CN217469763U - 一种同步传导模式的抽头电感降压变压器 - Google Patents

一种同步传导模式的抽头电感降压变压器 Download PDF

Info

Publication number
CN217469763U
CN217469763U CN202122507310.0U CN202122507310U CN217469763U CN 217469763 U CN217469763 U CN 217469763U CN 202122507310 U CN202122507310 U CN 202122507310U CN 217469763 U CN217469763 U CN 217469763U
Authority
CN
China
Prior art keywords
mosfet
diode
inductor
tap
parallel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202122507310.0U
Other languages
English (en)
Inventor
颜景斌
王怡斐
朱强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin University of Science and Technology
Original Assignee
Harbin University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin University of Science and Technology filed Critical Harbin University of Science and Technology
Priority to CN202122507310.0U priority Critical patent/CN217469763U/zh
Application granted granted Critical
Publication of CN217469763U publication Critical patent/CN217469763U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Dc-Dc Converters (AREA)

Abstract

本实用新型涉及高降压转换领域,具体涉及一种同步传导模式的抽头电感降压变压器,包括直流电源Vin、电阻Rc、Ro、抽头电感L1、L2、电感L3、二极管D1、D2、励磁电感Lm、滤波电容Co、电容C1、MOSFET Q1、Q2模块和与之对应的反并联二极管,与传统的buck变压器相比,增加了励磁电感Lm并联在抽头电感上、二极管D1、D2和电容C1并构成并联支路,同时引入了同步传导模式(SCM),增加了降压变压器的占空比和功率密度,其电压增益范围为0到1,同时拓宽了ZVS区域,具有广泛的应用前景。

Description

一种同步传导模式的抽头电感降压变压器
技术领域
本实用新型涉及高降压转换领域,具体涉及一种同步传导模式的抽头电感降压变压器
背景技术
每个电子系统都由电池或线路源提供电源,建立主直流电压轨。轨道电压取决于应用,而计算、传感、通信和各种功能都依赖于运行在低直流电压下的电路。由此可知,低功率降压变换器(即通用降压变换器)是必不可少的,同时它也可以作为辅助电源。
降压变换器由于简单而突出,已被作为一种广泛研究的单级拓扑结构,从而已经被大规模商业化。然而,在高降压转换下,由于主开关导通时间短,占空比窄,因此限制了可控性。当使用高开关频率来缩小储能元件时,效果很不理想。同时在连续导通模式下工作时,也存在开关损耗问题。因此,在降压变压器上外加励磁电感并在同步传导模式(SCM)工作是非常有必要的。
实用新型内容
针对上述现有技术中的不足,本实用新型提供一种同步传导模式的抽头电感降压变压器,该变压器增加了降压变压器的占空比和功率密度,同时拓宽了ZVS区域,应用前景十分广泛,具体如下:
一种同步传导模式的抽头电感降压变压器,包括Buck变换器基本拓扑结构、降低抽头电感的漏感模块、降低电路纹波和消除谐波模块,其特征是:Buck变换器基本拓扑结构由直流电源Vin、电阻Rc、抽头电感L1、抽头电感L2、电感L3、滤波电容Co、电阻Ro、MOSFET Q1和与之对应的反并联二极管、MOSFET Q2模块和与之对应的反并联二极管构成;所述的直流电源Vin和抽头电感L1输入端连接在一起;所述的抽头电感L1输入端与MOSFET Q1的漏极连接;所述的MOSFET Q1与二极管反并联连接在一起;所述的MOSFET Q2同样与二极管反并联连接在一起;所述的MOSFET Q1的源极与MOSFET Q2的漏极连接在一起;所述的MOSFET Q1的源极与抽头电感L2输入端连接在一起;所述的抽头电感L2输出端与滤波电容Co连接在一起;所述的滤波电容Co与电阻Rc串联连接;所述的电阻Ro与电阻Rc所在的串联支路并联在一起;所述的电感L3连接在MOSFET Q1的源极与电阻Rc之间,降低抽头电感的漏感模块由二极管D1、二极管D2和电容C1构成;所述的二极管D1、二极管D2 串联连接;所述的电容C1并联连接在二极管D1和二极管D2之间,降低电路纹波和消除谐波模块由电感L3构成。
优选的,所述的一种同步传导模式的抽头电感降压变压器,其特征在于所述的流过励磁电感Lm的磁化电流ILm可以作为定义降压变换器的工作方式的标准。当ILm大于0时,转换器工作在连续导通模式(CCM)。当ILm达到0后反弹时,转换器工作在临界导通模式(CRM)或边界导通模式(BCM)。最后,当ILm小于0时,转换器工作在同步导通模式下(SCM)。
优选的,所述的一种同步传导模式的抽头电感降压变压器,其特征在于抽头电感L1、L2被MOSFET Q1隔开,在电路中可以起到耦合电感的作用,同时也可以提供在存储和释放能量期间不同的电感值。磁模型是采用励磁电感Lm的理想变压器(N1:N2),其中Lm放置在输出端,与降压转换器的电感一致。
优选的,所述的一种同步传导模式的抽头电感降压变压器,其特征在于采用两个二极管和一个电容组成的串并联电路解决由抽头电感的漏感导致的不完全耦合,而抽头电感的漏感会增加开关损耗并可能击穿开关管,而增加两个二极管和一个电容可以避免此现象。
优选的,所述的一种同步传导模式的抽头电感降压变压器,其特征在于采用电感L3,从而起到降低电路纹波、消除谐波和防止短路过电流的作用。
本实用新型的有益效果:该变压器成本低,精确度高,增加了降压变压器的占空比,其电压增益范围为0到1,电感电流反向流动,增强ZVS机制,同时拓宽了ZVS区域。可以在两个开关处获得零电压,并工作在高开关频率下,由此功率密度可以增加,具有广泛的应用前景。
附图说明
图1为一种同步传导模式的抽头电感降压变压器的结构图。
图2为一种同步传导模式的抽头电感降压变压器状态一的等效电路图。
图3为一种同步传导模式的抽头电感降压变压器状态二、三的等效电路图。
图4为一种同步传导模式的抽头电感降压变压器状态四的等效电路图。
具体实施方式
结合图1、2、3、4说明本实施方式,本实施方式所述一种同步传导模式的抽头电感降压变压器,包括Buck变换器基本拓扑结构、降低抽头电感的漏感模块、降低电路纹波和消除谐波模块,其特征是:Buck变换器基本拓扑结构由直流电源Vin、电阻Rc、抽头电感L1、抽头电感L2、电感L3、滤波电容Co、电阻Ro、MOSFET Q1和与之对应的反并联二极管、MOSFET Q2模块和与之对应的反并联二极管构成;所述的直流电源Vin和抽头电感L1输入端连接在一起;所述的抽头电感L1输入端与MOSFET Q1的漏极连接;所述的MOSFET Q1与二极管反并联连接在一起;所述的MOSFET Q2同样与二极管反并联连接在一起;所述的MOSFET Q1的源极与MOSFET Q2的漏极连接在一起;所述的MOSFET Q1的源极与抽头电感L2输入端连接在一起;所述的抽头电感L2输出端与滤波电容Co连接在一起;所述的滤波电容Co与电阻Rc串联连接;所述的电阻Ro与电阻Rc所在的串联支路并联在一起;所述的电感L3连接在MOSFET Q1的源极与电阻Rc之间,降低抽头电感的漏感模块由二极管D1、二极管D2和电容C1构成;所述的二极管D1、二极管D2 串联连接;所述的电容C1并联连接在二极管D1和二极管D2之间,降低电路纹波和消除谐波模块由电感L3构成。
磁化电流ILm流过励磁电感Lm,磁化电流ILm可以作为定义降压变换器的工作方式的标准。当ILm大于0时,转换器工作在连续导通模式(CCM);当ILm达到0后反弹时,转换器工作在临界导通模式(CRM)或边界导通模式(BCM);最后,当ILm小于0时,转换器工作在同步导通模式下(SCM)。不同状态下的工作原理如下:
状态1 [t0-t1]:初始Q1通过软开关开机,启动送电阶段,Q2截至。耦合电感在这种状态下吸收能量。电源Vin施加于抽头电感L1和L2的两端给电感储能,两个绕组呈串联辅助结构,IL2(=IL1)线性增加,并共同向负载供电。在上一个周期内,储存在钳位电容C1的能量也将通过D2和C1形成的回路释放到绕组L2
状态2 [t1-t2]:Q1关断后,Q2的Coss由于大电流IL2快速放电。因此,Q2的体二极管也在t1后立即开始导电,下一状态可以得到Q2的ZVS。另外,由于安培环路定律和磁通量的连续性,IL1被反射到另一侧,在原来的IL2上增加了电流。因此, IL2电流会发生“跳变”。由于漏感的存在,漏感中的能量将通过C1和D1形成回路。
状态3 [t2-t3]:Q2通过软开关开机,继续自由旋转。IL2= ILm,线性递减。在ILm达到过零点(ZCP)之前,能量从耦合电感中释放出来。IL2最终流向相反的方向,当IL2反转时,能量在耦合电感中沉积,为Q1的零电压开关做好准备。
状态4 [t3-t4]:Q2关断后,Lm中的能量帮助Q1的输出电容Coss放电。一旦Q1的输出电容Coss完全放电,它的体二极管导电。结果Q1在状态1的零电压下开启。Q1的ZVS是SCM的主要特点,与Q2的ZVS不同,它更难实现。因此,电压换相较慢,需要较长的死区时间。
当开关管Q1导通时,忽略了二极管的压降,钳位电容C1两端的稳定电压公式如下式,其中K为抽头比、Vin为输入电压、Vo为输出电压。
Figure DEST_PATH_692449DEST_PATH_IMAGE001
当开关管Q1关断时,漏感中的能量将通过电容C1和二极管D1形成回路,实现了从漏感到钳位电容的能量转移。如果钳位电容C1取得足够大,这样加在上C1增加的电压会很小,C1增加的电压如下式所示,其中Lleak为漏感电感, ioff为开关管关断时漏感在所形成闭合回路中释放的能量所产生的电流。
Figure DEST_PATH_504023DEST_PATH_IMAGE002
当开关管关断时,加在开关管两端的电压就可以表示成下式,其中Vpeak为漏感电压。
Figure DEST_PATH_DEST_PATH_IMAGE003
如对于理想的没有漏感和钳位电路的TI-Buck变换器,在开关管Q1关断时,绕组L1两端的电压为:
Figure DEST_PATH_765240DEST_PATH_IMAGE004
当开关再次导通时,储存在C1里的能量就可以通过D2和C1组成的回路释放到绕组L2,与此同时C1两端的电压因放电而下降到一个稳定的电压值。因此,全部漏感中的能量都反馈回输出。
TI降压变换器的占空比可用Lm的压秒平衡法计算。为了简化方程,假设死时间(状态2和状态4)持续时间可以忽略不计。当Q1打开时,Lm上的电压VL2低于Vin,因为初级侧绕组N1有助于划分电压,如下式所述。
Figure DEST_PATH_699698DEST_PATH_IMAGE005
当Q1关闭时,Lm上的电压与buck变换器中的相同,如下式所述。
Figure DEST_PATH_161904DEST_PATH_IMAGE006
根据电压二次平衡方程为下式:
Figure DEST_PATH_DEST_PATH_IMAGE007
当Q1的VL2较低时,其在TI buck中的导通时间应该较长。因此,TI降压变换器比降压变换器具有更宽的占空比,如下式所述,有利于实现高降压转换。
Figure DEST_PATH_260441DEST_PATH_IMAGE008
另一方面,与其他基于耦合电感的拓扑结构如HTB、Sc-TaB、混合谐振降压变换器、TI降压变换器相比,TI降压变换器具有更宽的工作区域,其电压增益范围为0到1。
虽然本实用新型已以较佳的实施例公开如上,但其并非用以限定本实用新型,任何熟悉此技术的人,在不脱离本实用新型的精神和范围内,都可以做各种改动和修饰,因此本实用新型的保护范围应该以权利要求书所界定的为准。

Claims (1)

1.一种同步传导模式的抽头电感降压变压器,包括Buck变换器基本拓扑结构、降低抽头电感的漏感模块、降低电路纹波和消除谐波模块,其特征是:Buck变换器基本拓扑结构由直流电源Vin、电阻Rc、抽头电感L1、抽头电感L2、电感L3、滤波电容Co、电阻Ro、MOSFET Q1和与之对应的反并联二极管、MOSFET Q2模块和与之对应的反并联二极管构成;所述的直流电源Vin和抽头电感L1输入端连接在一起;所述的抽头电感L1输入端与MOSFET Q1的漏极连接;所述的MOSFET Q1与二极管反并联连接在一起;所述的MOSFET Q2同样与二极管反并联连接在一起;所述的MOSFET Q1的源极与MOSFET Q2的漏极连接在一起;所述的MOSFET Q1的源极与抽头电感L2输入端连接在一起;所述的抽头电感L2输出端与滤波电容Co连接在一起;所述的滤波电容Co与电阻Rc串联连接;所述的电阻Ro与电阻Rc所在的串联支路并联在一起;所述的电感L3连接在MOSFET Q1的源极与电阻Rc之间,降低抽头电感的漏感模块由二极管D1、二极管D2和电容C1构成;所述的二极管D1、二极管D2 串联连接;所述的电容C1并联连接在二极管D1和二极管D2之间,降低电路纹波和消除谐波模块由电感L3构成。
CN202122507310.0U 2021-10-19 2021-10-19 一种同步传导模式的抽头电感降压变压器 Active CN217469763U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202122507310.0U CN217469763U (zh) 2021-10-19 2021-10-19 一种同步传导模式的抽头电感降压变压器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202122507310.0U CN217469763U (zh) 2021-10-19 2021-10-19 一种同步传导模式的抽头电感降压变压器

Publications (1)

Publication Number Publication Date
CN217469763U true CN217469763U (zh) 2022-09-20

Family

ID=83233988

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202122507310.0U Active CN217469763U (zh) 2021-10-19 2021-10-19 一种同步传导模式的抽头电感降压变压器

Country Status (1)

Country Link
CN (1) CN217469763U (zh)

Similar Documents

Publication Publication Date Title
Wang et al. A single switch quadratic boost high step up DC–DC converter
Zhang et al. High-power density design of a soft-switching high-power bidirectional dc–dc converter
JP2929178B2 (ja) 循環電流低減型の高周波ソフトスイッチング・パルス幅変調フルブリッジdc/dcコンバータ
US8441812B2 (en) Series resonant converter having a circuit configuration that prevents leading current
US6992902B2 (en) Full bridge converter with ZVS via AC feedback
US6906930B2 (en) Structure and method for an isolated boost converter
CN112087147B (zh) 一种变换器宽增益控制方法及其应用
CN110707931A (zh) 一种llc谐振变换器及控制方法
CN101783594B (zh) 一种隔离式高轻载效率的低输出电压大电流开关电源
CN114301301A (zh) 一种宽范围谐振式软开关双向直流变换器及其控制方法
CN115694203B (zh) 一种可双向变换的直流隔离型变换器及其控制方法
Lu et al. 1kW, 400V/12V high step-down DC/DC converter: Comparison between phase-shifted full-bridge and LLC resonant converters
US10243455B2 (en) Bidirectional DC-DC converter
CN217087777U (zh) 一种宽范围谐振式软开关双向直流变换器
CN111064370A (zh) 一种llc和dab混合的双向dc-dc变流器
Shiva et al. Tap changing transformer based dual active bridge bi-directional DC-DC converter
CN108667301B (zh) 一种带续流通路的全桥变换器
CN107222109B (zh) 一种含有源缓冲器的双向隔离式dc-dc变换器
CN103782499A (zh) 具有正弦波变压器电压的隔离开关模式dc/dc转换器
CN217469763U (zh) 一种同步传导模式的抽头电感降压变压器
Wu et al. Analysis and design for a new ZVS dc–dc converter with active clamping
CN115149809A (zh) 非隔离全桥级联变换器电路及其控制方法
Han et al. A new full-bridge converter with phase-shifted coupled inductor rectifier
CN115912920A (zh) 一种双向谐振型直流变换器的控制方法及控制电路
CN113938003A (zh) 一种利用耦合电感的双向共流dc/dc变换器及方法

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant