CN214845999U - 一种成像系统、镜头模组及电子设备 - Google Patents

一种成像系统、镜头模组及电子设备 Download PDF

Info

Publication number
CN214845999U
CN214845999U CN202120993954.2U CN202120993954U CN214845999U CN 214845999 U CN214845999 U CN 214845999U CN 202120993954 U CN202120993954 U CN 202120993954U CN 214845999 U CN214845999 U CN 214845999U
Authority
CN
China
Prior art keywords
lens
imaging system
lens element
image
optical axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN202120993954.2U
Other languages
English (en)
Inventor
华露
李明
杨健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangxi Jingchao Optical Co Ltd
Original Assignee
Jiangxi Jingchao Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangxi Jingchao Optical Co Ltd filed Critical Jiangxi Jingchao Optical Co Ltd
Priority to CN202120993954.2U priority Critical patent/CN214845999U/zh
Application granted granted Critical
Publication of CN214845999U publication Critical patent/CN214845999U/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lenses (AREA)

Abstract

本申请公开了一种成像系统、镜头模组及电子设备,成像系统沿光轴从物侧到像侧依次包括第一透镜、第二透镜、第三透镜、第四透镜以及第五透镜。成像系统满足以下条件式:‑1.2<f45/f23<‑0.7,其中,f45为所述第四透镜和所述第五透镜的组合焦距,f23为所述第二透镜和所述第三透镜的组合焦距。使成像系统保证小型化和薄型化的前提下,提高成像质量。

Description

一种成像系统、镜头模组及电子设备
技术领域
本申请涉及光学成像技术领域,尤其涉及一种成像系统、镜头模组及电子设备。
背景技术
随着具有摄影功能的可携式电子产品的普及应用,市场上对于手机等便携式电子设备中应用的小型化摄影镜头的需求日渐提高。现今电子产品以功能佳且轻薄短小的外型为发展趋势,然而,现有的摄影镜头难以兼具小型化和高品质的成像效果。
实用新型内容
本申请实施例提供了一种成像系统、镜头模组及电子设备,保证小型化和薄型化的前提下,能够提高成像质量。所述技术方案如下:
第一方面,本申请实施例提供了一种成像系统,所述成像系统沿光轴从物侧到像侧依次包括:
第一透镜,所述第一透镜具有正屈折力,所述第一透镜的物侧面于近所述光轴处为凸面,所述第一透镜的像侧面于近所述光轴处为凹面;
第二透镜,所述第二透镜具有屈折力;
第三透镜,所述第三透镜具有屈折力,所述第三透镜的物侧面于近所述光轴处为凹面,所述第三透镜的像侧面于近所述光轴处为凸面;
第四透镜,所述第四透镜具有屈折力;
第五透镜,所述第五透镜具有负屈折力,所述第五透镜的像侧面于近所述光轴处为凹面,所述第五透镜的物侧面与所述第五透镜的像侧面皆为非球面,所述第五透镜的物侧面与所述第五透镜的像侧面中至少一个面设置有至少一个反曲点;
其中,所述成像系统满足以下条件式:
-1.2<f45/f23<-0.7;
其中,f45为所述第四透镜和所述第五透镜的组合焦距,f23为所述第二透镜和所述第三透镜的组合焦距。
本申请实施例的成像系统,通过对第一透镜至第五透镜的屈折力以及面型的合理设计,在保证小型化和薄型化的前提下,能够提高成像系统的成像质量。通过对第四透镜和第五透镜的组合焦距,第二透镜和第三透镜的组合焦距的合理限定,其中,第二透镜和第三透镜组合为第二透镜组,第四透镜和第五透镜组合为第三透镜组,使第二透镜组和第三透镜组的屈折力在空间上合理的分布,促进成像系统整体达到像差平衡,提高成像质量。当f45/f23≥-0.7 或者f45/f23≤-1.2时,第二透镜组承担的屈折力与第三透镜组承担的屈折力差异过大,易打乱系统整体像差平衡,使像差增大,系统解像力下降;且透镜间合理的面型限定,有助于提升透镜的组装良率,降低成像系统的组装难度。
在其中一些实施例中,所述成像系统还满足以下条件式:
TTL/ImgH<1.44;
其中,TTL为所述第一透镜的物侧面至所述成像系统的成像面于所述光轴上的距离, ImgH为所述成像系统的最大视场角所对应的像高。
基于上述实施例,通过对第一透镜的物侧面至成像系统的成像面于光轴上的距离和成像系统的最大视场角所对应的像高的合理限定,有利于在保证成像系统较薄总长的前提下,有较好的成像质量,同时降低了设计难度。
在其中一些实施例中,所述成像系统还满足以下条件式:
0.6<EFL/f1<0.9;
其中,EFL为所述成像系统的有效焦距,f1为所述第一透镜的有效焦距。
基于上述实施例,通过对成像系统的有效焦距和第一透镜的有效焦距的合理限定,使第一透镜的屈折力的配置在合理范围内,有利于第一透镜为整个成像系统贡献合适的正屈折力,有效降低镜头头部的尺寸,缩短成像系统的总长,为提高成像面大小提供足够的空间。
在其中一些实施例中,所述成像系统还满足以下条件式:
-1.5<EFL/f5<-0.5;
其中,EFL为所述成像系统的有效焦距,f5为所述第五透镜的有效焦距。
基于上述实施例,通过对成像系统的有效焦距和第五透镜的有效焦距的合理限定,能够合理配置第五透镜提供的负屈折力,有利于矫正前透镜组产生的像差,保证成像系统整体相差平衡,另外还有利于外视场光线具有较小的偏转角,实现向像面平缓的过渡,进而提高成像质量。
在其中一些实施例中,所述成像系统还满足以下条件式:
3.2<(|Rs5|+|Rs6|)/(CT23+CT3+CT34)<6.2;
其中,Rs5为所述第三透镜的物侧面的曲率半径,Rs6为所述第三透镜的像侧面的曲率半径,CT23为所述第二透镜的像侧面至所述第三透镜的物侧面于所述光轴上的距离,CT3为所述第三透镜于所述光轴上的距离,CT34为所述第三透镜的像侧面至所述第四透镜的物侧面于所述光轴上的距离。
基于上述实施例,通过对第三透镜的物侧面的曲率半径、第三透镜的像侧面的曲率半径、第二透镜的像侧面至第三透镜的物侧面于光轴上的距离、第三透镜于光轴上的距离以及第三透镜的像侧面至第四透镜的物侧面于光轴上的距离的合理限定,可有效控制第三透镜的物侧面和第三透镜的像侧面的像散量贡献,进而保证中间视场的成像质量,同时有利于缩短成像系统总长,提高组装稳定性。当3.2<(|Rs5|+|Rs6|)/(CT23+CT3+CT34)≤3.2时,第三透镜的像侧面的曲率半径值过小,易导致面型过于弯曲,降低透镜成型工艺性;当3.2<(|Rs5|+|Rs6|)/(CT23+CT3+CT34)≥6.2时,第三透镜的像侧面的曲率半径值过大,不利于保证畸变量的均衡,会降低成像质量。
在其中一些实施例中,所述成像系统还满足以下条件式:
2<ET34/SD34<4;
其中,ET34为所述第三透镜的像侧面的最大有效半径处至所述第四透镜的物侧面的最大有效半径处沿平行于所述光轴方向的距离,SD34为所述第三透镜的像侧面的最大有效半径处与所述第四透镜的物侧面的最大有效半径处垂直于所述光轴方向的距离。
基于上述实施例,通过对第三透镜的像侧面的最大有效半径处至第四透镜的物侧面的最大有效半径处沿平行于光轴方向的距离和第三透镜的像侧面的最大有效半径处与第四透镜的物侧面的最大有效半径处垂直于光轴方向的距离的合理限定,有利于减小由第三透镜射入第四透镜的光线偏转角,进而保证外视场的成像质量;当ET34/SD34≤2时,第三透镜像侧面和第四透镜物侧面边缘距离过大,易发生全反射,导致外视场相对照度降低。当ET34/SD34≥4 时,第三透镜和第四透镜的边缘相距过远,空间利用率降低,镜片排布松散,不利于成像系统小型化。
在其中一些实施例中,所述成像系统还满足以下条件式:
0.9<CT12/CT1<1.35;
其中,CT12为所述第一透镜的像侧面至所述第二透镜的物侧面于所述光轴上的距离,CT1为所述第一透镜于所述光轴上的距离。
基于上述实施例,通过对第一透镜的像侧面至第二透镜的物侧面于光轴上的距离和第一透镜于光轴上的距离的合理限定,有利于减小透镜组装过程产生的变形量,降低组装难度,同时有利于减小成像系统的尺寸,还可改善轴外视场的场曲像差。当CT12/CT1≤0.9时,不利于改善成像系统的畸变;当CT12/CT1≥1.35时,不利于缩短成像系统的总长。
在其中一些实施例中,所述成像系统还满足以下条件式:
1<Sags9/Sags10<2.7;
其中,Sags9为所述第五透镜的物侧面于最大有效半径处的矢高,Sags10为所述第五透镜的像侧面于最大有效半径处的矢高。
基于上述实施例,通过对第五透镜的物侧面于最大有效半径处的矢高和第五透镜的像侧面于最大有效半径处的矢高的合理限定,有利于约束第五透镜物侧面和第五透镜像侧面的面型,限制第五透镜的弯曲程度,避免面型过于复杂,增加镜片成型难度,同时有利于保证主光线的入射角度。当Sags9/Sags10≤1时,第五透镜像侧面的矢高过大,面型过于复杂,进而提高镜片成型加工难度;当Sags9/Sags10≥2.7时,第五透镜提供的负屈折力过大,不利于矫正像差,容易增加鬼像风险,且无法保证良好的成像品质。
第二方面,本申请实施例提供了一种镜头模组,包括:
镜筒;
如上述任意的成像系统,所述成像系统设置于所述镜筒内;
感光元件,所述感光元件设置于所述成像系统的像侧。
基于本申请实施例中的镜头模组,通过对第一透镜至第五透镜的屈折力以及面型的合理设计,在保证小型化和薄型化的前提下,能够提高成像系统的成像质量。通过对第四透镜和第五透镜的组合焦距,第二透镜和第三透镜的组合焦距的合理限定,其中,第二透镜和第三透镜组合为第二透镜组,第四透镜和第五透镜组合为第三透镜组,使第二透镜组和第三透镜组的屈折力在空间上合理的分布,促进成像系统整体达到像差平衡,提高成像质量。当f45/f23≥-0.7或者f45/f23≤-1.2时,第二透镜组承担的屈折力与第三透镜组承担的屈折力差异过大,易打乱系统整体像差平衡,使像差增大,系统解像力下降;且透镜间合理的面型限定,有助于提升成像系统的组装良率,降低镜头模组的组装难度。
第三方面,本申请实施例提供了一种电子设备,包括:
壳体;及
上述的镜头模组,所述镜头模组设置于所述壳体内。
基于本申请实施例中的电子设备,通过对第一透镜至第五透镜的屈折力以及面型的合理设计,在保证小型化和薄型化的前提下,能够提高成像系统的成像质量。通过对第四透镜和第五透镜的组合焦距,第二透镜和第三透镜的组合焦距的合理限定,其中,第二透镜和第三透镜组合为第二透镜组,第四透镜和第五透镜组合为第三透镜组,使第二透镜组和第三透镜组的屈折力在空间上合理的分布,促进成像系统整体达到像差平衡,提高成像质量。当f45/f23≥-0.7或者f45/f23≤-1.2时,第二透镜组承担的屈折力与第三透镜组承担的屈折力差异过大,易打乱系统整体像差平衡,使像差增大,系统解像力下降;且透镜间合理的面型限定,有助于提升成像系统的组装良率,降低电子设备中镜头模组的组装难度。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例一提供的成像系统的结构示意图;
图2是本申请实施例一提供的成像系统的纵向球差曲线图、像散曲线图、畸变曲线图;
图3是本申请实施例二提供的成像系统的结构示意图;
图4是本申请实施例二提供的成像系统的纵向球差曲线图、像散曲线图、畸变曲线图;
图5是本申请实施例三提供的成像系统的结构示意图;
图6是本申请实施例三提供的成像系统的纵向球差曲线图、像散曲线图、畸变曲线图;
图7是本申请实施例四提供的成像系统的结构示意图;
图8是本申请实施例四提供的成像系统的纵向球差曲线图、像散曲线图、畸变曲线图
图9是本申请实施例五提供的成像系统的结构示意图;
图10是本申请实施例五提供的成像系统的纵向球差曲线图、像散曲线图、畸变曲线图;
图11是本申请实施例六提供的成像系统的结构示意图;
图12是本申请实施例六提供的成像系统的纵向球差曲线图、像散曲线图、畸变曲线图;
图13是本申请实施例七提供的成像系统的结构示意图;
图14是本申请实施例七提供的成像系统的纵向球差曲线图、像散曲线图、畸变曲线图;
图15是本申请实施例八提供的成像系统的结构示意图;
图16是本申请实施例八提供的成像系统的纵向球差曲线图、像散曲线图、畸变曲线图;
图17是本申请实施例提供的一种成像系统、镜头模组及电子设备的示意图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
随着具有摄影功能的可携式电子产品的普及应用,市场上对于手机等便携式电子设备中应用的小型化摄影镜头的需求日渐提高。现今电子产品以功能佳且轻薄短小的外型为发展趋势,然而,现有的摄影镜头难以兼具小型化和高品质的成像效果。基于此,本申请实施例提供了一种成像系统、镜头模组及电子设备,旨在解决上述技术问题。
第一方面,本申请实施例提供了一种成像系统10。参考图1至图9,成像系统10沿光轴从物侧到像侧依次包括第一透镜110、第二透镜120、第三透镜130、第四透镜140和第五透镜150。
第一透镜110具有正屈折力,第一透镜110的物侧面S1于近光轴处为凸面,第一透镜 110的像侧面S2于近光轴处为凹面。第二透镜120具有屈折力。第三透镜130具有屈折力,第三透镜130的物侧面S5于近光轴处为凹面,第三透镜130的像侧面S6于近光轴处为凸面。第四透镜具有屈折力。第五透镜150具有负屈折力,第五透镜150的像侧面S10于近光轴处为凹面,第五透镜150的物侧面S9与第五透镜150的像侧面S10皆为非球面,第五透镜150 的物侧面S9与第五透镜150的像侧面S10中至少一个面设置有至少一个反曲点。成像系统 10满足以下条件式:-1.2<f45/f23<-0.7,其中,f45为第四透镜140和第五透镜150的组合焦距, f23为第二透镜120和第三透镜130的组合焦距。
本申请实施例的成像系统10,通过对第一透镜110至第五透镜150的屈折力以及面型的合理设计,在保证小型化和薄型化的前提下,能够提高成像系统10的成像质量。通过对第四透镜140和第五透镜150的组合焦距,第二透镜120和第三透镜130的组合焦距的合理限定,其中,第二透镜和第三透镜组合为第二透镜组,第四透镜和第五透镜组合为第三透镜组,使第二透镜组和第三透镜组的屈折力在空间上合理的分布,促进成像系统10整体达到像差平衡,提高成像质量。当f45/f23≥-0.7或者f45/f23≤-1.2时,第二透镜组承担的屈折力与第三透镜组承担的屈折力差异过大,易打乱系统整体像差平衡,使像差增大,系统解像力下降;且透镜间合理的面型限定,有助于提升透镜的组装良率,降低成像系统10的组装难度。
成像系统10还满足以下条件式:TTL/ImgH<1.44,其中,TTL为第一透镜110的物侧面S1至成像系统10的成像面S13于光轴上的距离,ImgH为成像系统10的最大视场角所对应的像高。基于上述实施例,通过对第一透镜110的物侧面S1至成像系统10的成像面S13于光轴上的距离和成像系统10的最大视场角所对应的像高的合理限定,有利于在保证成像系统10较薄总长的前提下,有较好的成像质量,同时降低了设计难度。
成像系统10还满足以下条件式:0.6<EFL/f1<0.9,其中,EFL为成像系统10的有效焦距, f1为第一透镜110的有效焦距。基于上述实施例,通过对成像系统10的有效焦距和第一透镜 110的有效焦距的合理限定,使第一透镜110的屈折力的配置在合理范围内,有利于第一透镜110为整个成像系统10贡献合适的正屈折力,有效降低镜头头部的尺寸,缩短成像系统 10的总长,为提高成像面S13大小提供足够的空间。
所述成像系统10还满足以下条件式:-1.5<EFL/f5<-0.5,其中,EFL为成像系统的有效焦距,f5为第五透镜150的有效焦距。基于上述实施例,通过对成像系统10的有效焦距和第五透镜150的有效焦距的合理限定,能够合理配置第五透镜150提供的负屈折力,有利于矫正前透镜组产生的像差,保证成像系统10整体相差平衡,另外还有利于外视场光线具有较小的偏转角,实现向像面平缓的过渡,进而提高成像质量。
成像系统10还满足以下条件式:3.2<(|Rs5|+|Rs6|)/(CT23+CT3+CT34)<6.2,其中,Rs5为第三透镜130的物侧面S5的曲率半径,Rs6为第三透镜130的像侧面S6的曲率半径,CT23为第二透镜120的像侧面S4至第三透镜130的物侧面S5于光轴上的距离,CT3为第三透镜130于光轴上的距离,CT34为第三透镜130的像侧面S6至第四透镜140的物侧面S7于光轴上的距离。基于上述实施例,通过对第三透镜130的物侧面S5的曲率半径、第三透镜130的像侧面S6的曲率半径、第二透镜120的像侧面S4至第三透镜130的物侧面S5于光轴上的距离、第三透镜130于光轴上的距离以及第三透镜130的像侧面S6至第四透镜140的物侧面S7于光轴上的距离的合理限定,可有效控制第三透镜130的物侧面S5和第三透镜130的像侧面 S6的像散量贡献,进而保证中间视场的成像质量,同时有利于缩短成像系统10总长,提高组装稳定性。当3.2<(|Rs5|+|Rs6|)/(CT23+CT3+CT34)≤3.2时,第三透镜130的像侧面S6的曲率半径值过小,易导致面型过于弯曲,降低透镜成型工艺性;当3.2<(|Rs5|+|Rs6|)/(CT23+CT3+CT34)≥6.2时,第三透镜130的像侧面S6的曲率半径值过大,不利于保证畸变量的均衡,会降低成像质量。
成像系统10还满足以下条件式:2<ET34/SD34<4,其中,ET34为第三透镜130的像侧面S6的最大有效半径处至第四透镜140的物侧面S7的最大有效半径处沿平行于光轴方向的距离,SD34为第三透镜130的像侧面S6的最大有效半径处与第四透镜140的物侧面S7的最大有效半径处垂直于光轴方向的距离。基于上述实施例,通过对第三透镜130的像侧面S6的最大有效半径处至第四透镜140的物侧面S7的最大有效半径处沿平行于光轴方向的距离和第三透镜130的像侧面S6的最大有效半径处与第四透镜140的物侧面S7的最大有效半径处垂直于光轴方向的距离的合理限定,有利于减小由第三透镜130射入第四透镜140的光线偏转角,进而保证外视场的成像质量;当ET34/SD34≤2时,第三透镜130像侧面S6和第四透镜物侧面S7边缘距离过大,易发生全反射,导致外视场相对照度降低。当ET34/SD34≥4时,第三透镜130和第四透镜140的边缘相距过远,空间利用率降低,镜片排布松散,不利于成像系统 10小型化。
成像系统10还满足以下条件式:0.9<CT12/CT1<1.35,其中,CT12为第一透镜110的像侧面S2至第二透镜120的物侧面S3于光轴上的距离,CT1为第一透镜110于光轴上的距离。基于上述实施例,通过对第一透镜110的像侧面S2至第二透镜120的物侧面S3于光轴上的距离和第一透镜110于光轴上的距离的合理限定,有利于减小透镜组装过程产生的变形量,降低组装难度,同时有利于减小成像系统10的尺寸,还可改善轴外视场的场曲像差。当CT12/CT1≤0.9时,不利于改善成像系统10的畸变;当CT12/CT1≥1.35时,不利于缩短成像系统的总长。
成像系统10还满足以下条件式:1<Sags9/Sags10<2.7,其中,Sags9为第五透镜150的物侧面S9于最大有效半径处的矢高,Sags10为第五透镜150的像侧面S10于最大有效半径处的矢高。其中,应注意的是,上述Sags9中的矢高为第五透镜150的物侧面S9与光轴的交点至该面的最大有效通光口径处(即该面最大有效半径处)于平行光轴方向上的距离,上述Sags10中的矢高为第五透镜150的像侧面S10与光轴的交点至该面的最大有效通光口径处(即该面最大有效半径处)于平行光轴方向上的距离;当该值为正值时,在平行于成像系统10的光轴的方向上,该面的最大有效通光口径处相较于该面的中心处更靠近成像系统10的像侧;当该值为负值时,在平行于成像系统10的光轴的方向上,该面的最大有效通光口径处相较于该面的中心处更靠近成像系统10的物侧。
通过对第五透镜150的物侧面S9于最大有效半径处的矢高和第五透镜150的像侧面S10 于最大有效半径处的矢高的合理限定,有利于约束第五透镜150物侧面S9和第五透镜150 像侧面S10的面型,限制第五透镜150的弯曲程度,避免面型过于复杂,增加镜片成型难度,同时有利于保证主光线的入射角度。当Sags9/Sags10≤1时,第五透镜150像侧面S10的矢高过大,面型过于复杂,进而提高镜片成型加工难度;当Sags9/Sags10≥2.7时,第五透镜150 提供的负屈折力过大,不利于矫正像差,容易增加鬼像风险,且无法保证良好的成像品质。
为减少杂散光以提升成像效果,成像系统10还可以包括光阑STO。光阑STO可以是孔径光阑STO和/或视场光阑STO。光阑STO可以位于第一透镜110的物侧与成像面S13之前任意两个相邻透镜之间。如,光阑STO可以位于:第一透镜110的物侧、第一透镜110的像侧面S2与第二透镜120的物侧面S3之间、第二透镜120的像侧面S4与第三透镜130的物侧面S5之间、第三透镜130的像侧面S6与第四透镜140的物侧面S7之间、第四透镜140 的像侧面S8与第五透镜150的物侧面S9之间、第五透镜150的像侧面S10与成像面S13之间。为降低加工成本,也可以在第一透镜110的物侧面S1、第二透镜120的物侧面S3、第三透镜130的物侧面S5、第四透镜140的物侧面S7、第五透镜150的物侧面S9、第一透镜110 的像侧面S2、第二透镜120的像侧面S4、第三透镜130的像侧面S6、第四透镜140的像侧面S7和第五透镜150的像侧面S10中的任意一个表面上设置光阑STO。优选的,光阑STO 可以位于第一透镜110的物侧。
为实现对非工作波段的过滤,成像系统10还可以包括滤光片160。优选的,滤光片160 可以位于第五透镜150的像侧面S10和成像面S13之间。滤光片160用于滤除红外光,防止红外光到达系统的成像面S13,从而防止红外光干扰正常成像。滤光片160可与各透镜一同装配以作为成像系统10中的一部分。在另一些实施例中,滤光片160并不属于成像系统10的元件,此时滤光片160可以在成像系统10与感光元件装配成镜头模组20时,一并安装至成像系统10与感光元件之间。在一些实施例中,滤光片160也可设置在第一透镜110的物侧。另外,在一些实施例中也可通过在第一透镜110至第五透镜150中的至少一个透镜上设置滤光镀层以实现滤除红外光的作用。第一透镜110至第五透镜150的材质可以为塑料或者玻璃。
第二方面,本申请实施例提供了一种镜头模组20。请参见图17,镜头模组20包括镜筒 (图中未示出)、上述任意的成像系统10以及感光元件(图中未示出)。成像系统10设置于镜筒内,感光元件设置于成像系统10的像侧。
基于本申请实施例中的镜头模组20,通过对成像系统10第一透镜110至第五透镜150 的屈折力以及面型的合理设计,在保证小型化和薄型化的前提下,能够提高成像质量。通过对第四透镜140和第五透镜150的组合焦距,第二透镜120和第三透镜130的组合焦距的合理限定,其中,第二透镜和第三透镜组合为第二透镜组,第四透镜和第五透镜组合为第三透镜组,使第二透镜组和第三透镜组的屈折力在空间上合理的分布,促进成像系统10整体达到像差平衡,提高成像质量。当f45/f23≥-0.7或者f45/f23≤-1.2时,第二透镜组承担的屈折力与第三透镜组承担的屈折力差异过大,易打乱系统整体像差平衡,使像差增大,系统解像力下降;且透镜间合理的面型限定,有助于提升成像系统10的组装良率,降低镜头模组20的组装难度。
第三方面,本申请实施例提供了一种电子设备30。请参见图17,电子设备30包括壳体 (图中未示出)及上述的镜头模组20,镜头模组20设置于壳体内。
基于本申请实施例中的电子设备30,通过对镜头模组20中成像系统10第一透镜110至第五透镜150的屈折力以及面型的合理设计,在保证小型化和薄型化的前提下,能够提高成像质量。通过对第四透镜140和第五透镜150的组合焦距,第二透镜120和第三透镜130的组合焦距的合理限定,其中,第二透镜和第三透镜组合为第二透镜组,第四透镜和第五透镜组合为第三透镜组,使第二透镜组和第三透镜组的屈折力在空间上合理的分布,促进成像系统10整体达到像差平衡,提高成像质量。当f45/f23≥-0.7或者f45/f23≤-1.2时,第二透镜组承担的负屈折力与第二透镜组承担的正屈折力差异过大,易打乱系统整体像差平衡,使像差增大,系统解像力下降;且透镜间合理的面型限定,有助于提升成像系统10的组装良率,降低电子设备30中镜头模组20的组装难度。
以下将结合具体参数对成像系统10进行详细说明。
具体实施例一
本申请实施例的成像系统10的结构示意图参见图1,成像系统10包括沿光轴从物侧到像侧依次设置的光阑STO、第一透镜110、第二透镜120、第三透镜130、第四透镜140、第五透镜150和滤光片160。第一透镜110具有正屈折力,第二透镜120具有正屈折力,第三透镜130具有正屈折力,第四透镜140具有正屈折力,第五透镜150具有负屈折力。第一透镜110的物侧面S1于近光轴处为凸面,第一透镜110的像侧面S2于近光轴处为凹面。第二透镜120的物侧面S3于近光轴处为凸面,第二透镜120的像侧面S4于近光轴处为凹面。第三透镜130的物侧面S5于近光轴处为凹面,第三透镜130的像侧面S6于近光轴处为凸面。第四透镜140的物侧面S7于近光轴处为凸面,第四透镜140的像侧面S8于近光轴处为凸面。第五透镜150的物侧面S9于近光轴处为凹面,第五透镜150的像侧面S10于近光轴处为凹面。
本申请实施例中,各透镜的焦距参考波长为587.6nm,折射率、阿贝数的参考波长为 587.56nm,成像系统10的相关参数如表1所示,表1中EFL为成像系统10的焦距,FNO表示光圈数,FOV表示成像系统10的最大视场角,TTL表示第一透镜的物侧面至像面于光轴上的距离;焦距、曲率半径及距离的单位均为毫米。
表1
Figure BDA0003059822450000081
成像系统10的透镜的表面可能是非球面,对于这些非球面的表面,非球面表面的非球面方程为:
Figure BDA0003059822450000091
其中,Z为非球面上相应点到与表面顶点相切的平面的距离,r为非球面上相应点到光轴的距离,c表示顶点处表面的曲率,K表示圆锥常数,A4、A6、A8、A10、A12、A14、A16、A18、A20分别表示4阶、6阶、8阶、10阶、12阶、14阶、16阶、18阶、20阶对应阶次的非球面系数。本申请实施例中,非球面的表面对应的圆锥常数K和非球面系数如表2所示:
表2
面序号 K A4 A6 A8 A10
2 2.63E-01 -7.04E-03 6.44E-02 -3.24E-01 9.43E-01
3 2.04E+00 -5.59E-03 9.71E-02 -7.55E-01 3.37E+00
4 -9.90E+01 -1.35E-01 2.67E-01 -1.16E+00 2.61E+00
5 6.00E+01 -9.62E-02 2.00E-01 -6.01E-01 8.72E-01
6 -2.53E+01 -8.00E-02 2.18E-01 -2.90E-01 1.25E-01
7 -1.09E+01 -1.47E-01 1.48E-01 -1.76E-01 1.54E-01
8 -6.47E+01 -1.36E-02 7.81E-03 -5.94E-02 8.83E-02
9 5.89E+01 2.69E-03 -6.54E-03 5.32E-03 -1.89E-03
10 -4.00E+00 -1.23E-01 3.60E-02 4.72E-03 -3.73E-03
11 -9.36E-01 -1.08E-01 3.66E-02 -8.70E-03 1.43E-03
面序号 A12 A14 A16 A18 A20
2 -1.64E+00 1.71E+00 -9.92E-01 2.69E-01 -1.68E-02
3 -9.17E+00 1.54E+01 -1.55E+01 8.58E+00 -2.01E+00
4 -3.57E+00 2.88E+00 -1.26E+00 2.53E-01 -1.42E-02
5 -7.50E-01 3.64E-01 -6.57E-02 -1.17E-02 4.43E-03
6 1.27E-01 -1.87E-01 9.86E-02 -2.48E-02 2.48E-03
7 -8.31E-02 2.67E-02 -5.34E-03 6.95E-04 -4.93E-05
8 -7.87E-02 4.33E-02 -1.46E-02 2.75E-03 -2.20E-04
9 1.78E-04 7.47E-05 -2.57E-05 3.13E-06 -1.40E-07
10 5.16E-04 3.41E-05 -1.67E-05 1.73E-06 -6.22E-08
11 -1.69E-04 1.48E-05 -1.01E-06 4.91E-08 -1.20E-09
图2中(a)为本申请实施例在波长为650.0000nm、610.0000nm、555.0000nm、510.0000nm、470.0000nm的光线纵向球差曲线图,由图2中(a)可以看出650.0000nm、610.0000nm、 555.0000nm、510.0000nm、470.0000nm的波长对应的纵向球差均在0.100毫米以内,说明本申请实施例的成像质量较好。
图2中(b)为第一实施例中的成像系统10在波长为555.0000nm下的光线像散图。其中,沿X轴方向的横坐标表示焦点偏移,沿Y轴方向的纵坐标表示像高,其单位为mm。像散曲线表示子午成像面弯曲T和弧矢成像面弯曲S,由图2中(b)可以看出,成像系统10的像散得到了较好的补偿。
请参阅图2中(c),图2中(c)为第一实施例中的成像系统10在波长为555.0000nm下的畸变曲线图。其中,沿X轴方向的横坐标表示畸变,沿Y轴方向的纵坐标表示像高。由图2中(c)可以看出,在波长555.0000nm下,该成像系统10的畸变得到了很好的校正。
由图2中(a)、图2中(b)和图2中(c)可以看出本实施例中的成像系统10的像差较小。
具体实施例二
本申请实施例的成像系统10的结构示意图参见图3,成像系统10包括沿光轴从物侧到像侧依次设置的光阑STO、第一透镜110、第二透镜120、第三透镜130、第四透镜140、第五透镜150和滤光片160。第一透镜110具有正屈折力,第二透镜120具有负屈折力,第三透镜130具有正屈折力,第四透镜140具有正屈折力,第五透镜150具有负屈折力。第一透镜110的物侧面S1于近光轴处为凸面,第一透镜110的像侧面S2于近光轴处为凹面。第二透镜120的物侧面S3于近光轴处为凹面,第二透镜120的像侧面S4于近光轴处为凸面。第三透镜130的物侧面S5于近光轴处为凹面,第三透镜130的像侧面S6于近光轴处为凸面。第四透镜140的物侧面S7于近光轴处为凸面,第四透镜140的像侧面S8于近光轴处为凸面。第五透镜150的物侧面S9于近光轴处为凹面,第五透镜150的像侧面S10于近光轴处为凹面。
本申请实施例中,各透镜的焦距参考波长为587.6nm,折射率、阿贝数的参考波长为 587.56nm,成像系统10的相关参数如表3所示,表3中EFL为成像系统10的焦距,FNO表示光圈数,FOV表示成像系统10的最大视场角,TTL表示第一透镜的物侧面至像面于光轴上的距离;焦距、曲率半径及距离的单位均为毫米。
表3
Figure BDA0003059822450000101
成像系统10的透镜的表面可能是非球面,对于这些非球面的表面,非球面表面的非球面方程为:
Figure BDA0003059822450000102
其中,Z为非球面上相应点到与表面顶点相切的平面的距离,r为非球面上相应点到光轴的距离,c表示顶点处表面的曲率,K表示圆锥常数,A4、A6、A8、A10、A12、A14、A16、A18、A20分别表示4阶、6阶、8阶、10阶、12阶、14阶、16阶、18阶、20阶对应阶次的非球面系数。本申请实施例中,非球面的表面对应的圆锥常数K和非球面系数如表4所示:
表4
面序号 K A4 A6 A8 A10
2 2.25E-01 -1.70E-02 1.63E-01 -8.32E-01 2.56E+00
3 -3.49E+00 -1.27E-03 7.80E-02 -6.76E-01 2.91E+00
4 -1.03E+01 -1.14E-01 -1.96E-01 5.64E-01 -1.34E+00
5 5.05E+01 -9.15E-02 5.93E-02 -3.06E-01 7.35E-01
6 -4.00E+01 -7.67E-02 2.02E-01 -2.93E-01 2.91E-01
7 -7.76E+00 -2.82E-01 5.53E-01 -8.58E-01 9.40E-01
8 -8.80E+01 -1.37E-01 3.72E-01 -6.78E-01 8.05E-01
9 4.21E+01 4.84E-04 -2.82E-02 3.37E-02 -2.00E-02
10 8.19E+00 -1.75E-01 5.43E-02 6.03E-03 -6.58E-03
11 -7.53E-01 -1.98E-01 9.68E-02 -3.61E-02 9.68E-03
面序号 A12 A14 A16 A18 A20
2 -4.97E+00 6.06E+00 -4.51E+00 1.86E+00 -3.28E-01
3 -7.52E+00 1.18E+01 -1.11E+01 5.73E+00 -1.25E+00
4 1.69E+00 -7.59E-01 -6.17E-01 8.67E-01 -2.85E-01
5 -1.16E+00 1.24E+00 -8.21E-01 3.06E-01 -4.85E-02
6 -1.90E-01 7.67E-02 -1.81E-02 2.41E-03 -1.67E-04
7 -6.99E-01 3.42E-01 -1.05E-01 1.83E-02 -1.38E-03
8 -6.37E-01 3.27E-01 -1.05E-01 1.88E-02 -1.44E-03
9 6.69E-03 -1.36E-03 1.71E-04 -1.25E-05 4.15E-07
10 1.55E-03 -1.71E-04 7.78E-06 7.40E-08 -1.34E-08
11 -1.77E-03 2.12E-04 -1.58E-05 6.66E-07 -1.22E-08
由图4中的像差图可知,成像系统10的纵向球差、场曲和畸变均得到良好的控制,从而该实施例的成像系统10拥有良好的成像品质。
具体实施例三
本申请实施例的成像系统10的结构示意图参见图5,成像系统10包括沿光轴从物侧到像侧依次设置的光阑STO、第一透镜110、第二透镜120、第三透镜130、第四透镜140、第五透镜150和滤光片160。第一透镜110具有正屈折力,第二透镜120具有正屈折力,第三透镜130具有负屈折力,第四透镜140具有正屈折力,第五透镜150具有负屈折力。第一透镜110的物侧面S1于近光轴处为凸面,第一透镜110的像侧面S2于近光轴处为凹面。第二透镜120的物侧面S3于近光轴处为凸面,第二透镜120的像侧面S4于近光轴处为凸面。第三透镜130的物侧面S5于近光轴处为凹面,第三透镜130的像侧面S6于近光轴处为凸面。第四透镜140的物侧面S7于近光轴处为凸面,第四透镜140的像侧面S8于近光轴处为凹面。第五透镜150的物侧面S9于近光轴处为凹面,第五透镜150的像侧面S10于近光轴处为凹面。
本申请实施例中,各透镜的焦距参考波长为587.6nm,折射率、阿贝数的参考波长为 587.56nm,成像系统10的相关参数如表5所示,表5中EFL为成像系统10的焦距,FNO表示光圈数,FOV表示成像系统10的最大视场角,TTL表示第一透镜的物侧面至像面于光轴上的距离;焦距、曲率半径及厚度的单位均为毫米。
表5
Figure BDA0003059822450000121
成像系统10的透镜的表面可能是非球面,对于这些非球面的表面,非球面表面的非球面方程为:
Figure BDA0003059822450000122
其中,Z为非球面上相应点到与表面顶点相切的平面的距离,r为非球面上相应点到光轴的距离,c表示顶点处表面的曲率,K表示圆锥常数,A4、A6、A8、A10、A12、A14、A16、A18、A20分别表示4阶、6阶、8阶、10阶、12阶、14阶、16阶、18阶、20阶对应阶次的非球面系数。本申请实施例中,非球面的表面对应的圆锥常数K和非球面系数如表6所示:
表6
Figure BDA0003059822450000123
Figure BDA0003059822450000131
由图6中的像差图可知,成像系统10的纵向球差、场曲和畸变均得到良好的控制,从而该实施例的成像系统10拥有良好的成像品质。
具体实施例四
本申请实施例的成像系统10的结构示意图参见图7,成像系统10包括沿光轴从物侧到像侧依次设置的光阑STO、第一透镜110、第二透镜120、第三透镜130、第四透镜140、第五透镜150和滤光片160。第一透镜110具有正屈折力,第二透镜120具有正屈折力,第三透镜130具有正屈折力,第四透镜140具有负屈折力,第五透镜150具有负屈折力。第一透镜110的物侧面S1于近光轴处为凸面,第一透镜110的像侧面S2于近光轴处为凹面。第二透镜120的物侧面S3于近光轴处为凸面,第二透镜120的像侧面S4于近光轴处为凸面。第三透镜130的物侧面S5于近光轴处为凹面,第三透镜130的像侧面S6于近光轴处为凸面。第四透镜140的物侧面S7于近光轴处为凹面,第四透镜140的像侧面S8于近光轴处为凸面。第五透镜150的物侧面S9于近光轴处为凸面,第五透镜150的像侧面S10于近光轴处为凹面。
本申请实施例中,各透镜的焦距参考波长为587.6nm,折射率、阿贝数的参考波长为 587.56nm,成像系统10的相关参数如表7所示,表7中EFL为成像系统10的焦距,FNO表示光圈数,FOV表示成像系统10的最大视场角,TTL表示第一透镜的物侧面至像面于光轴上的距离;焦距、曲率半径及厚度的单位均为毫米。
表7
Figure BDA0003059822450000132
Figure BDA0003059822450000141
成像系统10的透镜的表面可能是非球面,对于这些非球面的表面,非球面表面的非球面方程为:
Figure BDA0003059822450000142
其中,Z为非球面上相应点到与表面顶点相切的平面的距离,r为非球面上相应点到光轴的距离,c表示顶点处表面的曲率,K表示圆锥常数,A4、A6、A8、A10、A12、A14、A16、A18、A20分别表示4阶、6阶、8阶、10阶、12阶、14阶、16阶、18阶、20阶对应阶次的非球面系数。本申请实施例中,非球面的表面对应的圆锥常数K和非球面系数如表8所示:
表8
面序号 K A4 A6 A8 A10
2 2.79E-01 -7.26E-03 8.41E-02 -3.68E-01 8.81E-01
3 -1.52E+00 1.67E-03 6.25E-02 -5.27E-01 2.21E+00
4 6.00E+01 -1.29E-01 2.48E-01 -1.99E+00 7.68E+00
5 -9.90E+01 -8.59E-02 1.50E-01 -6.51E-01 1.60E+00
6 -1.70E+01 -8.49E-02 1.24E-01 -8.01E-02 8.55E-02
7 -5.31E+00 -1.17E-01 8.62E-03 7.55E-02 -8.06E-02
8 -8.65E+01 1.52E-01 -3.39E-01 4.81E-01 -4.62E-01
9 -9.90E+01 -7.73E-03 -1.73E-03 4.50E-03 -1.48E-03
10 1.25E+01 -1.26E-01 5.29E-03 3.00E-02 -1.42E-02
11 -1.42E+00 -1.81E-01 8.13E-02 -2.60E-02 5.97E-03
面序号 A12 A14 A16 A18 A20
2 -1.05E+00 2.28E-01 8.65E-01 -9.18E-01 2.89E-01
3 -5.69E+00 8.96E+00 -8.51E+00 4.47E+00 -9.99E-01
4 -1.89E+01 2.88E+01 -2.66E+01 1.35E+01 -2.90E+00
5 -2.53E+00 2.55E+00 -1.57E+00 5.37E-01 -7.81E-02
6 -1.02E-01 7.14E-02 -2.83E-02 6.04E-03 -5.51E-04
7 3.30E-02 2.35E-03 -6.74E-03 2.10E-03 -2.11E-04
8 2.89E-01 -1.17E-01 2.92E-02 -4.06E-03 2.39E-04
9 -3.83E-04 3.03E-04 -6.61E-05 6.42E-06 -2.41E-07
10 3.17E-03 -4.03E-04 2.94E-05 -1.10E-06 1.44E-08
11 -9.79E-04 1.13E-04 -8.77E-06 4.07E-07 -8.45E-09
由图8中的像差图可知,成像系统10的纵向球差、场曲和畸变均得到良好的控制,从而该实施例的成像系统10拥有良好的成像品质。
具体实施例五
本申请实施例的成像系统10的结构示意图参见图9,成像系统10包括沿光轴从物侧到像侧依次设置的光阑STO、第一透镜110、第二透镜120、第三透镜130、第四透镜140、第五透镜150和滤光片160。第一透镜110具有正屈折力,第二透镜120具有正屈折力,第三透镜130具有正屈折力,第四透镜140具有负屈折力,第五透镜150具有负屈折力。第一透镜110的物侧面S1于近光轴处为凸面,第一透镜110的像侧面S2于近光轴处为凹面。第二透镜120的物侧面S3于近光轴处为凸面,第二透镜120的像侧面S4于近光轴处为凸面。第三透镜130的物侧面S5于近光轴处为凹面,第三透镜130的像侧面S6于近光轴处为凸面。第四透镜140的物侧面S7于近光轴处为凸面,第四透镜140的像侧面S8于近光轴处为凹面。第五透镜150的物侧面S9于近光轴处为凸面,第五透镜150的像侧面S10于近光轴处为凹面。
本申请实施例中,各透镜的焦距参考波长为587.6nm,折射率、阿贝数的参考波长为 587.56nm,成像系统10的相关参数如表9所示,表9中EFL为成像系统10的焦距,FNO表示光圈数,FOV表示成像系统10的最大视场角,TTL表示第一透镜的物侧面至像面于光轴上的距离;焦距、曲率半径及厚度的单位均为毫米。
表9
Figure BDA0003059822450000151
成像系统10的透镜的表面可能是非球面,对于这些非球面的表面,非球面表面的非球面方程为:
Figure BDA0003059822450000152
其中,Z为非球面上相应点到与表面顶点相切的平面的距离,r为非球面上相应点到光轴的距离,c表示顶点处表面的曲率,K表示圆锥常数,A4、A6、A8、A10、A12、A14、A16、A18、A20分别表示4阶、6阶、8阶、10阶、12阶、14阶、16阶、18阶、20阶对应阶次的非球面系数。本申请实施例中,非球面的表面对应的圆锥常数K和非球面系数如表10所示:
表10
面序号 K A4 A6 A8 A10
2 2.69E-01 -8.37E-03 6.87E-02 -2.63E-01 5.91E-01
3 -4.67E-01 4.61E-05 4.31E-02 -2.98E-01 1.02E+00
4 6.00E+01 -9.45E-02 6.49E-02 -6.73E-01 2.33E+00
5 6.00E+01 -6.39E-02 4.00E-02 -1.77E-01 3.52E-01
6 -1.57E+01 -6.93E-02 1.02E-01 -1.09E-01 1.62E-01
7 -5.37E+00 -1.17E-01 5.90E-02 -2.99E-02 2.07E-02
8 -9.90E+01 1.02E-01 -1.98E-01 2.41E-01 -2.04E-01
9 -7.10E+01 -4.61E-03 -3.51E-03 4.66E-03 -2.97E-03
10 -1.60E+01 -1.24E-01 -8.10E-03 3.97E-02 -1.84E-02
11 -2.08E+00 -1.80E-01 8.22E-02 -2.57E-02 5.77E-03
面序号 A12 A14 A16 A18 A20
2 -8.04E-01 6.42E-01 -2.71E-01 4.21E-02 2.51E-03
3 -2.09E+00 2.63E+00 -1.99E+00 8.40E-01 -1.52E-01
4 -5.13E+00 6.94E+00 -5.66E+00 2.53E+00 -4.74E-01
5 -4.71E-01 4.14E-01 -2.30E-01 7.39E-02 -1.02E-02
6 -1.74E-01 1.10E-01 -3.99E-02 7.83E-03 -6.47E-04
7 -1.69E-02 1.08E-02 -4.16E-03 8.24E-04 -6.43E-05
8 1.14E-01 -4.11E-02 9.18E-03 -1.14E-03 6.00E-05
9 9.47E-04 -1.70E-04 1.74E-05 -9.01E-07 1.60E-08
10 4.34E-03 -5.99E-04 4.78E-05 -1.96E-06 2.85E-08
11 -9.30E-04 1.06E-04 -8.04E-06 3.63E-07 -7.27E-09
由图10中的像差图可知,成像系统10的纵向球差、场曲和畸变均得到良好的控制,从而该实施例的成像系统10拥有良好的成像品质。
具体实施例六
本申请实施例的成像系统10的结构示意图参见图11,成像系统10包括沿光轴从物侧到像侧依次设置的光阑STO、第一透镜110、第二透镜120、第三透镜130、第四透镜140、第五透镜150和滤光片160。第一透镜110具有正屈折力,第二透镜120具有正屈折力,第三透镜130具有正屈折力,第四透镜140具有负屈折力,第五透镜150具有负屈折力。第一透镜110的物侧面S1于近光轴处为凸面,第一透镜110的像侧面S2于近光轴处为凹面。第二透镜120的物侧面S3于近光轴处为凸面,第二透镜120的像侧面S4于近光轴处为凹面。第三透镜130的物侧面S5于近光轴处为凹面,第三透镜130的像侧面S6于近光轴处为凸面。第四透镜140的物侧面S7于近光轴处为凸面,第四透镜140的像侧面S8于近光轴处为凹面。第五透镜150的物侧面S9于近光轴处为凸面,第五透镜150的像侧面S10于近光轴处为凹面。
本申请实施例中,各透镜的焦距参考波长为587.6nm,折射率、阿贝数的参考波长为 587.56nm,成像系统10的相关参数如表11所示,表11中EFL为成像系统10的焦距,FNO 表示光圈数,FOV表示成像系统10的最大视场角,TTL表示第一透镜的物侧面至像面于光轴上的距离;焦距、曲率半径及厚度的单位均为毫米。
表11
Figure BDA0003059822450000171
成像系统10的透镜的表面可能是非球面,对于这些非球面的表面,非球面表面的非球面方程为:
Figure BDA0003059822450000172
其中,Z为非球面上相应点到与表面顶点相切的平面的距离,r为非球面上相应点到光轴的距离,c表示顶点处表面的曲率,K表示圆锥常数,A4、A6、A8、A10、A12、A14、A16、A18、A20分别表示4阶、6阶、8阶、10阶、12阶、14阶、16阶、18阶、20阶对应阶次的非球面系数。本申请实施例中,非球面的表面对应的圆锥常数K和非球面系数如表12所示:
表12
Figure BDA0003059822450000173
Figure BDA0003059822450000181
由图12中的像差图可知,成像系统10的纵向球差、场曲和畸变均得到良好的控制,从而该实施例的成像系统10拥有良好的成像品质。
具体实施例七
本申请实施例的成像系统10的结构示意图参见图13,成像系统10包括沿光轴从物侧到像侧依次设置的光阑STO、第一透镜110、第二透镜120、第三透镜130、第四透镜140、第五透镜150和滤光片160。第一透镜110具有正屈折力,第二透镜120具有正屈折力,第三透镜130具有正屈折力,第四透镜140具有正屈折力,第五透镜150具有负屈折力。第一透镜110的物侧面S1于近光轴处为凸面,第一透镜110的像侧面S2于近光轴处为凹面。第二透镜120的物侧面S3于近光轴处为凸面,第二透镜120的像侧面S4于近光轴处为凸面。第三透镜130的物侧面S5于近光轴处为凹面,第三透镜130的像侧面S6于近光轴处为凸面。第四透镜140的物侧面S7于近光轴处为凹面,第四透镜140的像侧面S8于近光轴处为凸面。第五透镜150的物侧面S9于近光轴处为凹面,第五透镜150的像侧面S10于近光轴处为凹面。
本申请实施例中,各透镜的焦距参考波长为587.6nm,折射率、阿贝数的参考波长为 587.56nm,成像系统10的相关参数如表11所示,表13中EFL为成像系统10的焦距,FNO 表示光圈数,FOV表示成像系统10的最大视场角,TTL表示第一透镜的物侧面至像面于光轴上的距离;焦距、曲率半径及厚度的单位均为毫米。
表13
Figure BDA0003059822450000182
Figure BDA0003059822450000191
成像系统10的透镜的表面可能是非球面,对于这些非球面的表面,非球面表面的非球面方程为:
Figure BDA0003059822450000192
其中,Z为非球面上相应点到与表面顶点相切的平面的距离,r为非球面上相应点到光轴的距离,c表示顶点处表面的曲率,K表示圆锥常数,A4、A6、A8、A10、A12、A14、A16、A18、A20分别表示4阶、6阶、8阶、10阶、12阶、14阶、16阶、18阶、20阶对应阶次的非球面系数。本申请实施例中,非球面的表面对应的圆锥常数K和非球面系数如表14所示:
表14
面序号 K A4 A6 A8 A10
2 1.93E-01 -1.04E-02 6.79E-02 -2.53E-01 5.32E-01
3 -2.94E+00 1.85E-03 1.42E-02 -1.37E-01 4.72E-01
4 5.48E+01 -7.10E-02 -8.76E-02 9.23E-02 -1.26E-01
5 -9.90E+01 -2.55E-02 -8.13E-02 1.52E-01 -2.47E-01
6 -2.46E+01 -8.73E-02 1.16E-01 4.88E-02 -2.30E-01
7 -1.06E+01 -2.69E-01 5.02E-01 -7.75E-01 8.78E-01
8 -9.90E+01 -3.50E-02 9.98E-02 -2.29E-01 3.01E-01
9 2.62E+01 -2.38E-02 3.29E-03 -1.90E-03 3.41E-03
10 8.63E+00 -1.34E-01 2.68E-02 1.05E-02 -4.66E-03
11 -8.48E-01 -1.38E-01 5.35E-02 -1.52E-02 3.09E-03
面序号 A12 A14 A16 A18 A20
2 -6.46E-01 4.09E-01 -8.02E-02 -4.03E-02 1.70E-02
3 -1.00E+00 1.31E+00 -1.05E+00 4.77E-01 -9.42E-02
4 -2.28E-01 9.13E-01 -1.19E+00 7.30E-01 -1.72E-01
5 1.78E-01 8.25E-03 -9.63E-02 5.95E-02 -1.19E-02
6 2.51E-01 -1.48E-01 5.06E-02 -9.23E-03 6.82E-04
7 -6.77E-01 3.43E-01 -1.09E-01 1.96E-02 -1.52E-03
8 -2.57E-01 1.40E-01 -4.73E-02 8.87E-03 -7.01E-04
9 -2.10E-03 5.76E-04 -6.97E-05 2.30E-06 1.14E-07
10 4.24E-04 9.85E-05 -2.90E-05 2.88E-06 -1.06E-07
11 -4.35E-04 4.00E-05 -2.19E-06 5.74E-08 -2.97E-10
由图14中的像差图可知,成像系统10的纵向球差、场曲和畸变均得到良好的控制,从而该实施例的成像系统10拥有良好的成像品质。
具体实施例八
本申请实施例的成像系统10的结构示意图参见图15,成像系统10包括沿光轴从物侧到像侧依次设置的光阑STO、第一透镜110、第二透镜120、第三透镜130、第四透镜140、第五透镜150和滤光片160。第一透镜110具有正屈折力,第二透镜120具有正屈折力,第三透镜130具有正屈折力,第四透镜140具有正屈折力,第五透镜150具有负屈折力。第一透镜110的物侧面S1于近光轴处为凸面,第一透镜110的像侧面S2于近光轴处为凹面。第二透镜120的物侧面S3于近光轴处为凸面,第二透镜120的像侧面S4于近光轴处为凹面。第三透镜130的物侧面S5于近光轴处为凹面,第三透镜130的像侧面S6于近光轴处为凸面。第四透镜140的物侧面S7于近光轴处为凹面,第四透镜140的像侧面S8于近光轴处为凸面。第五透镜150的物侧面S9于近光轴处为凹面,第五透镜150的像侧面S10于近光轴处为凹面。
本申请实施例中,各透镜的焦距参考波长为587.6nm,折射率、阿贝数的参考波长为 587.56nm,成像系统10的相关参数如表11所示,表15中EFL为成像系统10的焦距,FNO 表示光圈数,FOV表示成像系统10的最大视场角,TTL表示第一透镜的物侧面至像面于光轴上的距离;焦距、曲率半径及厚度的单位均为毫米。
表15
Figure BDA0003059822450000201
成像系统10的透镜的表面可能是非球面,对于这些非球面的表面,非球面表面的非球面方程为:
Figure BDA0003059822450000202
其中,Z为非球面上相应点到与表面顶点相切的平面的距离,r为非球面上相应点到光轴的距离,c表示顶点处表面的曲率,K表示圆锥常数,A4、A6、A8、A10、A12、A14、A16、A18、A20分别表示4阶、6阶、8阶、10阶、12阶、14阶、16阶、18阶、20阶对应阶次的非球面系数。本申请实施例中,非球面的表面对应的圆锥常数K和非球面系数如表16所示:
表16
Figure BDA0003059822450000203
Figure BDA0003059822450000211
由图16中的像差图可知,成像系统10的纵向球差、场曲和畸变均得到良好的控制,从而该实施例的成像系统10拥有良好的成像品质。
上述八组实施例的数据如下表17中的数据:
表17
Figure BDA0003059822450000212
本实施例的附图中相同或相似的标号对应相同或相似的部件;在本申请的描述中,需要理解的是,若有术语“上”、“下”、“左”、“右”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此附图中描述位置关系的用语仅用于示例性说明,不能理解为对本专利的限制,对于本领域的普通技术人员而言,可以根据具体情况理解上述术语的具体含义。
以上所述仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本申请的保护范围之内。

Claims (10)

1.一种成像系统,其特征在于,所述成像系统沿光轴从物侧到像侧依次包括:
第一透镜,所述第一透镜具有正屈折力,所述第一透镜的物侧面于近所述光轴处为凸面,所述第一透镜的像侧面于近所述光轴处为凹面;
第二透镜,所述第二透镜具有屈折力;
第三透镜,所述第三透镜具有屈折力,所述第三透镜的物侧面于近所述光轴处为凹面,所述第三透镜的像侧面于近所述光轴处为凸面;
第四透镜,所述第四透镜具有屈折力;
第五透镜,所述第五透镜具有负屈折力,所述第五透镜的像侧面于近所述光轴处为凹面,所述第五透镜的物侧面与所述第五透镜的像侧面皆为非球面,所述第五透镜的物侧面与所述第五透镜的像侧面中至少一个面设置有至少一个反曲点;
其中,所述成像系统满足以下条件式:
-1.2<f45/f23<-0.7;
其中,f45为所述第四透镜和所述第五透镜的组合焦距,f23为所述第二透镜和所述第三透镜的组合焦距。
2.如权利要求1所述的一种成像系统,其特征在于,所述成像系统还满足以下条件式:
TTL/ImgH<1.44;
其中,TTL为所述第一透镜的物侧面至所述成像系统的成像面于所述光轴上的距离,ImgH为所述成像系统的最大视场角所对应的像高。
3.如权利要求1所述的一种成像系统,其特征在于,所述成像系统还满足以下条件式:
0.6<EFL/f1<0.9;
其中,EFL为所述成像系统的有效焦距,f1为所述第一透镜的有效焦距。
4.如权利要求1所述的一种成像系统,其特征在于,所述成像系统还满足以下条件式:
-1.5<EFL/f5<-0.5;
其中,EFL为所述成像系统的有效焦距,f5为所述第五透镜的有效焦距。
5.如权利要求1所述的一种成像系统,其特征在于,所述成像系统还满足以下条件式:
3.2<(|Rs5|+|Rs6|)/(CT23+CT3+CT34)<6.2;
其中,Rs5为所述第三透镜的物侧面的曲率半径,Rs6为所述第三透镜的像侧面的曲率半径,CT23为所述第二透镜的像侧面至所述第三透镜的物侧面于所述光轴上的距离,CT3为所述第三透镜于所述光轴上的距离,CT34为所述第三透镜的像侧面至所述第四透镜的物侧面于所述光轴上的距离。
6.如权利要求1所述的一种成像系统,其特征在于,所述成像系统还满足以下条件式:
2<ET34/SD34<4;
其中,ET34为所述第三透镜的像侧面的最大有效半径处至所述第四透镜的物侧面的最大有效半径处沿平行于所述光轴方向的距离,SD34为所述第三透镜的像侧面的最大有效半径处与所述第四透镜的物侧面的最大有效半径处垂直于所述光轴方向的距离。
7.如权利要求1所述的一种成像系统,其特征在于,所述成像系统还满足以下条件式:
0.9<CT12/CT1<1.35;
其中,CT12为所述第一透镜的像侧面至所述第二透镜的物侧面于所述光轴上的距离,CT1为所述第一透镜于所述光轴上的距离。
8.如权利要求1所述的一种成像系统,其特征在于,所述成像系统还满足以下条件式:
1<Sags9/Sags10<2.7;
其中,Sags9为所述第五透镜的物侧面于最大有效半径处的矢高,Sags10为所述第五透镜的像侧面于最大有效半径处的矢高。
9.一种镜头模组,其特征在于,包括:
镜筒;
如权利要求1至8中任一项所述成像系统,所述成像系统设置于所述镜筒内;
感光元件,所述感光元件设置于所述成像系统的像侧。
10.一种电子设备,其特征在于,包括:
壳体;及
权利要求9所述的镜头模组,所述镜头模组设置于所述壳体内。
CN202120993954.2U 2021-05-11 2021-05-11 一种成像系统、镜头模组及电子设备 Expired - Fee Related CN214845999U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202120993954.2U CN214845999U (zh) 2021-05-11 2021-05-11 一种成像系统、镜头模组及电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202120993954.2U CN214845999U (zh) 2021-05-11 2021-05-11 一种成像系统、镜头模组及电子设备

Publications (1)

Publication Number Publication Date
CN214845999U true CN214845999U (zh) 2021-11-23

Family

ID=78773203

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202120993954.2U Expired - Fee Related CN214845999U (zh) 2021-05-11 2021-05-11 一种成像系统、镜头模组及电子设备

Country Status (1)

Country Link
CN (1) CN214845999U (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116184639A (zh) * 2023-04-28 2023-05-30 江西联昊光电有限公司 光学镜头及vr设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116184639A (zh) * 2023-04-28 2023-05-30 江西联昊光电有限公司 光学镜头及vr设备
CN116184639B (zh) * 2023-04-28 2023-10-17 江西联昊光电有限公司 光学镜头及vr设备

Similar Documents

Publication Publication Date Title
WO2020140520A1 (zh) 摄像光学镜头
US20210109326A1 (en) Camera lens assembly
CN109839726B (zh) 摄像光学镜头
WO2020140508A1 (zh) 摄像光学镜头
CN113625423B (zh) 一种成像系统、摄像头模组及电子设备
JP6848111B2 (ja) 撮像光学レンズ
WO2020140505A1 (zh) 摄像光学镜头
WO2022016624A1 (zh) 摄像光学镜头
JP7116777B2 (ja) 撮像光学レンズ
WO2021017650A1 (zh) 光学镜头及成像设备
CN211786329U (zh) 光学系统、镜头模组和电子设备
CN113866944B (zh) 一种成像系统、摄像头模组及电子设备
US20210389557A1 (en) Optical system, lens module, and electronic device
CN111239968A (zh) 光学系统、摄像模组及电子装置
CN214845999U (zh) 一种成像系统、镜头模组及电子设备
WO2022041382A1 (zh) 摄像光学镜头
WO2022007029A1 (zh) 摄像光学镜头
CN211577545U (zh) 光学系统、摄像模组及电子装置
WO2020140499A1 (zh) 摄像光学镜头
CN115951477A (zh) 成像镜头
CN113391429B (zh) 光学系统、摄像头模组及电子设备
WO2022032426A1 (zh) 光学系统、摄像模组和电子设备
US11656433B2 (en) Optical imaging lens assembly
WO2021196222A1 (zh) 光学系统、镜头模组和电子设备
CN214474192U (zh) 一种成像系统、镜头模组及电子设备

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20211123