CN216596967U - High temperature gas cooled reactor fuel ball integrity detection device based on X-ray tomography - Google Patents
High temperature gas cooled reactor fuel ball integrity detection device based on X-ray tomography Download PDFInfo
- Publication number
- CN216596967U CN216596967U CN202220069011.5U CN202220069011U CN216596967U CN 216596967 U CN216596967 U CN 216596967U CN 202220069011 U CN202220069011 U CN 202220069011U CN 216596967 U CN216596967 U CN 216596967U
- Authority
- CN
- China
- Prior art keywords
- ball
- ball path
- ray
- detection device
- path counter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 51
- 239000003758 nuclear fuel Substances 0.000 title claims abstract description 18
- 238000003325 tomography Methods 0.000 title claims abstract description 13
- 238000004140 cleaning Methods 0.000 claims description 17
- 238000012545 processing Methods 0.000 claims description 17
- 238000005259 measurement Methods 0.000 claims description 9
- 238000009423 ventilation Methods 0.000 claims description 8
- 230000035515 penetration Effects 0.000 claims description 6
- 239000000463 material Substances 0.000 claims description 5
- 238000007599 discharging Methods 0.000 claims description 4
- 239000000446 fuel Substances 0.000 abstract description 40
- 230000007547 defect Effects 0.000 abstract description 6
- 238000012216 screening Methods 0.000 abstract description 3
- 238000000034 method Methods 0.000 description 6
- 238000007689 inspection Methods 0.000 description 5
- 230000004992 fission Effects 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 239000000428 dust Substances 0.000 description 3
- 239000001307 helium Substances 0.000 description 3
- 229910052734 helium Inorganic materials 0.000 description 3
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000010926 purge Methods 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 238000005253 cladding Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 238000011016 integrity testing Methods 0.000 description 2
- 230000000149 penetrating effect Effects 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000008358 core component Substances 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000012857 radioactive material Substances 0.000 description 1
- 239000000941 radioactive substance Substances 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Analysing Materials By The Use Of Radiation (AREA)
Abstract
本实用新型公开了一种基于X射线断层扫描的高温气冷堆燃料球完整性检测装置,进料系统的出口经第一球路计数器、第二球路计数器及输送单一器与发射器的入口相连通,发射器的出口经斜坡管道与入口分配器的第二个开口相连通,入口分配器的第一个开口经测量管道与出口分配器的第一个开口相连通,出口分配器的第二个开口经第三球路计数器及第四球路计数器与出料系统相连通,气力提升系统经发射控制阀与发射器相连通;X射线检测装置套接于测量管道上,斜坡管道的出口处设置有入球定位器,该装置实现高温气冷堆球形燃料元件的表面缺陷及体积缺陷进行检测,完成对破损的球形燃料元件的甄别筛选。
The utility model discloses a high-temperature gas-cooled reactor fuel ball integrity detection device based on X-ray tomography. The outlet of the transmitter is communicated with the second opening of the inlet distributor through the slope pipe, the first opening of the inlet distributor is connected with the first opening of the outlet distributor through the measuring pipe, and the first opening of the outlet distributor is connected with the first opening of the outlet distributor. The two openings are connected with the discharge system through the third ball path counter and the fourth ball path counter, and the pneumatic lifting system is connected with the transmitter through the launch control valve; the X-ray detection device is sleeved on the measuring pipe, and the outlet of the slope pipe A ball entry locator is installed at the device, which realizes the detection of surface defects and volume defects of spherical fuel elements of high temperature gas-cooled reactors, and completes the screening and screening of damaged spherical fuel elements.
Description
技术领域technical field
本实用新型属于核反应堆燃料检测的领域,涉及一种基于X射线断层扫描的高温气冷堆燃料球完整性检测装置。The utility model belongs to the field of nuclear reactor fuel detection, and relates to a high temperature gas-cooled reactor fuel ball integrity detection device based on X-ray tomography.
背景技术Background technique
核燃料元件是为核反应堆提供裂变能量的核心部件,裂变过程中产生大量的裂变核素和感生放射性核素,其中存在大量的放射性核素都被包络在反应堆核燃料元件内部,这一层包容壳层就是燃料元件包壳层,通常称为核电厂的第一道屏障,其完整性是核电站安全的重要保证。压水堆的核燃料元件完整性检测通过在线的放射性核素监测和卸料状态下的核燃料组件的完整性检测,具有成熟的经验和方法。高温气冷堆作为全球首台具备四代技术特征的核能发电机组,采用不停堆换料模式,使用60mm直径的球型燃料元件,核燃料在反应堆、装卸料系统、新燃料系统、乏燃料系统等系统的设备和管道间流动,燃料元件会存在一定的破损,设计破损率为小于2×10-4。目前高温气冷堆设计的系统,只能识别燃料元件大体积的破碎,不能识别小体积的破损(因为缺失的部分较少,不影响燃料球的流动),这种带有缺陷的燃料球如果在堆芯和系统中继续流动,将增加燃料球卡涩在管道(即卡球)的风险,破损的燃料球继续参加核裂变反应,放射性物质将会穿透破损的包壳层,增加一回路的放射性。The nuclear fuel element is the core component that provides fission energy for the nuclear reactor. During the fission process, a large number of fission nuclides and induced radionuclides are produced, among which a large number of radionuclides are enveloped inside the nuclear fuel element of the reactor. The layer is the cladding layer of the fuel element, which is usually called the first barrier of the nuclear power plant, and its integrity is an important guarantee for the safety of the nuclear power plant. The integrity testing of nuclear fuel elements of pressurized water reactors has mature experience and methods through online radionuclide monitoring and integrity testing of nuclear fuel assemblies in unloaded state. As the world's first nuclear power generating unit with four-generation technical features, the high temperature gas-cooled reactor adopts the non-stop refueling mode and uses spherical fuel elements with a diameter of 60mm. The fuel element will be damaged to a certain extent if there is flow between equipment and pipelines in other systems, and the designed damage rate is less than 2×10-4. The current system designed for high temperature gas-cooled reactors can only identify large-volume breakage of fuel elements, but cannot identify small-volume breakage (because there are fewer missing parts, and the flow of fuel spheres is not affected). Continued flow in the core and system will increase the risk of the fuel ball getting stuck in the pipeline (ie, the ball is stuck), the damaged fuel ball will continue to participate in the nuclear fission reaction, and the radioactive material will penetrate the damaged cladding layer, increasing the primary circuit of radioactivity.
实用新型内容Utility model content
本实用新型的目的在于克服上述现有技术的缺点,提供了一种基于X射线断层扫描的高温气冷堆燃料球完整性检测装置,该装置实现高温气冷堆球形燃料元件的表面缺陷及体积缺陷进行检测,完成对破损的球形燃料元件的甄别筛选。The purpose of the present utility model is to overcome the shortcomings of the above-mentioned prior art, and to provide a high temperature gas-cooled reactor fuel ball integrity detection device based on X-ray tomography, which realizes the surface defects and volume of the high temperature gas-cooled reactor spherical fuel elements. Defects are detected, and the screening of damaged spherical fuel elements is completed.
为达到上述目的,本实用新型所述的基于X射线断层扫描的高温气冷堆燃料球完整性检测装置包括进料系统、出料系统、气力提升系统、负压通风系统、球路清洗系统、斜坡管道、第一球路计数器、第二球路计数器、第三球路计数器、第四球路计数器、输送单一器、发射器、入口分配器、出口分配器、X射线检测装置、发射控制阀及控制及数据处理系统;In order to achieve the above purpose, the X-ray tomography-based high temperature gas-cooled reactor fuel ball integrity detection device of the present invention includes a feeding system, a discharging system, a pneumatic lifting system, a negative pressure ventilation system, a ball path cleaning system, Ramp pipe, first ball path counter, second ball path counter, third ball path counter, fourth ball path counter, conveying unit, transmitter, inlet distributor, outlet distributor, X-ray inspection device, emission control valve and control and data processing systems;
进料系统的出口经第一球路计数器、第二球路计数器及输送单一器与发射器的入口相连通,发射器的出口经斜坡管道与入口分配器的第二个开口相连通,入口分配器的第一个开口经测量管道与出口分配器的第一个开口相连通,出口分配器的第二个开口经第三球路计数器及第四球路计数器与出料系统相连通,气力提升系统经发射控制阀与发射器相连通;X射线检测装置套接于测量管道上,斜坡管道的出口处设置有入球定位器;The outlet of the feeding system is communicated with the inlet of the launcher through the first ball path counter, the second ball path counter and the conveying unit, and the outlet of the launcher is communicated with the second opening of the inlet distributor through the slope pipe, and the inlet distribution The first opening of the outlet distributor is connected to the first opening of the outlet distributor through the measuring pipe, and the second opening of the outlet distributor is connected to the discharge system through the third ball path counter and the fourth ball path counter, and the pneumatic lift The system is communicated with the transmitter through the emission control valve; the X-ray detection device is sleeved on the measurement pipe, and a ball locator is arranged at the exit of the slope pipe;
控制及数据处理系统与入球定位器、X射线检测装置、发射控制阀、出口分配器、入口分配器、第三球路计数器、第四球路计数器、第一球路计数器及第二球路计数器相连接。Control and data processing system and ball positioner, X-ray inspection device, launch control valve, outlet distributor, inlet distributor, third ball path counter, fourth ball path counter, first ball path counter and second ball path connected to the counter.
斜坡管道与水平面之间的夹角为5°-10°。The angle between the sloped pipe and the horizontal plane is 5°-10°.
X射线检测装置包括X射线机、X射线接收板、固定支撑、屏蔽外壳、固定环、滑环、旋转控制器、电气贯穿件及支撑柱;The X-ray detection device includes an X-ray machine, an X-ray receiving plate, a fixed support, a shielding shell, a fixed ring, a slip ring, a rotary controller, an electrical penetration piece and a support column;
固定环通过固定支撑与屏蔽外壳的内壁上,滑环内嵌于固定环内,X射线机及X射线接收板通过支撑柱安装于滑环的内壁上,且X射线机及X射线接收板相对于测量管道的轴线对称分布,旋转控制器与滑环的控制端相连接,控制及数据处理系统经电气贯穿件与X射线机、X射线接收板及旋转控制器相连接,图像呈现装置与控制及数据处理系统相连接。The fixed ring is fixed on the inner wall of the shielding shell, the slip ring is embedded in the fixed ring, the X-ray machine and the X-ray receiving plate are installed on the inner wall of the slip ring through the support column, and the X-ray machine and the X-ray receiving plate are opposite to each other. The axis of the measuring pipe is symmetrically distributed, the rotation controller is connected with the control end of the slip ring, the control and data processing system is connected with the X-ray machine, the X-ray receiving board and the rotation controller through the electrical penetration parts, and the image presentation device is connected with the control connected to the data processing system.
测量管道采用超声波高穿透性材料。The measuring pipe is made of ultrasonic high penetrating material.
还包括球路清洗系统;出口分配器的第三个开口及入口分配器的第三个开口均与球路清洗系统相连通。It also includes a ball cleaning system; the third opening of the outlet distributor and the third opening of the inlet distributor are both communicated with the ball cleaning system.
屏蔽外壳连通有负压通风系统。The shielding shell is connected with a negative pressure ventilation system.
本实用新型具有以下有益效果:The utility model has the following beneficial effects:
本实用新型所述的基于X射线断层扫描的高温气冷堆燃料球完整性检测装置在具体操作时,通过X射线检测装置实现高温气冷堆球形燃料元件的完整性检测,以适应高温气冷堆不停堆换料的快速球流状态,其中,X射线检测信号具有穿透性强,采用可旋转设计实现多角度测量,以提高燃料球的检测效率及准确率。需要说明的是,本实用新型既可以检测出燃料元件的表面缺陷,又可以对破损燃料元件的体积缺陷进行深度检查,实现数据的自动分析、判断控制和储存的功能。During specific operation, the X-ray tomography-based high temperature gas-cooled reactor fuel ball integrity detection device of the utility model realizes the integrity detection of the high temperature gas-cooled reactor spherical fuel elements through the X-ray detection device, so as to adapt to the high temperature gas cooling In the fast ball flow state of the non-stop stacking and refueling, the X-ray detection signal has strong penetrability, and the rotatable design is used to realize multi-angle measurement to improve the detection efficiency and accuracy of fuel balls. It should be noted that the utility model can not only detect the surface defects of the fuel elements, but also perform in-depth inspection on the volume defects of the damaged fuel elements, so as to realize the functions of automatic data analysis, judgment control and storage.
附图说明Description of drawings
图1为本实用新型的结构示意图;Fig. 1 is the structural representation of the utility model;
图2为X射线检测装置9的轴向结构图;FIG. 2 is an axial structural diagram of the
图3为X射线检测装置9的径向结构图。FIG. 3 is a radial structural diagram of the
其中,1-1为进料系统、1-2为出料系统、2为气力提升系统、3为负压通风系统、4为球路清洗系统、5-1为第一球路计数器、5-2为第二球路计数器、5-3为第三球路计数器、5-4为第四球路计数器、6为输送单一器、7为发射器、8-1为入口分配器、8-2为出口分配器、9为X射线检测装置、10为发射控制阀、11为斜坡管道、12为入球定位器、13为燃料球、14为电气贯穿件、15为控制及数据处理系统、16为图像呈现装置、17为固定支撑、18为屏蔽外壳、19为滑环、20为支撑柱、21为高穿透性材料、22为固定环、23为X射线机、24为X射线接收板、25为旋转控制器。Among them, 1-1 is the feeding system, 1-2 is the discharging system, 2 is the pneumatic lifting system, 3 is the negative pressure ventilation system, 4 is the ball path cleaning system, 5-1 is the first ball path counter, 5- 2 is the second ball path counter, 5-3 is the third ball path counter, 5-4 is the fourth ball path counter, 6 is the conveying unit, 7 is the transmitter, 8-1 is the inlet distributor, 8-2 9 is the outlet distributor, 9 is the X-ray detection device, 10 is the emission control valve, 11 is the ramp pipe, 12 is the ball locator, 13 is the fuel ball, 14 is the electrical penetration, 15 is the control and data processing system, 16 is an image presentation device, 17 is a fixed support, 18 is a shielding shell, 19 is a slip ring, 20 is a support column, 21 is a highly penetrating material, 22 is a fixing ring, 23 is an X-ray machine, and 24 is an X-ray receiving plate , 25 is the rotary controller.
具体实施方式Detailed ways
为了使本技术领域的人员更好地理解本实用新型方案,下面将结合本实用新型实施例中的附图,对本实用新型实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本实用新型一部分的实施例,不是全部的实施例,而并非要限制本实用新型公开的范围。此外,在以下说明中,省略了对公知结构和技术的描述,以避免不必要的混淆本实用新型公开的概念。基于本实用新型中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本实用新型保护的范围。In order to enable those skilled in the art to better understand the solutions of the present invention, the technical solutions in the embodiments of the present invention will be described clearly and completely below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described The embodiments are only a part of the embodiments of the present invention, not all of the embodiments, and are not intended to limit the scope of the disclosure of the present invention. Also, in the following description, descriptions of well-known structures and techniques are omitted to avoid unnecessarily obscuring the concepts disclosed in the present invention. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without creative work shall fall within the protection scope of the present invention.
在附图中示出了根据本实用新型公开实施例的结构示意图。这些图并非是按比例绘制的,其中为了清楚表达的目的,放大了某些细节,并且可能省略了某些细节。图中所示出的各种区域、层的形状及它们之间的相对大小、位置关系仅是示例性的,实际中可能由于制造公差或技术限制而有所偏差,并且本领域技术人员根据实际所需可以另外设计具有不同形状、大小、相对位置的区域/层。The accompanying drawings show a schematic structural diagram of an embodiment according to the disclosure of the present invention. The figures are not to scale, some details have been exaggerated for clarity, and some details may have been omitted. The shapes of various regions and layers shown in the figures and their relative sizes and positional relationships are only exemplary, and in practice, there may be deviations due to manufacturing tolerances or technical limitations, and those skilled in the art should Regions/layers with different shapes, sizes, relative positions can be additionally designed as desired.
参考图1、图2及图3,本实用新型所述的基于X射线断层扫描的高温气冷堆燃料球完整性检测装置包括进料系统1-1、出料系统1-2、气力提升系统2、负压通风系统3、球路清洗系统4、第一球路计数器5-1、第二球路计数器5-2、第三球路计数器5-3、第四球路计数器5-4、输送单一器6、发射器7、入口分配器8-1、出口分配器8-2、X射线检测装置9、发射控制阀10、斜坡管道11及控制及数据处理系统15;Referring to Figure 1, Figure 2 and Figure 3, the X-ray tomography-based high temperature gas-cooled reactor fuel ball integrity detection device according to the present invention includes a feeding system 1-1, a discharging system 1-2, and a pneumatic lifting system. 2. Negative
进料系统1-1的出口经第一球路计数器5-1、第二球路计数器5-2及输送单一器6与发射器7的入口相连通,发射器7的出口经斜坡管道11与入口分配器8-1的第二个开口相连通,入口分配器8-1的第一个开口经测量管道与出口分配器8-2的第一个开口相连通,出口分配器8-2的第二个开口经第三球路计数器5-3及第四球路计数器5-4与出料系统1-2相连通,出口分配器8-2的第三个开口及入口分配器8-1的第三个开口均与球路清洗系统4相连通,气力提升系统2经发射控制阀10与发射器7相连通;X射线检测装置9套接于测量管道上;The outlet of the feeding system 1-1 is communicated with the inlet of the
控制及数据处理系统15与X射线检测装置9、发射控制阀10、出口分配器8-2、入口分配器8-1、第三球路计数器5-3、第四球路计数器5-4、第一球路计数器5-1及第二球路计数器5-2相连接。The control and
斜坡管道11的作用是使得燃料球13从输送单一器6出来后能够通过重力作用缓慢进入测量管道,该斜坡管道11与水平面之间的夹角为5°-10°,该角度可以保证燃料球13能够有足够的动力克服摩擦力,又不至于使燃料球13在管道中卡住而停止不前,还可以防止燃料球13流动速度过快而无法被X射线检测装置9截停,防止入球定位器12被高速燃料球13撞击损坏。The function of the
斜坡管道11的出口处设置有入球定位器12,入球定位器12的作用是截停燃料球13并将其置于X射线探头的位置,入球定位器12共有三个位置,即截球、球入位、排球,入球定位器12的初始状态为截球状态,当燃料球13进入X射线检测装置9后,入球定位器12发出燃料球13入位信号,X射线检测装置9启动,开始对燃料球13进行X射线检测。在收到控制及数据处理系统15发出的检测结束指令后,入球定位器12将燃料球13放走,此时入球定位器12打开处于排球位置;当第三球路计数器5-3及第四球路计数器5-4检测到燃料球13通过时,控制及数据处理系统15发出指令使入球定位器12恢复到初始的截球位置。A
X射线检测装置9包括X射线机23、X射线接收板24、固定支撑17、屏蔽外壳18、固定环22、滑环19、旋转控制器25、电气贯穿件14及支撑柱20,固定环22通过固定支撑17与屏蔽外壳18的内壁上,滑环19内嵌于固定环22内,滑环19能够作旋转运动,其中,滑环19的转动最大角度为360°。旋转控制器25接收实际测量的旋转角度信号及控制指令信号,使滑环19旋转,以达到全周覆盖被检测燃料的目的,X射线机23及X射线接收板24通过支撑柱20安装于滑环19的内壁上,且X射线机23及X射线接收板24相对于测量管道的轴线对称分布,以保证X射线机23与X射线接收板24在滑环19旋转期间始终呈180°对称,X射线的发射及接收能够覆盖整个燃料球13区域,控制及数据处理系统15对X射线接收板24接收到的信号进行成像处理,再在图像呈现装置16上显示完整燃料球13的3D显示图像,为降低测量管道对X射线的影响,测量管道采用高穿透性材料21,以降低X射线的能量衰减,提高测量的精确度。The
入球定位器12在收到检测结束的信号后,控制及数据处理系统15发出放行信号允许燃料球13通过,此时燃料球13传输所需的动力来自于气力提升系统2的高压氦气,发射控制阀10打开,将高压氦气输送至管道,高压氦气的动能转换为燃料球13的动能,燃料球13被导入出料系统1-2。在正常运行期间,第一球路计数器5-1、第二球路计数器5-2、第三球路计数器5-3及第四球路计数器5-4的计数相同,当第一球路计数器5-1及第二球路计数器5-2的计数比第三球路计数器5-3及第四球路计数器5-4多1时,则说明X射线检测装置9内有1个燃料球13正在检测,当检测结束后,燃料球13被排出,第三球路计数器5-3及第四球路计数器5-4加1,控制及数据处理系统15发出关闭发射控制阀10的信号,并允许X射线检测装置9进行下一个燃料球13测量。After the
经过一轮检测的控制和检测流程,各设备的状态变化情况如下:After a round of detection control and detection process, the status changes of each device are as follows:
初态initial state
第一球路计数器5-1、第二球路计数器5-2、第三球路计数器5-3及第四球路计数器5-4为0,入口分配器8-1及出口分配器8-2的第一个开口及第二个开口导通,X射线检测装置9待机,发射控制阀10关闭,输送单一器6复位,入球定位器12截球状态;The first ball path counter 5-1, the second ball path counter 5-2, the third ball path counter 5-3 and the fourth ball path counter 5-4 are 0, the inlet distributor 8-1 and the outlet distributor 8- The first opening and the second opening of 2 are turned on, the
输送单一器6进球
第一球路计数器5-1及第二球路计数器5-2计数加1,第三球路计数器5-3及第四球路计数器5-4计数为0,入口分配器8-1及出口分配器8-2的第一个开口及第二个开口导通,X射线检测装置9待机,发射控制阀10关闭,输送单一器6启动一次进球一次,入球定位器12截球状态;The first ball path counter 5-1 and the second ball path counter 5-2 count up by 1, the third ball path counter 5-3 and the fourth ball path counter 5-4 count as 0, the inlet distributor 8-1 and the outlet The first opening and the second opening of the distributor 8-2 are turned on, the
球入位ball in place
第一球路计数器5-1及第二球路计数器5-2计数为1,第三球路计数器5-3及第四球路计数器5-4计数为0,入口分配器8-1及出口分配器8-2的第一个开口及第二个开口导通,X射线检测装置9待机,发射控制阀10关闭,输送单一器6复位,入球定位器12球入位;The first ball path counter 5-1 and the second ball path counter 5-2 count as 1, the third ball path counter 5-3 and the fourth ball path counter 5-4 count as 0, the inlet distributor 8-1 and the outlet The first opening and the second opening of the distributor 8-2 are turned on, the
启动检测Start detection
第一球路计数器5-1及第二球路计数器5-2计数为1,第三球路计数器5-3及第四球路计数器5-4计数为0,入口分配器8-1及出口分配器8-2的第一个开口及第二个开口导通,X射线检测装置9启动,发射控制阀10关闭,输送单一器6复位,入球定位器12球入位;The first ball path counter 5-1 and the second ball path counter 5-2 count as 1, the third ball path counter 5-3 and the fourth ball path counter 5-4 count as 0, the inlet distributor 8-1 and the outlet The first opening and the second opening of the distributor 8-2 are turned on, the
检测结束排球Detect end volleyball
第一球路计数器5-1及第二球路计数器5-2计数为1,第三球路计数器5-3及第四球路计数器5-4计数加1,入口分配器8-1及出口分配器8-2的第一个开口及第二个开口导通,X射线检测装置9待机,发射控制阀10开启,输送单一器6复位,入球定位器12打开放球;The first ball path counter 5-1 and the second ball path counter 5-2 count as 1, the third ball path counter 5-3 and the fourth ball path counter 5-4 count up by 1, the inlet distributor 8-1 and the outlet The first opening and the second opening of the distributor 8-2 are turned on, the
排球结束volleyball over
第一球路计数器5-1及第二球路计数器5-2计数为1,第三球路计数器5-3及第四球路计数器5-4计数为1,入口分配器8-1及出口分配器8-2的第一个开口及第二个开口导通,X射线检测装置9待机,发射控制阀10关闭,输送单一器6复位,入球定位器12截球;The first ball path counter 5-1 and the second ball path counter 5-2 count as 1, the third ball path counter 5-3 and the fourth ball path counter 5-4 count as 1, the inlet distributor 8-1 and the outlet The first opening and the second opening of the distributor 8-2 are turned on, the
由于测量管道内可能存在石墨粉尘及燃料球13的碎屑,石墨粉尘及燃料球13的碎屑可能影响X射线检测装置9的准确性,本实用新型还设置有球路清洗系统4,在非清洗阶段,入口分配器8-1及出口分配器8-2的第一个开口及第二个开口导通、第三个开口关闭,当需要清洗时,入口分配器8-1及出口分配器8-2的第一个开口及第三个开口导通、第二个开口关闭,从球路清洗系统4引入吹扫气流及清洗胶球,再经出口分配器8-2导出,吹扫气流可将测量管道内的粉尘及燃料球13的碎屑带出,清洗胶球在吹扫气流的作用下也可对测量管道的内壁进行清扫,清洗胶球具有可压缩性,球路清洗系统4对回收的杂质及清洗胶球进行计数和处理。Since there may be graphite dust and debris of the
屏蔽外壳18连通有负压通风系统3,保证连续的换气通风及冷却,相对于环境为微负压状态,能够防止放射性物质外泄。The shielding
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202220069011.5U CN216596967U (en) | 2022-01-11 | 2022-01-11 | High temperature gas cooled reactor fuel ball integrity detection device based on X-ray tomography |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202220069011.5U CN216596967U (en) | 2022-01-11 | 2022-01-11 | High temperature gas cooled reactor fuel ball integrity detection device based on X-ray tomography |
Publications (1)
Publication Number | Publication Date |
---|---|
CN216596967U true CN216596967U (en) | 2022-05-24 |
Family
ID=81634184
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202220069011.5U Active CN216596967U (en) | 2022-01-11 | 2022-01-11 | High temperature gas cooled reactor fuel ball integrity detection device based on X-ray tomography |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN216596967U (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114334201A (en) * | 2022-01-11 | 2022-04-12 | 西安热工研究院有限公司 | High temperature gas-cooled reactor fuel sphere integrity detection device based on X-ray tomography |
-
2022
- 2022-01-11 CN CN202220069011.5U patent/CN216596967U/en active Active
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114334201A (en) * | 2022-01-11 | 2022-04-12 | 西安热工研究院有限公司 | High temperature gas-cooled reactor fuel sphere integrity detection device based on X-ray tomography |
CN114334201B (en) * | 2022-01-11 | 2024-07-23 | 西安热工研究院有限公司 | High-temperature gas cooled reactor fuel sphere integrity detection device based on X-ray tomography |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN114334201A (en) | High temperature gas-cooled reactor fuel sphere integrity detection device based on X-ray tomography | |
CN114334198A (en) | High temperature gas cooled reactor fuel ball integrity detection device based on ultrasonic wave chromatography technique | |
CN102982855B (en) | Device for isolating and conveying fuel spheres of sphere bed high temperature reactor | |
CA2792593C (en) | Systems and methods for processing irradiation targets through a nuclear reactor | |
CN109616235B (en) | An unloading temporary storage device | |
CN102426866B (en) | Monitoring method and system for leakage at pressure boundary of primary coolant system in nuclear power station | |
CN216596967U (en) | High temperature gas cooled reactor fuel ball integrity detection device based on X-ray tomography | |
CN111724922B (en) | A high temperature gas-cooled reactor fuel transmission pipeline maintenance device, system and method | |
CN216562475U (en) | Detection system for fuel ball integrity under high-temperature gas cooled reactor running state | |
CN114334200B (en) | System for detecting fuel ball integrity under high-temperature gas cooled reactor running state | |
CN103817089B (en) | Spheric fuel element is without the automatic checkout system of fuel region and method | |
JP2004502142A (en) | Pebble bed reactor | |
CN115148385B (en) | Discharging device and method for reactor core of pebble-bed reactor | |
US11355254B2 (en) | Leakage testing device for seal verification by penetrant inspection of a nuclear fuel assembly located in a cell of a storage rack | |
CN216562476U (en) | High temperature gas cooled reactor fuel ball surface integrity detection device based on laser ranging | |
CN216562474U (en) | High temperature gas cooled reactor fuel ball integrity detection device based on ultrasonic wave chromatography technique | |
CN101770825B (en) | Integrated discharging device for high-temperature gas-cooled reactor | |
CN104841640B (en) | Automatic sorting device for irradiated particles | |
CN102522130B (en) | Spherical component sorting device | |
CN114334199B (en) | High-temperature gas cooled reactor fuel sphere surface integrity detection device based on laser ranging | |
Wu et al. | Design, Experiment, and Commissioning of the Spent Fuel Conveying and Loading System of HTR‐PM | |
JPS5950956B2 (en) | Method and device for positioning a leaking fuel rod in a nuclear fuel assembly | |
CN103778981A (en) | Burnup measuring and positioning device applied to high-temperature gas cooled reactor | |
CN109686464A (en) | A kind of device and method that the coolant metal for monitoring reactor leaks | |
CN216669224U (en) | A device for checking the position of blockage of heat exchanger tubes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant |