CN216044590U - 大型挖泥泵泵轴用复合式机械密封装置 - Google Patents
大型挖泥泵泵轴用复合式机械密封装置 Download PDFInfo
- Publication number
- CN216044590U CN216044590U CN202121069948.4U CN202121069948U CN216044590U CN 216044590 U CN216044590 U CN 216044590U CN 202121069948 U CN202121069948 U CN 202121069948U CN 216044590 U CN216044590 U CN 216044590U
- Authority
- CN
- China
- Prior art keywords
- sealing
- texture
- ring
- seal
- static
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Structures Of Non-Positive Displacement Pumps (AREA)
Abstract
本实用新型公开了一种大型挖泥泵机械密封装置,包括密封箱、静密封环、动环座、动密封环;动密封环、动环座、动密封环防转销和静密封环防转销及密封端盖;在密封端盖的右端安装密封组件;在密封箱的左端安装有阻隔套;在动密封环和静密封环的内侧和外侧两侧形成相互独立的密封面外冲洗腔和密封面内冲洗腔;对应冲洗腔密封面外冲洗腔和密封面内冲洗腔所述密封箱上设有进水孔,密封端盖上设有进水孔和出水孔。本实用新型通过阻隔套有效阻止了大颗粒介质进入动、静密封环周围,同时给密封环周围形成洁净水腔室,优化了机械密封环境;增设的密封面内、外冲洗腔,达到给动/静密封环冲洗降温的作用,改善机械密封运行环境,延长密封元件的使用寿命。
Description
技术领域
本实用新型属于机械密封装置,尤其涉及一种大型挖泥泵泵轴用复合式机械密封装置。
背景技术
我国幅员辽阔江河湖海众多,依赖水运的物流业发展迅猛,但长期困扰航运业的江河湖海航道淤积问题在近年显得尤为突出,航道清淤工作被各航道局所重视。每年我国众多的航道清淤中因为挖泥船用密封泄漏造成停工而产生的经济损失是天文数字,所以挖泥船用挖泥泵上的密封是整个清淤工作的节点。大型设备的维修拆装耗时多、周期长,降低了设备的利用率、不但耗费大量的维修资金,还浪费掉很多宝贵时间,每台挖泥泵每停机一天所带来的直接经济损失就是几百万元,而间接所造成的经济损失更是无法估量的。
国外一些航运国家也存在同样的问题,目前国外挖泥泵的密封装置普遍采用L型橡胶密封结构形式,如:荷兰、德国等公司生产的挖泥泵,此类泵轴密封均使用L型橡胶密封结构。该密封在工程应用中有一定的使用要求,如压力要求低于3MPa,线速度低于10m/s等,一般进口L型橡胶密封能使用在半年以上。如泵的输送浆液工况恶劣,密封泄漏量急剧加大,频繁发生剧烈磨料磨损,同时对轴套也产生严重磨蚀磨损,使得密封失效,特别在高压工况(P >3MPa)下,其使用寿命一般在几小时至几天之间,使用效果非常不理想,严重影响施工进度。
国产自航绞吸挖泥船××号舱内2号泥泵(进口荷兰生产××型号泥泵),轴径≥φ 450mm,泵腔工作压力≥4MPa。轴封在泵出口压力3.0MPa以上时,其国外进口L型橡胶泥泵密封在很短时间很快失效,严重影响了施工进度和工期,泵的工作扬程被迫降低25%以下使用(低于3MPa),造成泵性能浪费和降低施工效率。
另外,申请人组织研发前,在国家知识产权局专利检索咨询中心对相关产品进行了国内外的专题检索,案件编号G2005965,检索到国外专利文献共计34篇,具体检索内容摘录如下:
分析后无类似密封技术方案;检索到国内专利文献共计12篇,经分析其中6篇是挖泥泵结构和泵轴承组件的专利,与轴密封无关,另外6篇是轴密封的专利,均未见到类似密封要求工况。
现有技术中的大型机械密封不存在冲洗冷却空间时存在的问题;
1、大型机械密封换热性能差,密封环连续运转温度升高,会造成密封端面润滑膜的汽化,使两端面出现干摩擦,由于产生的摩擦热量大,使得磨损加剧和造成热应力裂纹而使密封环断裂甚至碎裂。
2、如果密封环温度超过材料的极限使用温度会导致热变形,在突然载荷下也可能产生热应力裂纹,造成密封故障以至密封失效。
3、密封环温度的升高也可能超过辅助密封圈的允许值,造成密封圈的失效。
实用新型内容
针对现有技术存在的问题,本实用新型提供了一种用来给动/静密封环冲洗降温,改善机械密封运行环境,进而延长密封装置使用寿命的适用于大型挖泥泵泵轴用复合式机械密封装置。
本实用新型是这样实现的,一种大型挖泥泵泵轴用复合式机械密封装置,该机械密封装置安装于泵轴上,包括与泥泵后护板连接的密封箱,位于密封箱内安装在泥泵轴上的弹簧座与轴套,位于密封箱与轴套之间安装有静密封环;密封箱与弹簧座之间安装有动环座,所述动环座滑动套装在弹簧座上,并且在动环座和弹簧座的滑动配合面上设有O型密封圈;所述动环座上安装有与静密封环密封贴合的动密封环;动密封环和动环座、静密封环与密封箱之间设有防止动密封环和静密封环转动的动密封环防转销和静密封环防转销;所述弹簧座上设有平行于泵轴的弹簧,所述弹簧的右端抵接动环座;所述动环座与弹簧座的相对面之间设有浮动空间;所述密封箱安装有密封端盖,所述密封端盖套装在泵轴上;其特征在于:在密封端盖的右端安装有与轴套密封的密封组件;在密封箱的左端通过紧固件安装有防止大颗粒介质进入动、静密封环周围的阻隔套;在动密封环和静密封环的内侧和外侧两侧形成相互独立的密封面外冲洗腔和密封面内冲洗腔;对应密封面外冲洗腔和密封面内冲洗腔所述密封箱上设有进水孔、密封端盖上设有进水孔和出水孔。
上述技术方案优选的,所述密封组件包括密封压板,所述密封压板通过紧固件安装在密封端盖的外表面;所述密封压板和密封端盖之间安装L型密封构件,所述L型密封的内表面与轴套的外表面密封贴合。
上述技术方案优选的,动密封环或静密封环的端面平面度不大于0.0054mm,表面粗糙度 Ra不大于0.2μm;所述密封环本体的摩擦面上设有降低磨损的微织构组织,微织构组织占比为1%-20%;所述微织构组织由若干个类圆形或圆形微织构凹坑构成;上述微织构凹坑等间隔分布在与动密封环或静密封环同心圆或者不同心的基准圆上,在同一基准圆上相邻的微织构凹坑间隔相等,所述微织构凹坑的深度范围1μm-50μm,直径范围5-200μm。
上述技术方案优选的,所述微织构凹坑每间隔一个基准圆错位0.01°-0.5°。
上述技术方案优选的,微织构组织占比为5%-20%;微织构凹坑直径为10-200μm,织构深度为10-30μm。
上述技术方案优选的,所述密封环摩擦面的外边缘设有弧形动压槽,所述动压槽为一个贯通的通槽;在密封环的摩擦面上开槽区形成动压承受密封载荷区和密封面液膜润滑区。
上述技术方案优选的,所述动压槽的开槽半径R:10mm≤R≤30mm,开槽宽度:0.5mm-6mm,开槽深度:0.01mm-1.5mm。
上述技术方案优选的,所述弹簧座圆周方向上设计有限位板槽,限位板槽内安装有限位板。
上述技术方案优选的,所述弹簧座上加工有与浮动空间连通的径向排气孔。
上述技术方案优选的,在动环座和弹簧座的滑动配合面上的O型密封圈为具有支撑力,用于克服动环座因自重受地球引力作用,保持动环座与泵轴的同轴度。
本实用新型具有的优点和积极效果是:由于本实用新型通过在密封箱的左端(即颗粒介质端)安装有阻隔套,有效阻止了大颗粒介质进入动、静密封环周围,同时密封箱冲洗孔进水压力高于介质压力0.05-0.1Mpa,进一步阻止介质颗粒物进入密封环周围,给密封环周围形成洁净腔室,优化了机械密封环境;另外,增设的密封面内、外冲洗腔,还可以达到来给动/ 静密封环冲洗降温,改善机械密封运行环境,进而延长密封元件的使用寿命;提高了泥泵轴密封的可靠性和使用寿命,保证了泥泵的设计性能,使泥泵可靠运行。
此外,在所述动密封环或静密封环的摩擦面设有微织构组织用于降低磨损;在所述动密封环或静密封环的摩擦面上设有动压槽能有效提高密封的承载能力,减小摩擦、磨损和润滑降温,提高密封的可靠性,延长密封使用寿命。本实用新型整体结构简单,运输安全和现场安装便捷,不仅节约了频繁拆泵与更换轴封时间及费用,还能减少施工成本,保证泥泵的设计性能,使泥泵安全、可靠运行,提高工程施工效率,有很好的经济效益和社会效益。
附图说明
图1是本实用新型实施例1结构示意图;
图2是图1中局部放大图;
图3是实施例2中静密封环摩擦端面结构示意图;
图3-1是静密封环摩擦端面织构显微图;
图3-2(a)纯水中不同织构的平均摩擦系数柱状图;
图3-2(b)纯水中不同织构的球磨损体积柱状图;
图3-3纯水中不同织构球磨损表面光学显微镜图;
图3-4(a)1%泥沙水中不同织构的平均摩擦系数柱状图;
图3-4(b)1%泥沙水中不同织构的球磨损体积柱状图;
图3-5 1%泥沙水中不同织构球磨损表面光学显微镜图;
图3-6(a)5%泥沙水中不同织构的平均摩擦系数柱状图;
图3-6(b)5%泥沙水中不同织构的球磨损体积柱状图;
图3-7 5%泥沙水中不同织构球磨损表面光学显微镜图;
图3-8(a)10%泥沙水中不同织构的平均摩擦系数柱状图;
图3-8(b)10%泥沙水中不同织构的球磨损体积柱状图;
图3-9 10%泥沙水中不同织构球磨损表面光学显微镜图;
图3-10(a)20%泥沙水中不同织构的平均摩擦系数柱状图;
图3-10(b)20%泥沙水中不同织构的球磨损体积柱状图;
图3-11 20%泥沙水中不同织构球磨损表面光学显微镜图;
图3-12不同参数织构销盘减速实验摩擦系数与时间关系图;
图3-13有无织构的单次启停销盘实验摩擦系数与时间关系;
图4带有动压槽的静密封环结构示意图;
图5是带有动压槽的动密封环和静密封环配合结构示意图;
图6是弹簧座结构示意图;
图7是微织构组织分布在密封环摩擦面外边缘局部放大结构示意图;
图8是微织构组织分布在密封环摩擦面内边缘局部放大结构示意图;
图9是微织构组织分布在密封环摩擦面中间局部放大结构示意图;
图10是复合微织构组织局部放大结构示意图。
图中、1、泵轴;2、泥泵后护板;3、密封箱;3-1、阻隔套;4、弹簧座;5、轴套;6、静密封环;6-1、微织构组织;7、动环座;8、O型密封圈;9、动密封环;10、动密封环防转销;11、静密封环防转销;12、O型密封圈;13、弹簧;14、浮动空间;15、密封端盖; 16-1、密封面外冲洗腔;16-2、密封面内冲洗腔;17、密封组件;17-1、密封压板;17-2、L 型橡胶密封构件;18、进水孔;19、出水孔;20、动压槽;20-1、动压承受密封载荷区;20-2、密封面液膜润滑区;22、限位板槽;23、限位板;24、排气孔;25、O型密封圈;26、动环座防转销。
具体实施方式
为了使本实用新型的目的、技术方案及优点更加清楚明白,以下结合实施例,对本实用新型进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本实用新型,并不用于限定本实用新型。
请参阅图1至图2;一种大型挖泥泵泵轴用复合式机械密封装置,该机械密封装置安装于泵轴1上,包括与泥泵后护板2连接的密封箱3,位于密封箱内安装在泥泵轴上的弹簧座4 请参阅图(6)与轴套5,位于密封箱与轴套之间安装有静密封环6;密封箱与弹簧座之间安装有动环座7,所述动环座滑动套装在弹簧座上,并且在动环座和弹簧座的滑动配合面上设有O型密封圈8;所述动环座上安装有与静密封环密封贴合的动密封环9;动密封环和动环座、静密封环与密封箱之间设有防止动密封环和静密封环转动的动密封环防转销10和静密封环防转销11;动密封环和动环座、静密封环与密封箱之间设有实现浮动密封的O型密封圈12;所述弹簧座上设有平行于泵轴的弹簧13,所述弹簧的右端抵接动环座;所述动环座与弹簧座的相对面之间设有浮动空间14;所述密封箱安装有密封端盖15,所述密封端盖套装在泵轴上;
在密封端盖的右端安装有与轴套密封的密封组件17;在密封箱的左端通过紧固件安装有防止大颗粒介质进入动、静密封环周围的阻隔套3-1;在动密封环和静密封环的内侧和外侧两侧形成相互独立的密封面外冲洗腔16-1和密封面内冲洗腔16-2;对应冲洗腔密封面外冲洗腔和密封面内冲洗腔所述密封箱和密封端盖上设有进水孔18和出水孔19。
本实用新型的机械密封装置在保证原有密封性能的情况下,由于本实用新型通过在密封箱的左端(即颗粒介质端)安装有阻隔套,有效阻止了大颗粒介质进入动、静密封环周围,同时密封箱冲洗孔进水压力高于介质压力0.05-0.1Mpa,进一步阻止介质颗粒物进入密封环周围,给密封环周围形成洁净腔室,优化了机械密封环境;另外,增设的密封面内、外冲洗腔,还可以达到来给动/静密封环冲洗降温,改善机械密封运行环境,进而延长密封元件的使用寿命;提高了泥泵轴密封的可靠性和使用寿命,保证了泥泵的设计性能,使泥泵可靠运行。外冲洗腔还可以收集主密封泄漏介质,并通过出水孔19排放。
上述技术进一步优选的,所述密封组件17包括密封压板17-1,所述密封压板通过紧固件安装在密封端盖的外表面;所述密封压板和密封端盖之间安装L型橡胶密封构件17-2,所述L型橡胶密封的内表面与轴套的外表面密封贴合。采用上述密封组件结构简单,采用现有技术中在低压环境下使用比较成熟、密封性能可靠的L型橡胶密封构件作为辅助密封构件,增加了密封的可靠性,同时也利于后期维修和更换等优点,同时上述L型橡胶密封构件17-2 也可以采用现有的填料密封组件。
实施例2;请参阅图3,上述技术进一步优选的,动密封环或静密封环的端面平面度不大于0.0054mm,表面粗糙度Ra不大于0.2μm;所述密封环本体的摩擦面上设有降低磨损的微织构组织6-1,微织构组织占比为1%-20%;所述微织构组织由若干个类圆形或圆形微织构凹坑构成;上述微织构凹坑等间隔分布在与动密封环或静密封环同心圆或者不同心的基准圆上,在同一基准圆上相邻的微织构凹坑间隔相等,采用不同的分布,根据介质中含有不同程度的固体颗粒物的含量、大小以及介质的流动性而选择;所述微织构凹坑的深度范围1μm-50μm,直径范围5-200μm。
上述技术方案优选的,所述微织构凹坑每间隔一个基准圆错位0.01°-0.5°。
上述技术方案优选的,微织构组织占比为5%-20%;微织构凹坑直径为10-200μm,织构深度为10-30μm。
所述微织构组织分布在密封环本体摩擦面的外边缘(请参阅图7)、内边缘(请参阅图8) 或者中间(请参阅图9)位置,依据介质的粘度、介质中固体颗粒物的浓度、硬度、规格等不同情况综合考虑不同的分布形式,以满足不同的工况需求。
采用上述的结构微织构组织使其减少摩擦阻力,收纳微小颗粒,延长使用寿命。
由于织构应用于机械密封上属于现有技术,例如专利号为CN200910154418.7的一种具有跨尺度表面织构特征的液体润滑端面密封结构;专利号为CN201410191186.3的螺旋分布收敛型微孔织构机械密封;但其织构的形式和排布以及参数的设置,是影响其性能的主要指标,为此,针对动密封环或静密封环的摩擦面设有上述结构参数的织构进行实验,由于实物产品较大无法在实验室进行实验,为此进行为此使用球-盘,销-盘实验来进行摩擦学实验。
球-盘样件,球-盘的材料为YG6,直径为10mm。销-盘试样的材料为YN15,直径为4mm,盖度为2mm。
摩擦磨损实验具体实验数据如下:
1.1球盘摩擦磨损实验
1.1.1球盘实验织构参数设计
影响摩擦因数的织构主要参数包括:织构尺寸,织构的深度,织构占比及织构形状。所以对织构参数设计就是设计这几个参数。参数定义如下:
织构尺寸:图3-1中每个小圆直径。
织构深度:图3-1中每个小圆的平均深度。
织构间距:图3-1中两个圆之间的间距。
织构占比:织构面积占整个工件表面面积的百分比。
由于织构间距和织构直径决定了织构的占比,所以实际的织构参数就是三个分别是:织构直径,织构深度,织构占比。
通过查阅文献资料和实验室之前的实验经验,设计如下的织构参数。
表3-1球盘实验织构参数
其中0号实验为光盘,与织构试样结果进行对比;0号盘和11号盘为采用不同织构直径、深度、占比及分布设置的复合织构(参阅图10),使其形成动压液膜厚度。
1.1.2球盘实验参数的设计
摩擦磨损实验机能够设计的实验参数为:运动时的线速度,实验压力,实验时长。
由于本次实验使用的球盘实验,初始的为点接触,会有很大的接触压力。在翻阅论文资料再结合实验室的以往的实验结果,设计如下的实验参数。
表3-2球盘摩擦实验参数
1.1.3摩擦磨损实验泥沙水配制
由于本次实验需要使用泥沙水进行实验,但是由于实际的泥沙水浓度未知并且沙粒的大小也未知,所以使用各种大小的沙粒配制了四种浓度的泥沙水。
沙粒的粒径大小为:40,80,100,120,150,200,325,400,500目。
泥沙水的质量浓度为:1%,5%,10%,20%。
1.1.4实验结果分析与讨论
1.1.4.1纯水中实验结果讨论
请参阅,图3-2(a)为纯水中的不同织构的平均摩擦系数柱状图,从图中可以看出,所有试样的摩擦系数都在0.15-0.18之间,有织构试样有的比光滑平面试样摩擦系数大,有些要小,但是变化的范围都不大。图3-2(b)为纯水中不同织构的球磨损体积,可以看出尽管不同织构减小磨损的大小有所区别,但是所有织构能够有效的降低球的磨损,表现较好的为编号9试样(织构直径为150μm,织构深度为16μm,织构占比为12%),该试样的能够有效降低65%((没有织构试样磨损体积-有织构试样磨损体积)/没有织构试样磨损体积))的磨损;编号7试样(织构直径为150μm,织构深度为16μm,织构占比为4%),该试样的能够有效降低64%;编号1试样(织构直径为50μm,织构深度为4μm,织构占比为4%),该试样的能够有效降低63%。
请参阅,图3-3为不同织构试样的球磨损表面光学显微镜图像。从图中也可以看出编号 3-11号的含有织构的试样的球的磨损表面直径要小于没有织构的0号试样。并且9号试样的磨损表面直径最小为0.472mm,表明磨损率最小,与图3-2(b)相符合。并且可以在球磨损表面看见清晰的划痕,这表明发生了磨粒磨损,磨损表明有黑色物质,这表面有可能发生了粘着磨损,并且没有织构试样的黏着磨损要明显高于织构试样。所以导致有织构试样能够有效降低磨损,可能是因为织构储存了磨屑。
1.1.4.2 1%泥沙水中实验结果讨论
由于11号试样在其他含量泥沙水中表现很差,所以在1%泥沙水中就没有11号试样。请参阅,图3-4(a)为1%泥沙水中的不同织构的平均摩擦系数柱状图,从图中可以看出,该实验结果与纯水实验结果类似也是所有试样的摩擦系数都在0.12-0.18之间,有织构试样有的比光滑平面试样摩擦系数大,有些要小,但是变化的范围都不大。与纯水相比,摩擦系数变范围更大,这可能由于泥沙进入摩擦副表面导致摩擦系数变化范围变大。图3-4(b)为1%泥沙水中不同织构的球磨损体积,可以看出所有织构在1%泥沙水中能够有效的降低球的磨损,表现较好的为编号9试样(织构直径为150μm,织构深度为16μm,织构占比为12%),该试样的能够有效降低70%的磨损;编号7试样(织构直径为150μm,织构深度为16μm,织构占比为4%),该试样的能够有效降低63%的磨损;编号4试样(织构直径为150μm,织构深度为16μm,织构占比为8%),该试样的能够有效降低58%的磨损。
请参阅,图3-5为不同织构试样在1%泥沙水中的球磨损表面光学显微镜图像。从图中也可以看出编号3-10的有织构的试样的球的磨损表面直径要小于没有织构的0号没有织构试样。并且三个磨损面直径最小的试样为:9号试样(0.438mm);7号试样(0.461mm);8号试样(0.477mm)。可以在球磨损表面看见清晰的划痕,这表明发生了磨粒磨损,磨损表面有黑色物质,这表明有可能发生了粘着磨损。相较于纯水实验,0号表面黑色物质要明显变少,表明泥沙水中粘着磨损小。
1.1.4.3 5%泥沙水中实验结果讨论
请参阅,图3-6(a)为5%泥沙水中的不同织构的平均摩擦系数柱状图,从图中可以看出,除去试样5外,其余试样的摩擦系数都要超过0.11.试样5的摩擦系数只有0.06。这可能是由于沙粒也就是二氧化硅在高压高速下发生了摩擦化学反应生成了硅胶在摩擦副表面,从而降低了摩擦系数。图3-6(b)为5%泥沙水中不同织构的球磨损体积,可以看出大部分织构在 5%泥沙水中能够有效的降低球的磨损,表现较好的为编号9试样(织构直径为150μm,织构深度为16μm,织构占比为12%),该试样的能够有效降低58%的磨损;编号5试样(织构直径为150μm,织构深度为8μm,织构占比为4%),该试样的能够有效降低58%的磨损;编号 8试样(织构直径为150μm,织构深度为16μm,织构占比为8%),该试样的能够有效降低57%的磨损。但是也有两种织构会增大磨损,分别是:编号4试样(织构直径为50μm,织构深度为20μm,织构占比为4%);编号11试样(织构直径为50μm,织构深度为4μm,织构占比为2%与织构直径为50μm,织构深度为8μm,织构占比为2%复合织构)。这两种织构导致磨损变大可能的原因是织构的深度太深,导致水在织构中产生涡流,造成接触面压力增大。
请参阅,图3-7为不同织构试样在5%泥沙水中的球磨损表面光学显微镜图像。从图中也可以看出大部分织构能够降低磨损,少部分织构会增加磨损(编号为4和11的织构)。并且 9号试样的磨损表面直径最小(0.462mm),5号和8号试样紧随其后(0.464mm和0.465mm)。并且我们可以发现所有较为光滑的磨损表面的直径都要小于表面有黑色物质表面,这或许表明减小黏着磨损能够降低磨损。
1.1.4.4 10%泥沙水中实验结果讨论
请参阅,图3-8(a)为10%泥沙水中的不同织构的平均摩擦系数柱状图,从图中可以看出,该结构与纯水的结果类似,所有试样的摩擦系数都在0.15-0.18之间,且有无织构对于摩擦系数的影响不大。图3-6(b)为10%泥沙水中不同织构的球磨损体积,可以看出所有织构在10%泥沙水中能够有效的降低球的磨损,有三种参数的织构要明显优于其他参数织构,分别为:编号9试样(织构直径为150μm,织构深度为16μm,织构占比为12%),该试样的能够有效降低76%的磨损;编号7试样(织构直径为150μm,织构深度为16μm,织构占比为4%),该试样的能够有效降低70%的磨损;编号1试样(织构直径为50μm,织构深度为4μm,织构占比为4%),该试样的能够有效降低68%的磨损。
请参阅,图3-9为不同织构试样在10%泥沙水中的球磨损表面光学显微镜图像。从图中也可以看出编号3-11号的有织构的试样的球的磨损表面直径要小于没有织构的0号没有织构试样,其中磨损面直径最小的为9号试样(0.456mm)。并且可以发现与5%泥沙水中相同的现象——直径小的织构表面都较为光滑,如果表面黑色是黏着磨损导致,这就说明如何减小黏着磨损成为可以研究的方向,能够用来解释为什么织构能减小磨损。
1.1.4.5 20%泥沙水中实验结果讨论
请参阅,图3-10(a)为20%泥沙水中的不同织构的平均摩擦系数柱状图,从图中可以看出,该实验结果与纯水实验结果类似也是所有试样的摩擦系数都在0.15-0.2之间,其中表现最差为4号织构(摩擦系数为0.198),造成这个的原因可能是织构的深度太深,而织构的直径太小,导致涡流产生从而增加接触表面压力。图3-4(b)为20%泥沙水中不同织构的球磨损体积,可以看出大部分织构在20%泥沙水中能够有效的降低球的磨损,表现较好的为编号7试样(织构直径为150μm,织构深度为16μm,织构占比为4%),该试样的能够有效降低65%的磨损;编号9试样(织构直径为150μm,织构深度为16μm,织构占比为12%),该试样的能够有效降低58%的磨损;编号1试样(织构直径为50μm,织构深度为4μm,织构占比为4%),该试样的能够有效降低49%的磨损。表现最差的为10号试样,增加了2%的磨损。
图3-11为不同织构试样在20%泥沙水中的球磨损表面光学显微镜图像。从图中也可以看出编号3-9号的有织构的试样的球的磨损表面直径要小于没有织构的0号没有织构试样,而 10号试样的结果正好相反,7号试样的磨损表面直径最小(0.492mm)。并且相较于其它含量泥沙水,磨损表面直径增加不少,这表明泥沙水会增大磨损。直径最小的表面要比其它表面光滑很多,这表明它得表面粗糙度要比其它磨损表面小得多,这或许就是为什么它磨损下的原因。
1.1.5.本节总结
本节研究了球盘试样中,织构对于摩擦磨损结果的影响。根据以上的实验结果可以得出下面结论:
1.织构对于摩擦系数的减小不明显,大部分都无法明显减小摩擦系数,但小部分能有效减小摩擦系数。并且摩擦系数的大小与磨损量的大小没有直接关系。并且所有试样在实验结束后没有明细的温升,所以在球盘实验中摩擦系数不是主要评价指标,球的磨损才是主要的评价指标。
2.大部分织构在四种浓度的泥沙水中都能够有效减小磨损,单一织构的表现要好于复合织构。综合四种泥沙水实验结果,表现较好的几种织构为:编号1试样(织构直径为50μm,织构深度为4μm,织构占比为4%);编号7试样(织构直径为150μm,织构深度为16μm,织构占比为4%);编号8试样(织构直径为150μm,织构深度为16μm,织构占比为8%);编号9试样(织构直径为150μm,织构深度为16μm,织构占比为12%)。在这四种不同参数织构中,其中9号织构表现最好。
1.2销盘减速摩擦磨损实验
由于球盘实验无法对织构是否能够有效减小摩擦系数进行判断,所以设计
销盘实验来研究织构对于摩擦系数的影响。
1.2.1销盘减速实验织构参数设计
表3-3销盘减速实验织构参数
在球盘实验中找到了四种表现较好的织构分布为1,7,8,9号织构,但是由于1号织构的深度织构4μm,如果实际密封中发生磨损后,4μm深度很快就会失效,所以我们选择其它三种深度为16μm的织构来做销盘实验,从而研究织构对于摩擦系数的影响。
1.2.2销盘减速实验参数的设计
摩擦磨损实验机能够设计的实验参数为:运动时的线速度,实验压力,实验时长。
由于实际密封时压力为4.5Mpa,所以选取5Mpa作为实验的载荷,转换到受力为62.8N,实际密封线速度为10m/s,由于实验仪器的无法达到这个速度,在本试验机的承受范围内,设计了减速实验来研究速度对于实验的影响。详细信息如下表所示。
表3-4销盘减速摩擦实验参数
1.2.3实验结果分析与讨论
在实验结束后,由于摩擦系数都接近于0,无法测量出销的磨损。所以只能通过摩擦系数来对实验结果进行分析。
请参阅,图3-12为不同的织构销盘减速实验的结果,从图中可以看出:
1.当滑动速度大于0.15m/s时,所有试样的稳定时的摩擦系数非常小(小于0.01)。
2.当滑动速度为0.1m/s时,只有无织构的最终摩擦系数能后小于0.01,有织构试样随着织构占比的增加摩擦系数减小,占比为12%的9号织构摩擦系数约为0.02,占比8%的8号织构实验摩擦约为0.08,表现最差的为占比4%的7号织构摩擦系数约为0.23。
1.摩擦系数低的原因是动压效应作用,但是由于速度减小,水膜的承载能力不断降低,当水膜的承载能力小于载荷时,导致两平面直接接触,所以摩擦系数发生突变。
1.尽管无织构试样最终的摩擦系数都能小于0.01,但是无织构试样的摩擦系数不稳定,相反尽管有织构试样的最终摩擦系数在0.1m/s时要大于无织构试样,但是有织构试样的摩擦系数波动小,这表明织构能够提高摩擦副的稳定性,有利于密封的使用寿命。
1.3销盘启停摩擦磨损实验
由于在实际的密封机械中,每天需要多次对泵进行启停操作,所以本节想通过启停实验来探究频繁的启停中织构会发挥什么作用。
1.1.1销盘启停实验织构参数设计
表3-5销盘启停实验织构参数
通过之前两节可知,在点接触和面接触的实验中,表现最好的织构为9号织构(织构直径为150μm,织构深度为16μm,织构占比为12%)。所以选择9号织构和无织构试样作为启停实验的样本。
1.1.2销盘启停实验参数的设计
表3-6销盘启停摩擦实验参数
实验启停次数为100次,停止时间为5s,启动时间为30s,启动时的速度为 0.5m/s,载荷为62.8N。
1.1.3实验结果分析与讨论
请参阅,图3-13为0号与9号试样单次启停实验中摩擦系数与时间的关系图,从图中可以看出当停止时也有摩擦系数这或许是由于盘的平行度不够导致的;当启动后,两个试样的摩擦系数都迅速从约0.2的摩擦系数变化到接近于0,并且在100次启停中每一次的变化都与图3-13类似,这表面两个摩擦副表面在100次的启停过程中,表面都没有由于启停而破坏,表面粗糙度保持在一个稳定的范围,所以100次的启停实验都有类似的结果,而不会由于表面形貌被破坏而导致摩擦系数增大。
表3-7为销盘启停实验的销磨损量,从表中可以看出,0号盘(无织构)试样的磨损值 (0.00101g)要小于9号盘磨损量(0.00102g)。但是二者的差值并不大,所以有织构并不会加大启停时的磨损也不会减小启停时的磨损。
表3-7销盘启停摩擦实验销磨损质量
5.总结
本实验通过研究激光参数对于织构参数的影响从而使用激光加工出不同参数的织构,并在此基础上研究了不同参数织构在球盘实验,销盘实验对于实验摩擦磨损结果的影响,主要的结论如下:
1.在球盘点接触实验中,主要是研究织构对于磨损的影响。在纯水中,表现最好的为编号9试样(织构直径为150μm,织构深度为16μm,织构占比为12%),该试样的能够有效降低65%;在1%泥沙水中,表现最好的为编号9试样(织构直径为150μm,织构深度为16μm,织构占比为12%),该试样的能够有效降低70%的磨损;在5%泥沙水中,表现最好的为编号9试样(织构直径为150μm,织构深度为16μm,织构占比为12%),该试样的能够有效降低58%的磨损;在10%泥沙水中,表现最好的为编号7试样(织构直径为150μm,织构深度为16μm,织构占比为4%),该试样的能够有效降低65%的磨损;在20%泥沙水中,表现最好的为编号7试样(织构直径为150μm,织构深度为16μm,织构占比为4%),该试样的能够有效降低65%的磨损。所以可以看出,在球盘实验中7号试样和9号试样的表现最好。
2.在销盘的减速实验中,研究了在球盘实验表现较好的几种织构,研究发现随着织构的占比不断变大,在0.1m/s时的摩擦系数不断减小,并且织构能够有效提高摩擦副的稳定性。表现最好的织构参数为9号(织构直径为150μm,织构深度为16μm,织构占比为12%),在速度0.1m/s时摩擦系数为0.02;表现最差的为7号(织构直径为150μm,织构深度为16μm,织构占比为4%),在速度0.1m/s时摩擦系数为0.23。
1.综合前面两个结论可知9号试样表现出的摩擦磨损性能最好,所以对9号试样与0号试样(对照组)做了启停实验,实验发现织构对于频繁的启停操作既不会增加磨损也不会减小磨损。
综合以上三条结论可知,在有织构试样中,9号织构表现最好,在所有泥沙含量中平均减小磨损超过60%。尽管在减速和启停销盘实验中,平稳时摩擦系数和销的磨损没有优于无织构试样,但是从实验结果而言当实验速度超过1m/s时,有无织构对于摩擦系数的影响很小。所以综合球盘和销盘实验,认为在密封表面加工9号试样织构(织构直径为150μm,织构深度为16μm,织构占比为12%)能够有效的改善两摩擦副摩擦磨损性能。
实施例3,请参阅图4和图5,上述结构中,所述动密封环或静密封环的摩擦面上设有动压槽20,在动密封环或静密封环的摩擦面上开槽区形成动压承受密封载荷区20-1和非开槽区形成密封面液膜润滑区20-2,其中动压槽的作用在于:1、动压槽产生动压承受密封面载荷,在动静密封环之间形成液膜,使密封环面得到良好的润滑和冷却,提高密封环的使用寿命;2、新增的动压槽与工作环境空间连通,使其具有容纳和排除杂质能力,进而改善了密封面的工作环境和状态。
在上述实施例1至3的基础上,进一步优选的,所述弹簧座圆周方向上设计有限位板槽 22,限位板槽内安装有限位板23。用来防止动环座与弹簧座脱离,在泥泵机械密封安装后,此限位板不需要拆除。
在上述实施例1至3的基础上,进一步优选的,所述弹簧座上加工有与浮动空间连通的径向排气孔24。用来防止动环座与弹簧座组装后形成气阻状态,使其自由滑动。
在上述实施例1至3的基础上,进一步优选的,所述动密封环防转销和静密封环防转销一端均设计有O型密封圈25。既可以给密封环一个制动力,防止密封环旋转,又可以防止密封环转动时的冲击力。
在上述实施例1至3的基础上,进一步优选的,所述动环座和弹簧座之间设有动环座防转销26,保证动环座在运转过程中的稳定。
在动环座和弹簧座的滑动配合面上的O型密封圈为具有支撑力,其邵氏硬度A为75~95,用于克服动环座因自重受地球引力作用,保持动环座与泵轴的同轴度。
综上所述,实用新型采用上述技术方案,提升了泥泵轴密封的可靠性和使用寿命,保证了泥泵的设计性能,使泥泵可靠运行。该密封的结构采用模块化设计,分为动密封环组合模块、静密封环组合模块、密封组件模块和轴套模块。该密封整体为托装式结构设计。密封环与环座紧密贴合,能有效平衡由于高压与振动给密封环带来的冲击力,分散泵腔内≥4Mpa 的工作压力,从而保证了密封环面的变形量最小,达到环面密封的使用要求。传统机械密封采用浮装式结构,密封环与环座之间有0.5-2mm间隙,可在低压工况下有效保障密封环面的跟随性。
以上所述仅为本实用新型的较佳实施例而已,并不用以限制本实用新型,凡在本实用新型的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本实用新型的保护范围之内。
Claims (10)
1.一种大型挖泥泵泵轴用复合式机械密封装置,该机械密封装置安装于泵轴上,包括与泥泵后护板连接的密封箱,位于密封箱内安装在泥泵轴上的弹簧座与轴套,位于密封箱与轴套之间安装有静密封环;密封箱与弹簧座之间安装有动环座,所述动环座滑动套装在弹簧座上,并且在动环座和弹簧座的滑动配合面上设有O型密封圈;所述动环座上安装有与静密封环密封贴合的动密封环;动密封环和动环座、静密封环与密封箱之间设有防止动密封环和静密封环转动的动密封环防转销和静密封环防转销;所述弹簧座上设有平行于泵轴的弹簧,所述弹簧的右端抵接动环座;所述动环座与弹簧座的相对面之间设有浮动空间;所述密封箱安装有密封端盖,所述密封端盖套装在泵轴上;
其特征在于:在密封端盖的右端安装有与轴套密封的密封组件;在密封箱的左端通过紧固件安装有防止大颗粒介质进入动、静密封环周围的阻隔套;在动密封环和静密封环的内侧和外侧两侧形成相互独立的密封面外冲洗腔和密封面内冲洗腔;对应密封面外冲洗腔和密封面内冲洗腔;所述密封箱上设有进水孔、密封端盖上设有进水孔和出水孔。
2.根据权利要求1所述大型挖泥泵泵轴用复合式机械密封装置,其特征在于:所述密封组件包括密封压板,所述密封压板通过紧固件安装在密封端盖的外表面;所述密封压板和密封端盖之间安装L型密封构件,所述L型密封的内表面与轴套的外表面密封贴合。
3.根据权利要求1所述大型挖泥泵泵轴用复合式机械密封装置,其特征在于:动密封环或静密封环的端面平面度不大于0.0054mm,表面粗糙度Ra不大于0.2μm;所述密封环本体的摩擦面上设有降低磨损的微织构组织,微织构组织占比为1%-20%;所述微织构组织由若干个类圆形或圆形微织构凹坑构成;上述微织构凹坑等间隔分布在与动密封环或静密封环同心圆或者不同心的基准圆上,在同一基准圆上相邻的微织构凹坑间隔相等,所述微织构凹坑的深度范围1μm-50μm,直径范围5-200μm。
4.根据权利要求3所述大型挖泥泵泵轴用复合式机械密封装置,其特征在于:所述微织构凹坑每间隔一个基准圆错位0.01°-0.5°。
5.根据权利要求1所述大型挖泥泵泵轴用复合式机械密封装置,其特征在于:微织构组织占比为5%-20%;微织构凹坑直径为10-200μm,织构深度为10-30μm。
6.根据权利要求1所述大型挖泥泵泵轴用复合式机械密封装置,其特征在于:所述密封环摩擦面的外边缘设有弧形动压槽,所述动压槽为一个贯通的通槽;在密封环的摩擦面上开槽区形成动压承受密封载荷区和密封面液膜润滑区。
7.根据权利要求6所述大型挖泥泵泵轴用复合式机械密封装置,其特征在于:所述动压槽的开槽半径R:10mm≤R≤30mm,开槽宽度:0.5mm-6mm,开槽深度:0.01mm-1.5mm。
8.根据权利要求1所述大型挖泥泵泵轴用复合式机械密封装置,其特征在于:所述弹簧座圆周方向上设计有限位板槽,限位板槽内安装有限位板。
9.根据权利要求1所述大型挖泥泵泵轴用复合式机械密封装置,其特征在于:所述弹簧座上加工有与浮动空间连通的径向排气孔。
10.根据权利要求1所述大型挖泥泵泵轴用复合式机械密封装置,其特征在于:在动环座和弹簧座的滑动配合面上的O型密封圈为具有支撑力,其邵氏硬度A为75~95,用于克服动环座因自重受地球引力作用,保持动环座与泵轴的同轴度。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202121069948.4U CN216044590U (zh) | 2021-05-18 | 2021-05-18 | 大型挖泥泵泵轴用复合式机械密封装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202121069948.4U CN216044590U (zh) | 2021-05-18 | 2021-05-18 | 大型挖泥泵泵轴用复合式机械密封装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN216044590U true CN216044590U (zh) | 2022-03-15 |
Family
ID=80551781
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202121069948.4U Active CN216044590U (zh) | 2021-05-18 | 2021-05-18 | 大型挖泥泵泵轴用复合式机械密封装置 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN216044590U (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113357187A (zh) * | 2021-05-18 | 2021-09-07 | 天津市合润科技有限责任公司 | 大型挖泥泵泵轴用复合式机械密封装置 |
-
2021
- 2021-05-18 CN CN202121069948.4U patent/CN216044590U/zh active Active
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113357187A (zh) * | 2021-05-18 | 2021-09-07 | 天津市合润科技有限责任公司 | 大型挖泥泵泵轴用复合式机械密封装置 |
CN113357187B (zh) * | 2021-05-18 | 2024-05-24 | 天津市合润科技有限责任公司 | 大型挖泥泵泵轴用复合式机械密封装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Lu et al. | Tribological performance of surface texturing in mechanical applications—A review | |
Etsion | Improving tribological performance of mechanical components by laser surface texturing | |
Xie et al. | A state-of-art review on the water-lubricated bearing | |
Wang et al. | Improving the anti-seizure ability of SiC seal in water with RIE texturing | |
Wang et al. | The effect of laser texturing of SiC surface on the critical load for the transition of water lubrication mode from hydrodynamic to mixed | |
CN216044590U (zh) | 大型挖泥泵泵轴用复合式机械密封装置 | |
Etsion | Improving tribological performance of mechanical seals by laser surface texturing | |
CN202149066U (zh) | 高温高压耐磨耐腐离心泵 | |
Chen et al. | Effect of geometric micro-groove texture patterns on tribological performance of stainless steel | |
CN215257837U (zh) | 一种输送含有固体颗粒物的流体介质设备用机械密封环 | |
US20240003424A1 (en) | Non-Contact Self-Impact Seal Efficient in Throttling and Fixed in Clearance | |
CN113123994A (zh) | 一种大型挖泥泵用机械密封装置 | |
Virdi et al. | Performance evaluation of nanofluid-based minimum quantity lubrication grinding of Ni-Cr alloy under the influence of CuO nanoparticles | |
CN113357187B (zh) | 大型挖泥泵泵轴用复合式机械密封装置 | |
CN113145878A (zh) | 新型偏置斜沟槽微织构减磨菱形车刀片 | |
CN215256952U (zh) | 一种大型挖泥泵用机械密封装置 | |
CN202251426U (zh) | 一种增压器的止推轴承 | |
CN113154045A (zh) | 一种输送含有固体颗粒物的流体介质设备用机械密封环 | |
CN104747428A (zh) | 一种用于柱塞泵的自适应偏载组合式配流盘 | |
CN204458834U (zh) | 一种动静压气体轴承 | |
Wang et al. | Influence of surface texture parameters of screw pump rotor on tribological properties of its friction pairs | |
CN202326267U (zh) | 一种两级化工流程泵 | |
CN204921698U (zh) | 一种球磨机的液体全静压主轴承 | |
CN206246682U (zh) | 流体动压型机械密封结构 | |
CN203023453U (zh) | 挖掘机行走齿轮箱密封总成 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant |