structural representation of the distance measuring device of the first kind of permanent magnet electromagnetic hybrid system provided by the utility model; Fig. 2 is the partial structural representation of the distance measuring device of the first kind of permanent magnet electromagnetic hybrid system provided by the utility model; Fig. 3 is a schematic structural view of the distance measuring device of the second permanent magnet electromagnetic hybrid system provided by the utility model; FIG. 4 is a partial structural schematic diagram of the distance measuring device of the second permanent magnet electromagnetic hybrid system provided by the utility model.
如图1-4所示,本实用新型实施方式提供一种永磁电磁混合系统的测距装置,所述永磁电磁混合系统包括电磁铁1和永磁体2,所述电磁铁1的底面为水平的吸附面,所述永磁体2位于所述电磁铁1正下方且与所述电磁铁1不接触;所述永磁电磁混合系统的测距装置包括:As shown in Figure 1-4, the embodiment of the utility model provides a distance measuring device of a permanent magnet electromagnetic hybrid system, the permanent magnet electromagnetic hybrid system includes an
至少两个线性霍尔元件3,间隔设置在所述电磁铁1的吸附面上,其中一个线性霍尔元件3位于所述吸附面正中位置并与所述永磁体2位置相对,至少两个线性霍尔元件3用于获取所述永磁体2所激发的永磁磁场和所述电磁铁1中励磁电流所激发的电磁磁场叠加后的混合磁场的磁场强度电信号;At least two
信号补偿模块4,与每一线性霍尔元件3电连接,用于对所述混合磁场的磁场强度电信号进行补偿以抵消来自电磁磁场的影响,并输出仅与永磁磁场相关的补偿后的磁场强度电信号,用以表征所述电磁铁1与所述永磁体2之间的距离;The
具体地,电磁铁1包括铁芯和线圈。向线圈通入励磁电流便使电磁铁1产生电磁磁场,磁场的方向由励磁电流的方向决定;同时,永磁体2产生永磁磁场。永磁磁场与电磁铁1的铁芯和电磁磁场之间的相互作用可使永磁体2与电磁铁1之间产生磁场作用力。线性霍尔元件3的数量根据实际使用情况决定,可以设置为两至五或更多个不等,并按一定的规律进行排布,且保证其中一个线性霍尔元件3位于吸附面正中位置。线性霍尔元件3得到混合磁场的磁场强度电信号后,信号补偿模块4可以采用数字控制器、也可以采用模拟电路,对所述混合磁场的磁场强度电信号进行补偿、以抵消来自电磁磁场的影响、并输出仅与永磁磁场相关的补偿后的磁场强度电信号,用以表征所述电磁铁1与所述永磁体2之间的距离。Specifically, the
更具体地,信号补偿模块4可以再根据距离与补偿后的磁场强度电信号之间的函数关系,确定永磁体2与电磁铁1之间的实际距离。More specifically, the
在另一种实施方式中,所述装置还包括:电源模块,与所述电磁铁1、所述线性霍尔元件3和所述信号补偿模块4连接,用于向所述电磁铁1、所述线性霍尔元件3和所述信号补偿模块4供电。In another embodiment, the device further includes: a power supply module, connected to the
更具体地,供电电源(未示出)可以设置整体或者单个独立分别为电磁铁1、线性霍尔元件3或信号补偿模块4供电的电源,具体包括一次性电池、可充电电池等作为电源供电。More specifically, the power supply (not shown) can be set as a whole or a single independent power supply for the
更进一步地,本实用新型基于以下原理实施:Further, the utility model is implemented based on the following principles:
按照磁场的线性叠加原理,线性霍尔元件3获取的混合磁场可以被线性分解为永磁磁场B永和电磁磁场B电;其中,永磁磁场B永受电磁铁1与永磁体2之间的距离h和该线性霍尔元件3附近电磁铁1铁芯的磁化程度α的影响;电磁磁场B电受电磁铁1的励磁电流I和该线性霍尔元件3的位置系数β的影响。由于永磁体2不能被进一步磁化或退磁,故永磁磁场B永与励磁电流I无关;多个线性霍尔元件3之间受电磁磁场的影响呈正相关关系、以位置系数β表征,位置系数β为常数、且与励磁电流I和距离h均无关。According to the principle of linear superposition of the magnetic field, the mixed magnetic field obtained by the
综上所述,各个线性霍尔元件3所获取的混合磁场有以下函数关系:To sum up, the mixed magnetic field obtained by each
B0=B永(h)+B电(I)B 0 = B Yong (h) + B Electric (I)
Bi=αi(h)B永(h)+βiB电(I)B i =α i (h) B Yong (h) + β i B electricity (I)
其中,βi为常数,可以直接测量并对电磁磁场B电进行补偿。令补偿后的磁场B补偿后为如下表达式:Among them, β i is a constant, which can be directly measured and compensated for the electromagnetic field B. Let the compensated magnetic field B be the following expression after compensation :
由上式可知,补偿后的磁场B补偿后与励磁电流I无关,而仅与距离h有关,可以表征永磁体2与电磁铁1之间的距离。It can be seen from the above formula that the compensated magnetic field B has nothing to do with the excitation current I after compensation , but is only related to the distance h, which can represent the distance between the
进一步地,所述电磁铁1为E型电磁铁1或电磁吸盘。Further, the
具体地,电磁铁1可采用E型电磁铁或电磁吸盘,且采用E型电磁铁时,其开口端垂直向下,相对永磁体2布置;另外,当采用E型电磁铁时,线性霍尔元件3可设置三个,且其中一个线性霍尔元3件位于E型电磁铁的吸附面正中位置,三个线性霍尔元件3呈一字型排列设置在E型电磁铁的铁芯上;当采用电磁吸盘,线性霍尔元件3设置五个,且其中一个线性霍尔元件3位于电磁吸盘的吸附面正中位置,其余四个线性霍尔元件3呈等距的旋转对称设置在电磁吸盘的吸附面上。Specifically, the
进一步地,所述永磁体2为钕铁硼永磁体、钐钴永磁体或铝镍钴永磁体,所述永磁体2的形状为圆柱体、长方体或环形体。Further, the
具体地,永磁体2可采用钕铁硼永磁体、钐钴永磁体或铝镍钴永磁体等磁性较强的永磁体,且形状可以为圆柱体、长方体或环形体等形状,具体可根据实际使用环境确定。Specifically, the
进一步地,所述线性霍尔元件3的数量3为三个,呈一字型等距间隔排列在所述吸附面上,且中间位置的线性霍尔元件3位于所述吸附面正中位置并与所述永磁体2位置相对。Further, the
具体地,如图1-2所示,线性霍尔元件3设置为三个时,其中一个线性霍尔元件3位于电磁铁1的吸附面正中位置,并且三个线性霍尔元件3等距离对称分布,最优选的可采取一字型排列方式,能有效降低测量过程中永磁体2摇摆、侧偏对距离信号的影响,提高距离检测的准确度,线性霍尔元件3设置为三个时可以应用在E型电磁铁上。Specifically, as shown in Figure 1-2, when there are three
进一步地,所述线性霍尔元件3的数量为五个,且其中一个线性霍尔元件3位于所述吸附面正中位置并与所述永磁体2位置相对,其余四个线性霍尔元件3呈等距的旋转对称设置在所述吸附面的外围。Further, the number of the
具体地,如图3-4所示,线性霍尔元件3设置为五个时,其中一个线性霍尔元件3位于电磁铁1的吸附面正中位置,其余四个线性霍尔元件3呈等距的旋转对称分布在电磁铁1的吸附面上,位于所述吸附面的外围,且该四个线性霍尔元件3与位于电磁铁1的吸附面正中位置的线性霍尔元件3的距离相等,采用这种设置方式能有效降低测量过程中永磁体2摇摆、侧偏对距离信号的影响,提高距离检测的准确度,线性霍尔元件3设置为五个时可以应用在电磁吸盘上。Specifically, as shown in Figure 3-4, when there are five
进一步地,所述信号补偿模块4为数字控制器,所述数字控制器采用以下公式计算补偿后的磁场强度电信号:Further, the
其中,U补偿后为补偿后的磁场强度电信号;U0为位于吸附面正中位置的线性霍尔元件获取的混合磁场的磁场强度电信号;K为补偿系数,U调零为调零系数;i为位于吸附面外围的第i个线性霍尔元件,且i≥1;n为位于吸附面外围的线性霍尔元件的个数;Ui为位于吸附面外围的线性霍尔元件获取的混合磁场的磁场强度电信号Wherein, after U is compensated, it is the magnetic field strength electric signal after compensation; U 0 is the magnetic field strength electric signal of the mixed magnetic field obtained by the linear Hall element located in the middle position of the adsorption surface; K is the compensation coefficient, and U zeroing is the zeroing coefficient; i is the i-th linear Hall element located at the periphery of the adsorption surface, and i≥1; n is the number of linear Hall elements located at the periphery of the adsorption surface; U i is the mixture obtained by the linear Hall elements located at the periphery of the adsorption surface magnetic field strength electric signal
具体地,当所述信号补偿模块4为数字控制器时,采用补偿公式对输入的混合磁场的磁场强度电信号进行补偿、以抵消来自电磁磁场的影响、并输出仅与永磁磁场相关的补偿后的磁场强度电信号,用以表征所述电磁铁1与所述永磁体2之间的距离。Specifically, when the
进一步地,所述信号补偿模块4为模拟电路;Further, the
所述模拟电路包括:依次串联的输入信号处理模块41和参数调整模块42;The analog circuit includes: an input
所述输入信号处理模块41包括至少两个第一运算放大器411,每一第一运算放大器411的输出端通过第一电阻412连接所述参数调整模块42的输入端,每一第一运算放大器411的同向输入端连接对应的线性霍尔元件3的输出端,每一第一运算放大器411的反向输入端连接各自的输出端;The input
所述参数调整模块42包括相互串联的第二运算放大器421和第三运算放大器422,所述第二运算放大器421的反向输入端连接所述输入信号处理模块41的输出端且还通过第二电阻423连接所述第二运算放大器421的输出端,所述第二运算放大器421的同向输入端连接可调电位计424,所述第二运算放大器421的输出端连接所述第三运算放大器422的同向输入端,所述第三运算放大器422的反向输入端连接所述第三运算放大器422的输出端,所述第三运算放大器422的输出端输出补偿后的磁场强度电信号。The
具体地,图5是本实用新型提供的永磁电磁混合系统的测距装置的信号补偿模块的结构示意图,如图5所示,本实施方式中设置五个线性霍尔元件3,所述模拟电路包括依次串联的输入信号处理模块41和参数调整模块42,所述输入信号处理模块41包括五个第一运算放大器411,每一第一运算放大器411的输出端通过第一电阻412连接所述参数调整模块42的输入端,每一第一运算放大器411的同向输入端连接对应的线性霍尔元件3的输出端,每一第一运算放大器411的反向输入端连接各自的输出端;所述参数调整模块42包括相互串联的第二运算放大器421和第三运算放大器422,所述第二运算放大器421的反向输入端连接所述输入信号处理模块41的输出端且还通过第二电阻423连接所述第二运算放大器421的输出端,所述第二运算放大器421的同向输入端连接可调电位计424,所述第二运算放大器421的输出端连接所述第三运算放大器422的同向输入端,所述第三运算放大器422的反向输入端连接所述第三运算放大器422的输出端,所述第三运算放大器422的输出端输出补偿后的磁场强度电信号。其中,第一运算放大器411和第一电阻412的数量与线性霍尔元件3的数量相同,且第一电阻412、第二电阻423均可采用滑动变阻器、变阻箱等;更进一步地,位于吸附面正中位置的线性霍尔元件3对应的第一电阻412采用滑动变阻器,位于吸附面外围的线性霍尔元件3对应的第一电阻412可采用固定阻值电阻;另外,通过调节第二电阻423的阻值,可以实现模拟电路对永磁磁场的灵敏度的调节;通过调节可调电位计424,可以实现对模拟电路的调零。Specifically, Fig. 5 is a structural schematic diagram of the signal compensation module of the distance measuring device of the permanent magnet electromagnetic hybrid system provided by the utility model. As shown in Fig. 5, five
在本实施方式中,位于吸附面正中位置的线性霍尔元件3对应的第一电阻412为VR0,位于外围的线性霍尔元件3对应的第一电阻412分别为R1、R2、R3、R4。在实际应用过程中,位于外围的线性霍尔元件3的第一电阻412设置为相同阻值。In this embodiment, the
具体地,通过模拟电路进行信号补偿。Specifically, signal compensation is performed through an analog circuit.
以设置五个线性霍尔元件3为例,分别获取五个磁场强度电信号:U0、U1、U2、U3和U4;其中,U0是位于吸附面正中位置线性霍尔元件3获取的混合磁场的磁场强度电信号,受永磁磁场的影响较大;U1、U2、U3、U4分别是其余四个设置在所述吸附面的外围的线性霍尔元件3获取的混合磁场的磁场强度电信号,该四个线性霍尔元件3在几何上呈等距的旋转对称,受永磁磁场的影响较小。Take setting five
该模拟电路的目的在于利用多个线性霍尔元件3获取的电磁磁场的磁场强度电信号之间具有线性关系,从而抵消来自电磁磁场的影响、并输出仅与永磁磁场相关的补偿后的磁场强度电信号。将线性霍尔元件3按同一朝向设置在电磁铁1的吸附面(如将线性霍尔元件3的工作面朝向电磁铁1),则电磁磁场对于U0的影响与对于U1、U2、U3、U4的影响相反,例如U0增大的同时,U1、U2、U3、U4减小。The purpose of this analog circuit is to use a plurality of
由关于第二运算放大器421的电路分析可得以下关系:From the circuit analysis about the second
其中,R1=R2=R3=R4。进一步简化可得,Wherein, R 1 =R 2 =R 3 =R 4 . Further simplification can be obtained,
其中,U补偿后是所述第三运算放大器输出的补偿后的磁场强度电信号;为U0与之间的敏感度,可看作模拟电路的补偿系数;U调零是调零系数,由可调电位计产生。Wherein, U after compensation is the compensated magnetic field strength electrical signal output by the third operational amplifier; for U 0 with The sensitivity between them can be regarded as the compensation coefficient of the analog circuit; U zeroing is the zeroing coefficient, which is generated by the adjustable potentiometer.
由上式可知,微调VR0,可以抵消电磁磁场对U补偿后的影响;微调VR第二,可以调节模拟电路对永磁磁场的灵敏度;微调U调零,可以对模拟电路的输出信号调零。It can be seen from the above formula that fine-tuning VR 0 can offset the influence of the electromagnetic field on U after compensation ; fine-tuning VR secondly can adjust the sensitivity of the analog circuit to the permanent magnetic field; fine-tuning U zero can zero-adjust the output signal of the analog circuit .
实施例1Example 1
如图1-2所示,本实施例中,电磁铁1采用E型电磁铁;永磁体2为长方体;在E型电磁铁的吸附面上设置三个线性霍尔元件3,三个线性霍尔元件3呈一字型等距间隔排列在所述吸附面上,且中间位置的线性霍尔元件3位于所述吸附面正中位置、并与所述永磁体2位置相对;信号补偿模块4设置在所述吸附面上。通过这种方式进行信号检测,能够有效降低测量过程中永磁体2摇摆、侧偏对距离信号的影响、提高距离检测的准确度。As shown in Figure 1-2, in this embodiment, the
实施例2Example 2
如图3-4所示,本实施例中,电磁铁1采用电磁吸盘;永磁体2为圆柱体;在电磁吸盘的吸附面上设置五个线性霍尔元件3,其中一个线性霍尔元件3位于电磁铁1的吸附面正中位置,其余四个线性霍尔元件3呈等距的旋转对称分布在电磁铁1的吸附面上,位于所述吸附面的外围,且该四个线性霍尔元件3与位于电磁铁1的吸附面正中位置的线性霍尔元件3的距离相等;信号补偿模块4设置在所述吸附面上。通过这种方式进行信号检测,能够有效降低测量过程中永磁体2摇摆、侧偏对距离信号的影响、提高距离检测的准确度。As shown in Figure 3-4, in this embodiment, the
实施例3Example 3
图6是本实用新型提供的补偿后的磁场强度电信号与电磁铁和永磁体之间距离的变化关系示意图;如图6所示,本实施例中所述信号补偿模块4为模拟电路,所述测距装置包括五个线性霍尔元件3,且其中一个线性霍尔元件3位于所述吸附面正中位置、并与所述永磁体2位置相对,其余四个线性霍尔元件3呈等距的旋转对称设置在所述吸附面的外围。位于外围的线性霍尔元件3对应的第一电阻412的阻值为90千欧,位于吸附面正中位置的线性霍尔元件3对应的第一电阻412的阻值为169.2千欧。利用模拟电路对线性霍尔元件3获取的混合磁场的磁场强度电信号进行补偿、以抵消来自电磁磁场的影响、并输出仅与永磁磁场相关的补偿后的磁场强度电信号。进一步地,信号补偿模块4可以再根据距离与补偿后的磁场强度电信号之间的函数关系,确定永磁体2与电磁铁1之间的实际距离,如图6所示,在三个不同励磁电流(0mA、100mA、-100mA)的情况下,信号补偿模块4输出的补偿后的磁场强度电信号几乎一致,说明补偿后的磁场强度电信号不再受电磁磁场的影响、仅与永磁磁场相关。Fig. 6 is the change relation schematic diagram of the magnetic field intensity electric signal after the compensation provided by the utility model and the distance between the electromagnet and the permanent magnet; As shown in Fig. 6, the
以上结合附图详细描述了本实用新型实施例的可选实施方式,但是,本实用新型实施例并不限于上述实施方式中的具体细节,在本实用新型实施例的技术构思范围内,可以对本实用新型实施例的技术方案进行多种简单变型,这些简单变型均属于本实用新型实施例的保护范围。The optional implementation of the embodiment of the utility model has been described in detail above in conjunction with the accompanying drawings. However, the embodiment of the utility model is not limited to the specific details in the above-mentioned implementation. Various simple modifications are made to the technical solution of the embodiment of the utility model, and these simple modifications all belong to the protection scope of the embodiment of the utility model.
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合。为了避免不必要的重复,本实用新型实施例对各种可能的组合方式不再另行说明。In addition, it should be noted that the various specific technical features described in the above specific implementation manners may be combined in any suitable manner if there is no contradiction. In order to avoid unnecessary repetition, the embodiments of the present utility model will not further describe various possible combinations.
本领域技术人员可以理解实现上述实施例方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序存储在一个存储介质中,包括若干指令用以使得单片机、芯片或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。Those skilled in the art can understand that all or part of the steps in the method of the above-mentioned embodiments can be completed by instructing the relevant hardware through a program. (processor) executes all or part of the steps of the methods described in the various embodiments of the present application. The aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disk and other media that can store program codes. .
此外,本实用新型实施例的各种不同的实施方式之间也可以进行任意组合,只要其不违背本实用新型实施例的思想,其同样应当视为本实用新型实施例所公开的内容。In addition, any combination of various implementations of the embodiments of the present invention can also be made, as long as they do not violate the idea of the embodiments of the present invention, they should also be regarded as the content disclosed by the embodiments of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202220920093.XU CN218066289U (en) | 2022-04-14 | 2022-04-14 | Distance measuring device for permanent magnet electromagnetic hybrid system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202220920093.XU CN218066289U (en) | 2022-04-14 | 2022-04-14 | Distance measuring device for permanent magnet electromagnetic hybrid system |
Publications (1)
Publication Number | Publication Date |
---|---|
CN218066289U true CN218066289U (en) | 2022-12-16 |
Family
ID=84428699
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202220920093.XU Expired - Fee Related CN218066289U (en) | 2022-04-14 | 2022-04-14 | Distance measuring device for permanent magnet electromagnetic hybrid system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN218066289U (en) |
-
2022
- 2022-04-14 CN CN202220920093.XU patent/CN218066289U/en not_active Expired - Fee Related
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101753459B1 (en) | System for monitoring electrical power usage of a structure and method of same | |
US4059798A (en) | Method and apparatus for measuring the current flowing in a workpiece | |
JPH03205566A (en) | Current intensity transformer | |
CN106597329B (en) | An automatic magnetoelectric coefficient test system | |
US4704575A (en) | Hall-effect current clamp | |
CN107271933B (en) | A kind of three axis fluxgate sensor of spherical | |
CN110658374A (en) | Current transformer with wide frequency, wide measurement and anti-magnetic interference capability | |
Yang et al. | A new compact fluxgate current sensor for AC and DC application | |
CN218066289U (en) | Distance measuring device for permanent magnet electromagnetic hybrid system | |
CN211122999U (en) | Current transformer with wide frequency, wide measurement and anti-magnetic interference capability | |
CN114646254A (en) | Distance measuring device of permanent magnet electromagnetic hybrid system | |
CN110095643A (en) | A kind of four air gap open loop Hall current sensor of single magnetic core | |
CN110095644A (en) | A kind of novel high-precision open loop Hall current sensor | |
CN109541514B (en) | Calibration control device and calibration device for small coil turn area for magnetic moment measurement | |
CN104700977B (en) | Electric energy meter DC magnetic field generator and interference test device | |
CN202305473U (en) | Device for calibrating marine diesel engine piston ring abrasion monitoring sensor | |
CN110412466A (en) | Structure and Method for Measuring Operating Parameters of High Speed Permanent Magnet Motor | |
CN101408596B (en) | Method and device for measuring relative permeability of weak magnetic materials and coercive force of electrical pure iron | |
CN109782198A (en) | A three-axis bidirectional compensation magnetic field measuring device | |
CN102136336A (en) | Method for compensating heterogeneity of magnetic field coil by shunting | |
Xu et al. | Numerical calculation of the magnetic field and force in cylindrical single-axis actuator | |
CN210441810U (en) | Displacement sensor capable of resisting magnetic field interference, motor assembly and gearbox | |
CN204614578U (en) | Electric energy meter D.C. magnetic field generating means and interference test device | |
CN116953327A (en) | High-voltage direct-current quantum tunneling magneto-resistance current sensing device | |
CN114218842B (en) | A modeling method of the Preisach model for the regional parameters of permanent magnets |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20221216 |