CN216960287U - An air-cooled plasma generator and its anode electrode - Google Patents
An air-cooled plasma generator and its anode electrode Download PDFInfo
- Publication number
- CN216960287U CN216960287U CN202220700242.1U CN202220700242U CN216960287U CN 216960287 U CN216960287 U CN 216960287U CN 202220700242 U CN202220700242 U CN 202220700242U CN 216960287 U CN216960287 U CN 216960287U
- Authority
- CN
- China
- Prior art keywords
- air
- anode
- cooling
- plasma generator
- anode electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000001816 cooling Methods 0.000 claims abstract description 42
- 230000002093 peripheral effect Effects 0.000 claims abstract 2
- 239000000463 material Substances 0.000 claims description 8
- 230000006835 compression Effects 0.000 claims description 5
- 238000007906 compression Methods 0.000 claims description 5
- 230000003247 decreasing effect Effects 0.000 claims description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 239000010949 copper Substances 0.000 claims description 3
- 230000003647 oxidation Effects 0.000 claims description 3
- 238000007254 oxidation reaction Methods 0.000 claims description 3
- 229910001220 stainless steel Inorganic materials 0.000 claims description 3
- 239000010935 stainless steel Substances 0.000 claims description 3
- 239000007788 liquid Substances 0.000 abstract description 9
- 238000006243 chemical reaction Methods 0.000 abstract description 5
- 239000000110 cooling liquid Substances 0.000 abstract description 4
- 238000010992 reflux Methods 0.000 abstract description 3
- 239000007789 gas Substances 0.000 description 12
- 230000017525 heat dissipation Effects 0.000 description 9
- 239000000112 cooling gas Substances 0.000 description 7
- 230000000694 effects Effects 0.000 description 5
- 238000003466 welding Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 239000002826 coolant Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000007812 deficiency Effects 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 239000003245 coal Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000007750 plasma spraying Methods 0.000 description 1
Images
Landscapes
- Plasma Technology (AREA)
Abstract
Description
技术领域technical field
本实用新型涉及等离子发生器技术领域,具体而言,涉及一种气冷等离子发生器及其阳极电极。The utility model relates to the technical field of plasma generators, in particular to an air-cooled plasma generator and an anode electrode thereof.
背景技术Background technique
电弧等离子现在广泛应用于煤粉锅炉的电弧等离子点火、等离子切割加工、等离子喷涂等领域,传统的等离子电极工作温度高,除了小功率的、间断工作的切割和焊接的等离子可以采用气冷外,大功率等离子电极长期工作必须使用液冷,但是液冷方式的冷却液容易参与反应,等离子发生器会因为冷却装置中的冷却液存在一定磁滞,会导致消耗一部分电源功率,降低等离子发生器的效率。而现有小功率的切割和焊接的气冷等离子阳极电极存在冷却结构不合理、散热效果差的问题。Arc plasma is now widely used in arc plasma ignition, plasma cutting, plasma spraying and other fields of pulverized coal boilers. The traditional plasma electrode has a high working temperature. Except for low-power, intermittent cutting and welding plasma can be air-cooled. High-power plasma electrodes must use liquid cooling for long-term operation, but the liquid-cooled coolant is easy to participate in the reaction, and the plasma generator will consume part of the power supply due to the presence of a certain magnetic hysteresis in the coolant in the cooling device, reducing the plasma generator. efficiency. However, the existing low-power cutting and welding air-cooled plasma anode electrodes have the problems of unreasonable cooling structure and poor heat dissipation effect.
实用新型内容Utility model content
本实用新型的目的在于提供一种气冷等离子发生器及其阳极电极,对等离子发生器的阳极段进行气路结构优化,以克服现有技术中的不足之处。The purpose of the utility model is to provide an air-cooled plasma generator and its anode electrode, and to optimize the gas circuit structure of the anode section of the plasma generator to overcome the deficiencies in the prior art.
本实用新型的实施例通过以下技术方案实现:一种气冷等离子发生器阳极电极,包括阳极主体和回流盖,所述回流盖安装在阳极主体的前端;The embodiments of the present invention are realized by the following technical solutions: an anode electrode of an air-cooled plasma generator, comprising an anode main body and a return cover, and the return cover is installed at the front end of the anode main body;
所述阳极主体横截面为一环状面,且具有中心电弧通道以及沿中心电弧通道圆周分布的多个冷却腔,所述冷却腔的腔内空间构成进气通道,所述冷却腔的外围空间与回流盖之间构成回流通道。The cross section of the anode body is an annular surface, and has a central arc channel and a plurality of cooling cavities distributed along the circumference of the central arc channel. The inner space of the cooling cavity constitutes an air intake channel, and the outer space of the cooling cavity A return channel is formed between it and the return cover.
根据一种优选实施方式,所述进气通道沿阳极主体的环状面轴向分布,并由回流通道导通至等离子体射流的相反方向。According to a preferred embodiment, the air inlet channels are distributed axially along the annular surface of the anode body, and lead to the opposite direction of the plasma jet from the return channel.
根据一种优选实施方式,所述冷却腔从进气通道到回流通道的孔径逐渐减小。According to a preferred embodiment, the diameter of the cooling cavity gradually decreases from the intake channel to the return channel.
根据一种优选实施方式,所述中心电弧通道由顺次连接的工作气体入口、压缩通道及喷口组成,所述中心电弧通道从工作气体入口至喷口的内径呈先减后增的变化状态。According to a preferred embodiment, the central arc channel is composed of a working gas inlet, a compression channel and a nozzle connected in sequence, and the inner diameter of the central arc channel from the working gas inlet to the nozzle is in a state of first decreasing and then increasing.
根据一种优选实施方式,所述阳极主体与回流盖螺纹连接。According to a preferred embodiment, the anode body is screwed to the return cap.
根据一种优选实施方式,所述阳极主体采用高导电率及高导热率的材质制成。According to a preferred embodiment, the anode body is made of a material with high electrical conductivity and high thermal conductivity.
根据一种优选实施方式,所述阳极主体的材质采用紫铜。According to a preferred embodiment, the anode body is made of red copper.
根据一种优选实施方式,所述回流盖采用耐高温抗氧化的材质制成。According to a preferred embodiment, the reflow cover is made of a material that is resistant to high temperature and oxidation.
根据一种优选实施方式,所述回流盖的材质采用310S不锈钢。According to a preferred embodiment, the material of the reflux cover is 310S stainless steel.
本实用新型还提供一种气冷等离子发生器,包含如上述所述的阳极电极。The utility model also provides an air-cooled plasma generator, comprising the anode electrode as described above.
本实用新型实施例的技术方案至少具有如下优点和有益效果:(1)采用气体回流的气冷方式进行冷却,可避免液冷时,冷却液参加反应;(2)通过对阳极冷却结构的优化,开设多个冷却腔,增大了散热面积,提高了散热效率及散热效果;(3)相较于液冷结构更加简化,实用性强、寿命长、安全性高、适用范围更宽。The technical solution of the embodiment of the present invention has at least the following advantages and beneficial effects: (1) Cooling is carried out by adopting the air cooling method of gas reflux, which can avoid the cooling liquid participating in the reaction during liquid cooling; (2) By optimizing the anode cooling structure , opening multiple cooling cavities, increasing the heat dissipation area, improving the heat dissipation efficiency and heat dissipation effect; (3) Compared with the liquid cooling structure, it is more simplified, has strong practicability, long life, high safety and wider application range.
附图说明Description of drawings
图1为本实用新型实施例1提供的阳极电极的结构示意图;1 is a schematic structural diagram of an anode electrode provided in
图2为本实用新型实施例1提供的阳极主体横截面的结构示意图;2 is a schematic structural diagram of a cross-section of an anode body provided in
图标:1-阳极主体,2-回流盖,3-中心电弧通道,301-工作气体入口,302-压缩通道,303-喷口,4-冷却腔,401-进气通道,402-回流通道,403-冷1却气体入口,5-旋向工作气体,6-冷却气体,7-等离子体射流。Icons: 1- anode body, 2- return cover, 3- center arc channel, 301- working gas inlet, 302- compression channel, 303- spout, 4- cooling chamber, 401- intake channel, 402- return channel, 403 -
具体实施方式Detailed ways
为使本实用新型实施例的目的、技术方案和优点更加清楚,下面将结合本实用新型实施例中的附图,对本实用新型实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本实用新型一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本实用新型实施例的组件可以以各种不同的配置来布置和设计。In order to make the purposes, technical solutions and advantages of the embodiments of the present utility model more clear, the technical solutions in the embodiments of the present utility model will be described clearly and completely below in conjunction with the accompanying drawings in the embodiments of the present utility model. The embodiments described above are a part of the embodiments of the present invention, but not all of the embodiments. The components of the embodiments of the invention generally described and illustrated in the drawings herein may be arranged and designed in a variety of different configurations.
实施例1Example 1
经申请人研究发现,传统的等离子电极工作温度高,除了小功率的、间断工作的切割和焊接的等离子可以采用气冷外,大功率等离子电极长期工作必须使用液冷,但是液冷方式的冷却液容易参与反应,等离子发生器会因为冷却装置中的冷却液存在一定磁滞,会导致消耗一部分电源功率,降低等离子发生器的效率。而现有小功率的切割和焊接的气冷等离子阳极电极存在冷却结构不合理、散热效果差的问题。According to the research of the applicant, the traditional plasma electrode has a high working temperature, except that the low-power, intermittently-operated cutting and welding plasma can be cooled by air, and the high-power plasma electrode must use liquid cooling for long-term operation. The liquid is easy to participate in the reaction, and the plasma generator will consume a part of the power supply due to the certain hysteresis of the cooling liquid in the cooling device, reducing the efficiency of the plasma generator. However, the existing low-power cutting and welding air-cooled plasma anode electrodes have the problems of unreasonable cooling structure and poor heat dissipation effect.
因此,本实用新型实施例提供一种气冷等离子发生器及其阳极电极,对等离子发生器的阳极段进行气路结构优化,以克服现有技术中的不足之处。Therefore, the embodiments of the present invention provide an air-cooled plasma generator and an anode electrode thereof, and the gas circuit structure of the anode section of the plasma generator is optimized to overcome the deficiencies in the prior art.
参考图1,图1为本实用新型实施例1提供的阳极电极的结构示意图。Referring to FIG. 1 , FIG. 1 is a schematic structural diagram of an anode electrode provided in
一种气冷等离子发生器阳极电极,包括阳极主体1和回流盖2,所述回流盖2安装在阳极主体1的前端;所述阳极主体1横截面为一环状面,且具有中心电弧通道3以及沿中心电弧通道3圆周分布的多个冷却腔4,参考图2,图2示出了阳极主体1呈环状面的横截面。An anode electrode of an air-cooled plasma generator, comprising an anode
所述冷却腔4的腔内空间构成进气通道401,所述冷却腔4的外围空间与回流盖2之间构成回流通道402。进一步地,所述进气通道401沿阳极主体1的环状面轴向分布,并由回流通道402导通至等离子体射流7的相反方向。在实际冷却过程中,冷却气体6进入冷1却气体入口403后沿进气通道401抵达回流通道402,回流通道402使冷却气体6的流向与等离子体射流7的方向相反,最终反向排出发生器,由此避免冷却气体6影响到等离子体射流7。需要说明的是,在冷却腔4运行时需要保持足够的气量,才能通过冷却腔4带走大量的热量,避免阳极在高温电弧的烧灼下熔融,延长阳极的使用寿命。The inner space of the
进一步地,所述冷却腔4从进气通道401到回流通道402的孔径逐渐减小,通过上述结构,冷却气体6进入后可有效加快流速,以此提高散热效果。Further, the diameter of the
进一步地,所述中心电弧通道3由顺次连接的工作气体入口301、压缩通道302及喷口303组成,所述中心电弧通道3从工作气体入口301至喷口303的内径呈先减后增的变化状态。需要说明的是,形成电弧的旋向工作气体5进入工作气体入口301,在压缩通道302内有效压缩后进入扩大后的喷口303时,电弧被有效放大直接从喷口303喷出形成等离子体射流7。需要说明的是,通过中心电弧通道3从工作气体入口301至喷口303的内径呈先减后增的变化状态的设计,上述结构有利于电弧发散,可有效延长阳极使用寿命。Further, the
所述阳极主体1与回流盖2螺纹连接。其中,所述阳极主体1采用高导电率及高导热率的紫铜材质制成;所述回流盖2采用耐高温抗氧化的310S不锈钢材质制成。The
本实用新型实施例还提供一种气冷等离子发生器,包含如上述所述的阳极电极。The embodiment of the present invention also provides an air-cooled plasma generator, which includes the anode electrode as described above.
综上所述,本实用新型实施例的技术方案至少具有如下优点和有益效果:(1)采用气冷方式进行冷却,可避免液冷时,冷却液参加反应;(2)通过对阳极冷却结构的优化,开设多个冷却腔,增大了散热面积,提高了散热效率及散热效果;(3)相较于液冷结构更加简化,实用性强、寿命长、安全性高、适用范围更宽。To sum up, the technical solutions of the embodiments of the present invention have at least the following advantages and beneficial effects: (1) air cooling is adopted for cooling, which can prevent the cooling liquid from participating in the reaction during liquid cooling; (2) by cooling the anode structure Optimized, multiple cooling cavities are opened, which increases the heat dissipation area, improves the heat dissipation efficiency and heat dissipation effect; (3) Compared with the liquid cooling structure, it is more simplified, with strong practicability, long life, high safety and wider application range. .
以上仅为本实用新型的优选实施例而已,并不用于限制本实用新型,对于本领域的技术人员来说,本实用新型可以有各种更改和变化。凡在本实用新型的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本实用新型的保护范围之内。The above are only preferred embodiments of the present invention, and are not intended to limit the present invention. For those skilled in the art, the present invention may have various modifications and changes. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of the present invention shall be included in the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202220700242.1U CN216960287U (en) | 2022-03-28 | 2022-03-28 | An air-cooled plasma generator and its anode electrode |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202220700242.1U CN216960287U (en) | 2022-03-28 | 2022-03-28 | An air-cooled plasma generator and its anode electrode |
Publications (1)
Publication Number | Publication Date |
---|---|
CN216960287U true CN216960287U (en) | 2022-07-12 |
Family
ID=82299897
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202220700242.1U Active CN216960287U (en) | 2022-03-28 | 2022-03-28 | An air-cooled plasma generator and its anode electrode |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN216960287U (en) |
-
2022
- 2022-03-28 CN CN202220700242.1U patent/CN216960287U/en active Active
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN211240241U (en) | High-power plasma torch device based on double-electrode structure | |
CN203378130U (en) | Anode of supersonic speed plasma spray gun and supersonic speed plasma spray gun | |
CN108770172B (en) | A DC arc plasma torch for hazardous waste treatment | |
CN103269558A (en) | Anode of supersonic plasma spray gun and supersonic plasma spray gun | |
CN110381660B (en) | Plasma generator | |
CN105983774A (en) | Water-cooling TIG welding gun with copper-coated tungsten electrode on basis of cathode compression effect | |
CN110145400B (en) | A dual-mode plasma igniter | |
CN1281102C (en) | Double anode heat plasma generator | |
CN105430863A (en) | Plasma generator based on glide arc discharge principle | |
CN210197345U (en) | Waste gas combustion treatment equipment and plasma igniter thereof | |
CN104684234A (en) | High-power air-cooled plasma generator | |
CN216960287U (en) | An air-cooled plasma generator and its anode electrode | |
CN211128363U (en) | A cascaded plasma generator | |
CN204191012U (en) | A kind of Novel double-anode plasma torch | |
CN216960285U (en) | Air-cooled plasma generator | |
CN215073095U (en) | A DC arc plasma torch for arcing under high current | |
CN206894987U (en) | A kind of more negative electrode laminar flow plasma powder spheroidization devices | |
CN105578697A (en) | A New Double Anode Plasma Torch | |
CN112996211B (en) | Direct-current arc plasma torch applied to hazardous waste treatment | |
CN110939935B (en) | Open compact plasma gasification combustion furnace that stops fast | |
CN201476583U (en) | Supersonic jet oxygen lance of electric furnace | |
CN204362408U (en) | A kind of high-power air cooling plasma generator | |
CN104582226A (en) | Plasma Torch Nozzle | |
CN216960286U (en) | An air-cooled plasma generator and its cathode electrode | |
CN210093635U (en) | Sectional type plasma torch anode |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant |