CN215869410U - 长波iii-v族红外探测器 - Google Patents

长波iii-v族红外探测器 Download PDF

Info

Publication number
CN215869410U
CN215869410U CN202121450983.0U CN202121450983U CN215869410U CN 215869410 U CN215869410 U CN 215869410U CN 202121450983 U CN202121450983 U CN 202121450983U CN 215869410 U CN215869410 U CN 215869410U
Authority
CN
China
Prior art keywords
layer
infrared detector
long
equal
iii
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202121450983.0U
Other languages
English (en)
Inventor
顾溢
孙夺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuxi Zhongkedexin Perception Technology Co ltd
Original Assignee
Wuxi Zhongkedexin Perception Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuxi Zhongkedexin Perception Technology Co ltd filed Critical Wuxi Zhongkedexin Perception Technology Co ltd
Priority to CN202121450983.0U priority Critical patent/CN215869410U/zh
Application granted granted Critical
Publication of CN215869410U publication Critical patent/CN215869410U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Light Receiving Elements (AREA)

Abstract

本实用新型公开了一种长波III‑V族红外探测器,所述红外探测器结构包括衬底、缓冲层、吸收层和帽层;其中,所述吸收层的材料为非故意掺杂的BInAsSbBi,所述非故意掺杂的BInAsSbBi的组分结构满足:BxIn1‑xAs1‑y‑zSbyBiz,其中,x≥0.1,0.4≤y≤0.7,0.01≤z≤0.06。本实用新型通过满足适当组分要求的BInAsSbBi材料作为吸收层来制备长波III‑V族红外探测器,获得了较好的化学稳定性,在保证耐热性的同时具有较高的吸收系数,能够保持与衬底较小的晶格失配,从而提升了探测器性能。

Description

长波III-V族红外探测器
技术领域
本实用新型属于半导体技术领域,特别涉及一种长波III-V族红外探测器及其制备方法。
背景技术
所有物体都会发射与其温度和表面特性相关的热辐射,室温物体的热辐射集中在长波红外(8-14微米)波段,长波红外的光电探测器具有重要的应用需求和应用价值。常见的长波III-V族红外探测器分为热敏型和光子型。热敏型长波III-V族红外探测器可常温工作,对波长不敏感,虽然可满足一些对性能要求不高的常规应用,但其探测灵敏度和成像分辨率不高,响应速度也较慢,难以满足对探测性能要求较高的应用场景。
光子型长波III-V族红外探测器利用光电转换原理对红外光进行探测,具有较高的探测灵敏度,也具有较高的响应速度,能够满足高性能探测的要求。探测器应用时一般需要制冷。用于制备光子型长波III-V族红外探测器的材料主要有II-VI族碲镉汞,通过调节材料组分可以与碲锌镉衬底晶格匹配,是目前长波III-V族红外探测器的主流。但是其键能较弱,材料生长温度较低,化学稳定性不足,后续器件工艺和使用时也不能承受高温。
实用新型内容
本实用新型要解决的技术问题是为了克服现有技术中II-VI族碲镉汞作为制备光子型长波III-V族红外探测器的材料键能较弱,材料生长温度较低,化学稳定性不足,后续器件工艺和使用时无法承受高温;以及III-V族材料的InAs/GaSb II类超晶格的长波III-V族红外探测器因为吸收系数较小导致量子效率较低的缺陷,提供一种长波III-V族红外探测器及其制备方法。
本实用新型是通过下述技术方案来解决上述技术问题:
本实用新型提供了一种长波III-V族红外探测器,所述红外探测器结构包括衬底、缓冲层、吸收层和帽层;其中,所述吸收层的材料为非故意掺杂的BInAsSbBi,所述非故意掺杂的BInAsSbBi的组分结构满足:
BxIn1-xAs1-y-zSbyBiz,其中,x≥0.1,0.4≤y≤0.7,0.01≤z≤0.06。
较佳地,所述衬底、所述缓冲层、所述帽层的材料均为GaSb。
较佳地,所述衬底、所述缓冲层、所述帽层均为InAs材料。
较佳地,所述缓冲层采用P型掺杂,所述帽层采用N型高掺杂。
较佳地,所述缓冲层采用N型掺杂,所述帽层采用P型高掺杂。
较佳地,所述缓冲层掺杂的载流子浓度高于1×1018cm-3
所述帽层掺杂的载流子浓度高于1×1018cm-3
较佳地,所述缓冲层的厚度为0.5μm-1μm。
较佳地,所述帽层的厚度为0.2μm-0.6μm。
较佳地,所述吸收层的厚度为1μm-3μm。
本实用新型还提供了一种长波III-V族红外探测器的制备方法,其特征在于,包括步骤:
在衬底上生长缓冲层,所述缓冲层和所述衬底材料相同;
在所述缓冲层上生长吸收层;所述吸收层的材料为非故意掺杂的 BInAsSbBi,所述吸收层的组分结构满足BxIn1-xAs1-y-zSbyBiz,其中x≥0.1, 0.4≤y≤0.7,0.01≤z≤0.06;
在所述吸收层上生长帽层;所述帽层和所述衬底的材料相同;所述帽层和所述缓冲层的掺杂类型相反;
基于完成材料生长的衬底制备所述长波III-V族红外探测器。
本实用新型的积极进步效果在于:本实用新型提供的长波III-V族红外探测器及其制备方法通过在衬底上以满足适当组分要求的BInAsSbBi材料作为吸收层制备长波III-V族红外探测器,获得了较好的化学稳定性,保证了耐热性的同时,具有较高的吸收系数,能够保持与衬底较小的晶格失配,从而提升了探测器性能。
附图说明
图1为本实用新型的实施例的长波III-V族红外探测器的结构示意图。
图2为本实用新型的实施例的长波III-V族红外探测器的制备方法的流程图。
具体实施方式
下面通过实施例的方式进一步说明本实用新型,但并不因此将本实用新型限制在所述的实施例范围之中。
参见图1所示,本实施例具体提供了一种长波III-V族红外探测器100,包括衬底101、缓冲层102、吸收层103和帽层104;其中,吸收层103的材料为非故意掺杂的BInAsSbBi,组分结构满足:BxIn1-xAs1-y-zSbyBiz
其中,x≥0.1,0.4≤y≤0.7,0.01≤z≤0.06。
III-V族材料具有较好的化学稳定性,而经多次测试获得的该组份材料的吸收层103具有较高的吸收系数,可保持与衬底较小的晶格失配,实现获得较高的材料质量和探测效果。
作为较佳的实施方式,衬底101、缓冲层102、帽层104的材料均为GaSb。
作为较佳的实施方式,衬底101、缓冲层102、帽层104均为InAs材料。
作为较佳的实施方式,所述缓冲层采用P型掺杂,所述帽层采用N型高掺杂。
作为较佳的实施方式,所述缓冲层采用N型掺杂,所述帽层采用P型高掺杂。
作为较佳的实施方式,缓冲层102掺杂的载流子浓度高于1×1018cm-3;帽层104掺杂的载流子浓度高于1×1018cm-3
作为较佳的实施方式,缓冲层102的厚度为0.5μm-1μm。
作为较佳的实施方式,帽层104的厚度为0.2μm-0.6μm。
作为较佳的实施方式,吸收层103的厚度为1μm-3μm。
参见图2所示,通过下述制备方法制备长波III-V族红外探测器100,包括步骤:
S1.在衬底上生长缓冲层,缓冲层和衬底材料相同;
S2.在缓冲层上生长吸收层;吸收层的材料为非故意掺杂的BInAsSbBi,吸收层的组分结构满足BxIn1-xAs1-y-zSbyBiz,其中x≥0.1,0.4≤y≤0.7,0.01 ≤z≤0.06;
S3.在吸收层上生长帽层;帽层和衬底的材料相同;帽层和缓冲层的掺杂类型相反;
S4.基于完成材料生长的衬底制备长波III-V族红外探测器。
作为较佳的实施方式,本实施例提供了一种长波III-V族红外探测器200;衬底201为GaSb材料;缓冲层202和帽层204均为GaSb材料;吸收层203 为B0.1In0.9As0.37Sb0.6Bi0.03材料。
较佳地,通过下述制备方法制备长波III-V族红外探测器200,包括步骤:
S1’.采用分子束外延在GaSb材料的衬底201之上生长GaSb材料的缓冲层202,缓冲层202的厚度0.5μm,缓冲层202采用P型高掺杂,缓冲层202 掺杂的载流子浓度为2×1018cm-3
S2’.生长非故意掺杂的B0.1In0.9As0.37Sb0.6Bi0.03材料的吸收层203,吸收层 203的厚度为1.5μm;
S3’.生长GaSb材料的帽层204,帽层204的厚度0.3μm,帽层204采用 N型高掺杂,帽层204掺杂载流子浓度为2×1018cm-3
S4’.对于完成生长的GaSb基B0.1In0.9As0.37Sb0.6Bi0.03的材料,采用光刻、刻蚀、沉积等器件工艺方法制备长波III-V族红外探测器器件200。
上述器件工艺方法为本领域技术人员所知晓,故不再赘述。
作为较佳的实施方式,本实施例还提供了一种长波III-V族红外探测器 300,其衬底301为GaSb材料;缓冲层302和帽层304均为GaSb材料;吸收层303为B0.12In0.88As0.3Sb0.65Bi0.05材料。
较佳地,通过下述制备方法制备长波III-V族红外探测器300,包括步骤:
S1”.采用分子束外延在InAs材料的衬底301之上生长InAs材料的缓冲层302,缓冲层302的厚度1μm,缓冲层302采用N型高掺杂,缓冲层302 掺杂的载流子浓度为1×1018cm-3
S2”.生长非故意掺杂的B0.12In0.88As0.3Sb0.65Bi0.05材料的吸收层303,吸收层303的厚度为2.5μm;
S3”.生长InAs材料的帽层304,帽层304的厚度0.5μm,帽层304采用 P型高掺杂,帽层304掺杂载流子浓度为3×1018cm-3
S4”.对于完成生长的InAs基B0.12In0.88As0.3Sb0.65Bi0.05材料,采用光刻、刻蚀、沉积等器件工艺方法制备长波III-V族红外探测器器件300。
本实施例中提供的长波III-V族红外探测器及其制备方法通过在衬底上以满足适当组分要求的BInAsSbBi材料作为吸收层制备长波III-V族红外探测器,获得了较好的化学稳定性,保证了耐热性的同时,具有较高的吸收系数,能够保持与衬底较小的晶格失配,从而提升了探测器性能。
虽然以上描述了本实用新型的具体实施方式,但是本领域的技术人员应当理解,这仅是举例说明,本实用新型的保护范围是由所附权利要求书限定的。本领域的技术人员在不背离本实用新型的原理和实质的前提下,可以对这些实施方式做出多种变更或修改,但这些变更和修改均落入本实用新型的保护范围。

Claims (8)

1.一种长波III-V族红外探测器,其特征在于,所述红外探测器结构包括衬底、缓冲层、吸收层和帽层;其中,所述吸收层的材料为非故意掺杂的BInAsSbBi,所述非故意掺杂的BInAsSbBi的组分结构满足:
BxIn1-xAs1-y-zSbyBiz,其中,x≥0.1,0.4≤y≤0.7,0.01≤z≤0.06;
所述吸收层的厚度为1μm-3μm。
2.如权利要求1所述的长波III-V族红外探测器,其特征在于,所述衬底、所述缓冲层、所述帽层的材料均为GaSb。
3.如权利要求1所述的长波III-V族红外探测器,其特征在于,所述衬底、所述缓冲层、所述帽层均为InAs材料。
4.如权利要求1所述的长波III-V族红外探测器,其特征在于,所述缓冲层采用P型掺杂,所述帽层采用N型高掺杂。
5.如权利要求1所述的长波III-V族红外探测器,其特征在于,所述缓冲层采用N型掺杂,所述帽层采用P型高掺杂。
6.如权利要求1所述的长波III-V族红外探测器,其特征在于,
所述缓冲层掺杂的载流子浓度高于1×1018cm-3
所述帽层掺杂的载流子浓度高于1×1018cm-3
7.如权利要求1所述的长波III-V族红外探测器,其特征在于,所述缓冲层的厚度为0.5μm-1μm。
8.如权利要求1所述的长波III-V族红外探测器,其特征在于,所述帽层的厚度为0.2μm-0.6μm。
CN202121450983.0U 2021-06-28 2021-06-28 长波iii-v族红外探测器 Active CN215869410U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202121450983.0U CN215869410U (zh) 2021-06-28 2021-06-28 长波iii-v族红外探测器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202121450983.0U CN215869410U (zh) 2021-06-28 2021-06-28 长波iii-v族红外探测器

Publications (1)

Publication Number Publication Date
CN215869410U true CN215869410U (zh) 2022-02-18

Family

ID=80336316

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202121450983.0U Active CN215869410U (zh) 2021-06-28 2021-06-28 长波iii-v族红外探测器

Country Status (1)

Country Link
CN (1) CN215869410U (zh)

Similar Documents

Publication Publication Date Title
CN105720130B (zh) 基于量子阱带间跃迁的光电探测器
Carmody et al. Single-crystal II-VI on Si single-junction and tandem solar cells
Hunter et al. Absorption Characteristics of ${\rm GaAs} _ {1-x}{\rm Bi} _ {x}/{\rm GaAs} $ Diodes in the Near-Infrared
US6023020A (en) Solar cell and method for manufacturing the same
Periasamy et al. Large-area and nanoscale n-ZnO/p-Si heterojunction photodetectors
JP5266521B2 (ja) 赤外線センサ、及び赤外線センサic
US7915639B2 (en) InGaAsSbN photodiode arrays
US9887309B2 (en) Photovoltaic lead-salt semiconductor detectors
De Lyon et al. Molecular-beam epitaxial growth of HgCdTe infrared focal-plane arrays on silicon substrates for midwave infrared applications
US20130043459A1 (en) Long Wavelength Infrared Superlattice
CN103258869A (zh) 基于氧化锌材料的紫外红外双色探测器及其制作方法
EP2481096A2 (en) Improved photocell
CN102176489A (zh) 晶格匹配体系上裁剪带隙波长提高光电探测器性能的方法
WO2015047492A2 (en) Photovoltaic lead-salt detectors
US9276159B2 (en) Superlattice structure
CN113257932B (zh) 一种高性能的光电探测器及其制备方法
CN100492670C (zh) 波长扩展InGaAs探测器及阵列宽带缓冲层和窗口层及制作方法
US8426845B2 (en) Long wavelength infrared superlattice
CN110416333A (zh) 一种紫外光电探测器及其制备方法
US20130043458A1 (en) Long Wavelength Infrared Superlattice
CN215869410U (zh) 长波iii-v族红外探测器
US10109754B2 (en) Photovoltaic lead-salt detectors
CN115602742A (zh) 长波iii-v族红外探测器及其制备方法
Lubyshev et al. Manufacturable MBE growth process for Sb-based photodetector materials on large diameter substrates
Yang An introduction to ultraviolet detectors based on III group-nitride semiconductor

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant