CN216052278U - 用于硅光芯片的四芯透镜光纤及硅光芯片封装结构 - Google Patents

用于硅光芯片的四芯透镜光纤及硅光芯片封装结构 Download PDF

Info

Publication number
CN216052278U
CN216052278U CN202122078279.3U CN202122078279U CN216052278U CN 216052278 U CN216052278 U CN 216052278U CN 202122078279 U CN202122078279 U CN 202122078279U CN 216052278 U CN216052278 U CN 216052278U
Authority
CN
China
Prior art keywords
optical fiber
core
optical
silicon
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202122078279.3U
Other languages
English (en)
Inventor
关培
宋帆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan Chuxing Optical Fiber Application Technologies Co ltd
Original Assignee
Wuhan Chuxing Optical Fiber Application Technologies Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan Chuxing Optical Fiber Application Technologies Co ltd filed Critical Wuhan Chuxing Optical Fiber Application Technologies Co ltd
Priority to CN202122078279.3U priority Critical patent/CN216052278U/zh
Application granted granted Critical
Publication of CN216052278U publication Critical patent/CN216052278U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Couplings Of Light Guides (AREA)

Abstract

本实用新型提供了一种用于硅光芯片的四芯透镜光纤及硅光芯片封装结构,该四芯透镜光纤包括包层以及位于包层内并排设置的四根光纤纤芯,各所述光纤纤芯的头部均加工有楔形透镜,且各所述楔形透镜的上切面均位于同一平面,下切面也均位于同一平面,所述楔形透镜的上切面和下切面沿四根所述光纤纤芯的中心线所在的平面上下对称设置。本实用新型大大缩小了光纤的体积占用,同时解决了需要利用光纤V槽基板固定才能使光纤按周期排布的问题,去除光纤V槽基板后,光通道的空间占用大大降低;在四芯光纤的基础上,在各光纤纤芯的头部均加工楔形透镜,将垂直模场压缩,使得模场进一步缩小,能够有效的提升与硅光芯片之间的耦合效率。

Description

用于硅光芯片的四芯透镜光纤及硅光芯片封装结构
技术领域
本实用新型属于光通信技术领域,具体涉及一种用于硅光芯片的四芯透镜光纤及硅光芯片封装结构。
背景技术
随着半导体技术的发展成熟,近年来硅光概念也得到了蓬勃的发展。
随着硅光技术的实现,光通信系统的集成度进一步提高;器件体积明显缩小,与之对应的光、电接口体积也必须随之一起缩小。现有的光接口受限于光纤体积,FA基板体积等一系列问题很难缩小体积,从而影响到光芯片的面积利用率。另一个问题是光耦合,光纤耦合技术是影响光纤系统的关键技术,光纤微透镜则是光纤耦合的关键部件。原有透镜光纤FA(光纤阵列)由于设计制作工艺复杂,无法满足大批量、低成本生产的要求,尽管性能出众,仍然停留在实验室应用阶段。而使用价格低廉的普通FA,遇到的则是耦合效率低下,或者光芯片输入输出接口设计复杂,实现难度加大的困难。
实用新型内容
本实用新型的目的在于提供一种用于硅光芯片的四芯透镜光纤及硅光芯片封装结构,旨在用于解决现有技术存在的上述至少部分问题。
本实用新型是这样实现的:
第一方面,本实用新型提供一种用于硅光芯片的四芯透镜光纤,包括包层以及位于包层内并排设置的四根光纤纤芯,各所述光纤纤芯的头部均加工有楔形透镜,且各所述楔形透镜的上切面均位于同一平面,下切面也均位于同一平面,所述楔形透镜的上切面和下切面沿四根所述光纤纤芯的中心线所在的平面上下对称设置。
进一步地,各所述光纤纤芯沿所述包层的直径方向排布。
进一步地,各所述光纤纤芯的外部均设有隔离层。
进一步地,所述包层的直径为125~140um。
进一步地,所述四芯透镜光纤的工作波长为1550nm±10nm,所述光纤纤芯的芯径为9um±10um,所述光纤纤芯与所述包层的折射率差为0.36%±0.1%。
进一步地,各所述光纤纤芯等间距排列且相邻两根光纤纤芯的芯径间距为25um±10um。
第二方面,本实用新型还提供一种硅光芯片封装结构,包括如上任一所述的用于硅光芯片的四芯透镜光纤。
与现有技术相比,本实用新型具有以下有益效果:
本实用新型提供的这种用于硅光芯片的四芯透镜光纤及硅光芯片封装结构,四芯透镜光纤包括包层以及位于包层内并排设置的四根光纤纤芯,利用光纤空分复用技术,在光纤整体直径不变的情况下,空间内容纳下更多的通光芯数,这样大大缩小了光纤的体积占用,同时解决了需要利用光纤V槽基板固定才能使光纤按周期排布的问题,去除光纤V槽基板后,光通道的空间占用大大降低;在四芯光纤的基础上,在各光纤纤芯的头部均加工楔形透镜,将垂直模场压缩,使得模场进一步缩小,能够有效的提升与硅光芯片之间的耦合效率。
附图说明
图1为本实用新型实施例提供的一种用于硅光芯片的四芯透镜光纤的结构示意图;
图2为本实用新型实施例提供的一种用于硅光芯片的四芯透镜光纤的横截面示意图;
图3为本实用新型实施例提供的基模电场在光纤横截面的分布图;
图4为本实用新型实施例提供的相邻光纤纤芯基模电场的横向分布图;
图5为本实用新型实施例提供的楔形透镜加工的示意图。
附图标记说明:1-包层、2-光纤纤芯、3-楔形透镜、4-隔离层。
具体实施方式
下面将结合本实用新型实施例中的附图,对本实用新型实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本实用新型一部分实施例,而不是全部的实施例。基于本实用新型中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本实用新型保护的范围。
如图1和图2所示,本实用新型实施例提供一种用于硅光芯片的四芯透镜光纤,包括包层1以及位于包层1内并排设置的四根光纤纤芯2,利用光纤空分复用技术,在光纤整体直径不变的情况下,空间内容纳下更多的通光芯数,这样大大缩小了光纤的体积占用问题,同时解决了需要利用光纤V槽基板固定才能使光纤按周期排布的问题,去除光纤V槽基板后,光通道的空间占用大大降低;各所述光纤纤芯2的头部均加工有楔形透镜3,且各所述楔形透镜3的上切面均位于同一平面,下切面也均位于同一平面,所述楔形透镜3的上切面和下切面沿四根所述光纤纤芯2的中心线所在的平面上下对称设置,提高楔形透镜将垂直模场压缩,使得模场进一步缩小,能够有效的提升与硅光芯片之间的耦合效率。
优选地,如图2所示,各所述光纤纤芯2沿所述包层1的直径方向排布,此时排布的空间最大。进一步优选地,各所述光纤纤芯2的外部均设有隔离层4,可以减少相邻纤芯之间的串扰。
本优选实施例中,所述包层1的直径为125~140um,相当于一根传统单模光纤的直径,使得本实施例的四芯透镜光纤在提供四个通道的同时,整体直径仅相当于一根传统单模光纤的直径。优选地,所述四芯透镜光纤的工作波长为1550nm±10nm,所述光纤纤芯2的芯径为9um±10um,所述光纤纤芯2与所述包层1的折射率差为0.36%±0.1%,此时四芯透镜光纤的相邻光纤纤芯2之间的串扰较小。
本实用新型通过采用APSS数值仿真分析软件,计算不同光源波长、不同光纤纤芯2芯径、不同光纤纤芯2与包层1的折射率差下基模的场分布,其中光纤纤芯2和包层1的的折射率均取随波长变化的三阶Sellmeier公式计算值。当光源波长为1.55mm、光纤芯径为9mm、光纤纤芯2与包层1的折射率差为0.36%时,计算得到的基模电场在光纤横截面的分布如图3所示,此时效果较佳。
进一步优选地,各所述光纤纤芯2等间距排列且相邻两根光纤纤芯2的芯径间距为25um±10um。
如图4所示是光纤纤芯2中心间距25mm时,相邻光纤纤芯2基模电场的横向分布。可以通过APSS软件模拟仿真光在波导中传输时,不同间距相邻波导之间模式的耦合和功率转换。也可以通过下式计算相邻波导之间模式的耦合系数Cij:
Figure DEST_PATH_IMAGE001
其中Ni, Nj是模式的归一化系数,ψi,ψj是两个基模的场分布。
从图4可见,对于相邻的两根光纤纤芯2中的基模电场,一根光纤的场到达另一根光纤纤芯2位置(25mm处)时,幅度已经下降至10-6(-60dB)以下。因此,按目前光纤参数计算,四芯透镜光纤中相邻纤芯之间的耦合很小可以忽略。
本实施例的用于硅光芯片的四芯透镜光纤的楔形透镜3利用专用设备进行磨制,在磨制过程中,有一个很重要的问题需要解决,就是磨制过程中要保持透镜上方和下方的角度一致。
参见图5所示,本实用新型实施例还提供一种如上述的用于硅光芯片的四芯透镜光纤的楔形透镜3的加工方法,该方法包括:在磨制楔形透镜3的过程中,使用光源照射光纤纤芯2的尾端,在楔形透镜3上下两个研磨面上会分别透射一束光,为了防止不同功率计之间的误差,本实施例利用同一个光功率计分别监测楔形透镜3上下两个研磨面上透射光的光功率,使用设备对两个研磨面进行研磨时,根据上下两个研磨面上透射光的光功率差来调整研磨角度,当一边的数值高于另一边,例如当上切面透射光(透射光1)的数值高于下切面的透射光(透射光2),则加快上切面的研磨。利用这种方式保证楔形透镜3的上切面和下切面沿四根所述光纤纤芯2的中心线所在的平面上下对称设置,即上切面和下切面角度一致,且光纤纤芯2中心处于两个切面的正中,可以使得研磨出来的楔形透镜3的精度较高。
本实用新型实施例还提供一种硅光芯片封装结构,包括如上所述的用于硅光芯片的四芯透镜光纤,四芯透镜光纤与硅光芯片耦合对准后采用激光焊接或者钎焊的方式进行固定。由于采用该体积较小的四芯透镜光纤,使得该硅光芯片封装结构的体积也较小,且四芯透镜光纤与硅光芯片的耦合效率也大大提高。
硅光芯片与单模光纤的耦合实质上是模场的匹配问题。由硅光芯片发出的光耦合进入光纤中的光越多,损耗越小,光纤通信传输的距离就越远,中继距离就越远。对于四芯透镜光纤,相当于在平端光纤面上加了一个微透镜柱,起到一个传输因子的作用。在XZ截面结构与锥形光纤结构一致,通过调整曲率半径与激光器模场半径相匹配,不仅可以减少相位不匹配带来的耦合损失,而且减少了模场半径不匹配带来的耦合损失,提高耦合效率,YZ截面则维持光纤材料原有模场半径。
综上所述,本实用新型提供的这种用于硅光芯片的四芯透镜光纤及硅光芯片封装结构,四芯透镜光纤包括包层1以及位于包层1内并排设置的四根光纤纤芯2,利用光纤空分复用技术,在光纤整体直径不变的情况下,空间内容纳下更多的通光芯数,这样大大缩小了光纤的体积占用,同时解决了需要利用光纤V槽基板固定才能使光纤按周期排布的问题,去除光纤V槽基板后,光通道的空间占用大大降低;在四芯光纤的基础上,在各光纤纤芯2的头部均加工楔形透镜3,将垂直模场压缩,使得模场进一步缩小,能够有效的提升与硅光芯片之间的耦合效率。
以上所述仅为本实用新型的较佳实施例而已,并不用以限制本实用新型,凡在本实用新型的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本实用新型的保护范围之内。

Claims (7)

1.一种用于硅光芯片的四芯透镜光纤,其特征在于:包括包层以及位于包层内并排设置的四根光纤纤芯,各所述光纤纤芯的头部均加工有楔形透镜,且各所述楔形透镜的上切面均位于同一平面,下切面也均位于同一平面,所述楔形透镜的上切面和下切面沿四根所述光纤纤芯的中心线所在的平面上下对称设置。
2.如权利要求1所述的用于硅光芯片的四芯透镜光纤,其特征在于:各所述光纤纤芯沿所述包层的直径方向排布。
3.如权利要求1所述的用于硅光芯片的四芯透镜光纤,其特征在于:各所述光纤纤芯的外部均设有隔离层。
4.如权利要求1所述的用于硅光芯片的四芯透镜光纤,其特征在于:所述包层的直径为125~140um。
5.如权利要求1所述的用于硅光芯片的四芯透镜光纤,其特征在于:所述四芯透镜光纤的工作波长为1550nm±10nm,所述光纤纤芯的芯径为9um±10um,所述光纤纤芯与所述包层的折射率差为0.36%±0.1%。
6.如权利要求5所述的用于硅光芯片的四芯透镜光纤,其特征在于:各所述光纤纤芯等间距排列且相邻两根光纤纤芯的芯径间距为25um±10um。
7.一种硅光芯片封装结构,其特征在于:包括如权利要求1-6任一所述的用于硅光芯片的四芯透镜光纤。
CN202122078279.3U 2021-08-31 2021-08-31 用于硅光芯片的四芯透镜光纤及硅光芯片封装结构 Active CN216052278U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202122078279.3U CN216052278U (zh) 2021-08-31 2021-08-31 用于硅光芯片的四芯透镜光纤及硅光芯片封装结构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202122078279.3U CN216052278U (zh) 2021-08-31 2021-08-31 用于硅光芯片的四芯透镜光纤及硅光芯片封装结构

Publications (1)

Publication Number Publication Date
CN216052278U true CN216052278U (zh) 2022-03-15

Family

ID=80623084

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202122078279.3U Active CN216052278U (zh) 2021-08-31 2021-08-31 用于硅光芯片的四芯透镜光纤及硅光芯片封装结构

Country Status (1)

Country Link
CN (1) CN216052278U (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113835153A (zh) * 2021-08-31 2021-12-24 武汉楚星光纤应用技术有限公司 用于硅光芯片的四芯透镜光纤及其楔形透镜加工方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113835153A (zh) * 2021-08-31 2021-12-24 武汉楚星光纤应用技术有限公司 用于硅光芯片的四芯透镜光纤及其楔形透镜加工方法

Similar Documents

Publication Publication Date Title
US20190049657A1 (en) Passive aligning optical coupler array
CN103076659B (zh) 多芯光纤光互联结构
JP2023126651A (ja) マルチコア光ファイバ
US11156781B2 (en) Passive aligning optical coupler array
CN108490546B (zh) 一种提高光波导传输特性的光波导模式转换器
CN216052278U (zh) 用于硅光芯片的四芯透镜光纤及硅光芯片封装结构
CN113341502A (zh) 一种基于三维波导的多芯光纤耦合器和制备方法
US20240219661A1 (en) Multichannel optical coupler array
JP2024506164A (ja) マルチチャンネル光結合器アレイ
CN200989951Y (zh) 1分64路平面光波导光分路器
CN111273404B (zh) 一种两模端面耦合器
CN111025469B (zh) 一种基于多模干涉耦合器的硅基多模3dB分束器
CN108089263A (zh) 一种多模-单模混合型光分路器及其制作方法
CN107924034B (zh) 一种光耦合装置和方法
CN111367019A (zh) 基于光纤锥的光波导耦合方法
CN113835153A (zh) 用于硅光芯片的四芯透镜光纤及其楔形透镜加工方法
CN114839722B (zh) 一种异构多模波导耦合器
CN113687473B (zh) 一种基于多芯光纤的六模模分复用器
US20240126014A1 (en) Compact dual polarization couplers for multi-core optical fibers
CN111025474B (zh) 一种基于折射率调控的覆盖su-8包层的硅波导模式耦合器
CN114089472A (zh) 一种聚合物模式复用器、空分复用器件及空分复用方法
US11378765B2 (en) Intra data center and inter data center links using dual-wavelength multimode/singlemode multi-core fiber
CN114384633B (zh) 一种用于矩芯少模光纤与芯片间光信号传输的水平耦合器
Zhong et al. O-band 3D Optical Waveguide Fan-in/Fan-out Devices for Few-mode Multi-core Fibers
CN112596254A (zh) 基于光子晶体的紧凑型偏振分束器

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant