CN213957147U - 一种用于同步辐射红外测试的原位电化学池 - Google Patents

一种用于同步辐射红外测试的原位电化学池 Download PDF

Info

Publication number
CN213957147U
CN213957147U CN202022637247.8U CN202022637247U CN213957147U CN 213957147 U CN213957147 U CN 213957147U CN 202022637247 U CN202022637247 U CN 202022637247U CN 213957147 U CN213957147 U CN 213957147U
Authority
CN
China
Prior art keywords
base
infrared
electrode
hole
working electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202022637247.8U
Other languages
English (en)
Inventor
刘庆华
李园利
苏徽
程位任
王学彬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology of China USTC
Original Assignee
University of Science and Technology of China USTC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology of China USTC filed Critical University of Science and Technology of China USTC
Priority to CN202022637247.8U priority Critical patent/CN213957147U/zh
Application granted granted Critical
Publication of CN213957147U publication Critical patent/CN213957147U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本实用新型涉及一种用于同步辐射红外测试的原位电化学反应池,包括工作电极台、底座、池体、红外视窗、上盖;工作电极台穿过底座和池体开孔,上方设置待测样品,控制螺纹底座进给量与平面红外视窗尽量贴合,同步辐射红外测试端口与上盖中央开孔外围设置的斜面耦合形成红外检测通道。底座一侧设置工作电极引线,池体四侧设置参比电极插槽、对电极插槽、电解液泵入插槽和电解液泵出插槽,分别与外部电化学工作平台和循环装置连接,池体中央开孔,孔壁上端设置齿纹,与孔外围的蓄液凹槽连通,构成电化学检测微区。本实用新型充分利用同步辐射红外光源优势,模拟真实的电化学检测环境,耦合良好,组装拆卸方便,简单易行。

Description

一种用于同步辐射红外测试的原位电化学池
技术领域
本实用新型涉及光谱电化学技术领域,尤其是涉及一种用于同步辐射红外测试的原位电化学池。
背景技术
原位监测能源转化催化剂表界面的动态过程,如各反应中间产物的生成及演变,是充分认识能量转换的过程机理的有效手段,对合理设计高效廉价稳定的新型能源转化催化剂至关重要。红外光谱技术可以探测催化剂表界面功能团的固有分子振动,提供丰富的表界面化学信息,而且测试方法简单、快速、无需标记、无需对样品进行损伤性预处理,广泛应用于多相催化机理研究的原位表征。然而,原位电化学-红外光谱检测过程中,因液相电解质严重削弱红外信号强度,而工况状态下存在气/固/液多相复杂产物的吸附、再吸附干扰,对红外光谱的检测灵敏度提出了极高的要求。同步辐射红外光谱技术除了具有常规红外光谱的分子指纹效应,还具有同步辐射光源的诸多优异特性,如,亮度高、准直性好、频谱连续等,尤其能为微区样品提供更高的光谱信号强度以及良好的空间和时间分辨率。将同步辐射红外光谱与原位电化学检测相结合,能极大程度改善原位电化学检测的灵敏度。然而目前还缺乏这一方面的公开的国家发明专利。
目前公开的专利通常设计各种透光窗片来实现各类光谱仪与原位电化学池的耦合,如中南大学提出的一种多功能光谱原位界面研究检测池(CN103115869A)和一种电化学光学联用原位研究光谱池(CN103033474A),以及中国科学院化学研究所提出的一种和频光谱原位流动薄层光谱电化学反应池(CN102539328A),均采用半圆柱形的透光窗片,可以允许入射光线从较小角度开始连续可调,简化了光路,但对于平面的同步辐射红外测试端口无法耦合良好。为了增加红外信号,通常将活性物质直接镀在透光窗片的底平面利用表面增强全反射原理来避免溶液对光谱信号的吸收,虽然这些设计可以模拟真实的电化学反应,但也增加了原位电化学池的加工难度,而且样品和电解液的多样性,使其适用广泛性受到限制,检测重复性也有待提高。此外,薄层流动电化学池设计也常被用于降低二次吸附干扰,提高信噪比,如中国科学技术大学提出的一种适用于电化学原位拉曼光谱检测的薄层流动电解池(CN105403553A),中国科学院物理研究所提出的一种用于原位检测液态电池产气的模拟电池装置(CN110320476A)以及上海理工大学提出的电化学薄层流动检测池(CN103983720A),这样设计的结构中,待测样品直接暴露于电解液中,容易受到边缘效应影响,无法完全模拟真实的电化学检测环境。因此有必要针对同步辐射红外测试端口对原位电化学池进行全面的优化设计。
实用新型内容
本实用新型的目的在于,提供一种用于同步辐射红外测试的原位电化学池,本实用新型提供的原位电化学池能够模拟真实的电化学过程,组装拆卸方便,简单易行。
本实用新型一种适用于同步辐射红外终端的原位电化学池,包括:
工作电极台,所述工作电极台包含螺纹底座,聚四氟乙烯外套和玻碳电极芯,所述螺纹底座上方开槽设置玻碳电极芯,所述玻碳电极芯外围设置聚四氟乙烯外套;
优选的,所述螺纹底座材料为导电体;
优选的,所述玻碳电极芯直径小于等于5mm。
底座,所述底座中央开孔,孔内壁加工螺纹,所述底座一侧设置工作电极引线,所述底座四角设置紧固螺栓,所述底座材料为导电体。
通过紧固螺栓固定于所述底座上的池体,所述池体为正方形,中央开孔,孔壁上端设置齿纹,孔壁外围设置环形同轴蓄液凹槽,蓄液凹槽外围设置环形浅槽,所述中央开孔的孔壁厚度约为2-5mm,所述孔壁上端的齿纹深约1-5mm的,与孔壁外围设置的蓄液凹槽连通,所述环形浅槽内设置密封圈,直径略小于密封圈线径,深度略小于密封圈线径的1/2,所述池体四侧设置参比电极插槽,对电极插槽,电解液泵入插槽和电解液泵出插槽,所述池体上、下表面分别设置紧固螺栓孔位,对应上盖、底座紧固螺栓;
优选的,所述池体材料为聚四氟乙烯、聚对苯二甲酸乙二酯、聚氯乙烯或有机玻璃;
优选的,参比电极为甘汞电极、银-氯化银电极、汞-氧化汞电极、汞-硫酸亚汞电极或标准氢电极;
优选的,对电极为铂丝或碳棒;
优选的,参比电极与对电极均设置了螺纹套头,分别插入对应的插槽,通过螺纹和密封圈固定密封;
优选的,电解液泵入导管与泵出导管分别插入对应的插槽,通过导管上的螺纹套头和密封圈与外部循环装置连接,所述外部循环装置包含循环泵、气体流量控制泵、导管和电解液池;
所述参比电极和对电极均设置了螺纹套头。
所述蓄液凹槽和孔壁齿纹设计的有益效果为避免由于薄层流动电化学微区的扰动引起的边缘效应,模拟真实的电化学检测环境。
所述池体上方设置红外视窗;
优选的,视窗材料为金刚石、硅、锗、氟化钡或硒化锌;
优选的,视窗为平面圆片,直径大于环形浅槽直径。
所述工作电极台穿过底座和池体开孔,上方设置待测样品,通过螺纹底座进给量与池体上方的红外视窗尽量贴合。
所述红外视窗上方设置上盖,所述上盖中央开孔,孔外围设置环形同轴斜面与同步辐射红外测试端口耦合,所述上盖与池体通过紧固螺栓固定;
优选的,所述上盖中央开孔直径略大于工作电极台直径;
优选的,所述斜面与水平夹角小于90°,外直径大于同步辐射红外测试端口。
所述平面红外视窗和上盖斜面设计的有益效果为实现所述原位电化学池与同步辐射红外测试端口的良好耦合,同时斜面也有利于红外信号的出射,便于探测器接受到有效信号,获得高信噪比的红外谱学信号。
本实用新型的工作包括如下步骤:
(1)将待测样品滴加于上述原位电化学池的工作电极台的玻碳电极芯上干燥;
(2)安装工作电极台,紧固螺栓固定上述的原位电化学池的底座和池体,将同步辐射红外光聚焦在待测样品表面,采集红外光谱;
(3)根据不同的电化学过程,选择参比电极和对电极,通过螺纹和密封圈将其固定于步骤(2)中的装置;
(4)根据不同的电化学过程,选择电解液和饱和气氛,电解液泵入导管和泵出导管通过螺纹和密封圈与步骤(3)中的装置连接,启动外部循环装置的循环泵将气体饱和的电解液泵入蓄液凹槽,形成稳定的循环电解液后,将同步辐射红外光重新聚焦在待测样品表面,以步骤(2)中采集的红外光谱为背景采集红外光谱;
(5)安装红外视窗,将上述的原位电化学池中的上盖通过紧固螺栓固定到步骤(4)中的装置,调节工作电极台的螺纹底座进给量控制红外视窗和待测样品之间的电解液膜厚度在微米量级,减小电解液的信号干扰,将同步辐射红外光重新聚焦在待测样品表面,以步骤(4)中采集的红外光谱为背景采集红外光谱;
(6)将步骤(5)中的装置的参比电极、对电极和工作电极引线分别与外部电化学工作平台连接,并对装置通电,根据不同的待测样品控制电压、电流和扫描时间进行前期稳定预处理;
(7)待测样品表面电化学信号稳定后,控制电压、电流和扫描时间,以步骤(5)中采集的红外光谱为背景采集不同电化学阶段的红外光谱。
本实用新型与现有技术相比的优点在于:
(1)本实用新型通过平面红外视窗和上盖斜面设计,实现与同步辐射红外测试端口的良好耦合,能够充分利用同步辐射红外光源在微区的高亮度、高通量、高准直特性,同时斜面也有利于红外信号的出射,便于探测器接受到有效信号,获得高信噪比的红外谱学信号;
(2)本实用新型能够有效避免边缘效应,模拟真实的电化学检测环境,更直观地鉴别能量转换过程中的反应中间体,可用于原位研究能量转换过程中的反应中间产物的演变研究;
(3)本实用新型所述原位电化学池不存在特定的视窗设计,加工成本低廉,组装拆卸方便,检测方法简单易行。
附图说明
图1是一种用于同步辐射红外测试的原位电化学池的结构示意图;
图2是本实用新型的工作电极台的结构示意图;
图3是本实用新型的池体俯视结构示意图;
图4是本实用新型的池体仰视结构示意图;
图5是实施例的参比电极和对电极中的螺纹套头示意图;
图6是实施例的常规电化学池与本实用新型的原位电化学池测试的LSV曲线对比;
图7是实施例的不同扫描电压下的红外光谱曲线。
其中,1为工作电极台,2为底座,3为池体,4为红外视窗,5为上盖,11为工作电极引线,12为紧固螺栓,13为密封圈,31为参比电极插槽,32为对电极插槽,33为电解液泵入插槽,34为电解流泵出插槽,35为蓄液凹槽,36为环形浅槽,101为螺纹底座,102为聚四氟乙烯外套,103为玻碳电极芯,104为待测样品,105为螺纹套头。
具体实施方式
下面结合附图以及具体实施例对本实用新型作进一步说明。
如图1所示,本发明提供了一种用于同步辐射红外测试的原位电化学池,包括工作电极台1,如图2所述工作电极台包含螺纹底座101,聚四氟乙烯外套102和玻碳电极芯103,所述螺纹底座上方开槽设置玻碳电极芯,所述玻碳电极芯外围设置聚四氟乙烯外套,所述的螺纹底座为金属铜,所述玻碳电极芯直径为5mm;所述工作电极台上设置待测样品104,本实施例中采用一种粉末状NiFe-MOF材料;底座2,所述底座中央开孔,孔内壁加工螺纹,所述底座一侧设置工作电极引线11,所述底座四角设置紧固螺栓12,所述底座材料为铝镁合金;底座上方设置池体3,图3为池体俯视结构示意图,池体长宽高尺寸为6cm×6cm×1.5cm,中央开孔,孔径为1.06cm,孔内壁为2mm厚,上端有深约4mm的齿纹,孔壁外围设置蓄液凹槽35,所述蓄液凹槽的外径距离中央为1.63cm,深为8mm,内部设置电解液,本实施例中采用1MKOH饱和O2电解液;所述蓄液凹槽外围设置环形浅槽36,环形浅槽直径为3.7cm,用于放置O型密封圈13,密封圈的线径为1.8mm,环形浅槽直径为1.6mm,深为0.8mm;所述池体材料为聚四氟乙烯,能耐强碱,四侧分别设置参比电极插槽31,对电极插槽32,电解液泵入插槽33和电解液泵出插槽34,本发明实施例中采用如图5中增加了螺纹套头105的Ag/AgCl参比电极和铂丝对电极,所述电极分别插入对应插槽,套上密封圈并拧紧螺纹套头,电极引线与外部电化学工作平台连接,所述的外部循环装置的电解液泵入导管和泵出导管套上密封圈,插入对应插槽并拧紧螺纹,所述电解液池通过气体流量控制泵泵入饱和气氛;如图4所示,池体下表面开槽,开槽深度为5mm,用于放置底座和引线,四角设置紧固螺栓孔位,与底座的紧固螺栓对应;池体上方设置圆形平面BaF2红外视窗4,所述红外视窗直径为3.8cm;红外视窗上方设置上盖5,所述上盖中央开孔,孔径为1cm,孔外围设置斜面与水平夹角为20°,斜面外径距离直径约为4cm,同步辐射红外测试端口直接与斜面接触,所述上盖四角设置紧固螺栓;所述工作电极台套上密封圈,穿过底座和池体开孔,调节工作电极台的螺纹底座进给量尽量贴合红外视窗,待测样品和红外视窗之间形成微米级电解液薄层,所述底座与池体、池体与上盖分别通过紧固螺栓固定。
在具体实施过程中,先将待测样品滴加于工作电极台的玻碳电极芯上干燥,安装工作电极台,将底座和池体用紧固螺栓固定,安装Ag/AgCl参比电极和铂丝对电极,电解液泵入导管和电解液泵出导管。将同步辐射红外光聚焦在待测样品表面,采集红外光谱为一次背景谱。启动外部循环装置中的循环泵将O2饱和的1M KOH电解液泵入蓄液凹槽,形成稳定的循环电解液后,将同步辐射红外光重新聚焦在待测样品表面,以一次背景谱为背景采集红外光谱为二次背景谱。安装红外视窗,将池体和上盖通过紧固螺栓固定,调节工作电极台的螺纹底座进给量控制红外视窗和待测样品之间的电解液膜厚度在微米量级,将同步辐射红外光重新聚焦在待测样品表面,以二次背景谱为背景采集红外光谱为三次背景谱。将参比电极、对电极和工作电极引线分别与外部电化学工作平台连接,并通电,设置电势为1.5V,扫描时间~20min,待测样品电化学信号达到稳定后,修改电化学检测参数,采集电化学数据。
使用本实用新型的原位电化学池测试了样品的极化曲线,测试电压范围为1.2-1.8V vs RHE,扫速为20mV/s,在相同检测条件下使用常规电化学池扫描了样品的极化曲线,如图6所示,使用本发明的原位电化学池检测的样品的极化曲线与使用常规电化学池检测的样品的极化曲线吻合较好,说明本实用新型所述原位电化学池能够模拟真实的电化学检测环境。为了检测电化学工况状态下的红外光谱信号,本实施例中采用恒电势法,分别将电压固定在:1.2V,1.4V和1.6V,并且在施加电压下保持10min,以三次背景谱为背景进行红外光谱采集。
如图7所示,在1.4V电压下已经可以观察到波数~1050cm-1出现一个红外信号峰,可能对应反应中间产物-O-O-,在1.6V时,此红外信号峰强增加,说明此红外信号峰对应着待测样品在电化学过程中的反应中间产物。
以上所述,仅为本实用新型的较佳实施例而已,不能依此限定本实用新型实施的范围,即依本实用新型专利范围及说明书内容所作的等效变化与修饰,皆应仍属本实用新型涵盖的范围内。

Claims (7)

1.一种用于同步辐射红外测试的原位电化学池,其特征在于:包括工作电极台、底座、池体、红外视窗和上盖;所述底座与池体、池体与上盖分别通过紧固螺栓固定;所述底座中央开孔,一侧设置工作电极引线,四角设置紧固螺栓;所述池体中央开孔,孔壁上端设置齿纹,孔壁外围设置环形同轴蓄液凹槽,蓄液凹槽外围设置环形浅槽,所述池体四侧设置参比电极插槽,对电极插槽,电解液泵入插槽和电解液泵出插槽,上、下表面分别设置紧固螺栓孔位,对应上盖、底座紧固螺栓;所述工作电极台穿过底座和池体开孔,上方设置待测样品,通过螺纹底座进给量与池体上方的红外视窗尽量贴合;所述上盖中央开孔,孔外围设置环形同轴斜面与同步辐射红外测试端口耦合,所述上盖四角设置紧固螺栓。
2.根据权利要求1所述的用于同步辐射红外测试的原位电化学池,其特征在于:所述工作电极台包括:螺纹底座,聚四氟乙烯外套,玻碳电极芯;所述螺纹底座上方开槽设置玻碳电极芯,所述玻碳电极芯外围设置聚四氟乙烯外套;所述螺纹底座为导电体;所述玻碳电极芯直径小于等于5mm。
3.根据权利要求1所述的用于同步辐射红外测试的原位电化学池,其特征在于:所述底座中央开孔的内壁加工螺纹,所述底座材料为导电体。
4.根据权利要求1所述的用于同步辐射红外测试的原位电化学池,其特征在于:所述池体为正方体,所述参比电极插槽,对电极插槽,电解液泵入插槽和电解液泵出插槽内壁均加工螺纹,所述池体中央开孔的孔壁厚度约为2-5mm,所述孔壁上端的齿纹深约1-5mm,与孔壁外围设置的蓄液凹槽连通,所述环形浅槽内设置密封圈,直径略小于密封圈线径,深度略小于密封圈线径的1/2;
所述池体材料为聚四氟乙烯、聚对苯二甲酸乙二酯、聚氯乙烯或有机玻璃;
参比电极为甘汞电极、银-氯化银电极、汞-氧化汞电极、汞-硫酸亚汞电极或标准氢电极;
对电极为铂丝或碳棒;
参比电极与对电极均设置了螺纹套头,分别插入对应的插槽,通过螺纹和密封圈固定密封;
电解液泵入导管与泵出导管分别插入对应的插槽,通过导管上的螺纹套头和密封圈与外部循环装置连接,所述外部循环装置包含循环泵、气体流量控制泵、导管和电解液池。
5.根据权利要求1所述的用于同步辐射红外测试的原位电化学池,其特征在于:所述红外视窗材料为金刚石、硅、锗、氟化钡或硒化锌;红外视窗为平面圆片,直径大于环形浅槽直径。
6.根据权利要求1所述的用于同步辐射红外测试的原位电化学池,其特征在于:所述上盖中央开孔的直径略大于工作电极台直径;所述斜面与水平夹角小于90°,外直径大于同步辐射红外测试端口。
7.根据权利要求1所述的用于同步辐射红外测试的原位电化学池,其特征在于:所述工作电极台和池体中央开孔之间设置密封圈。
CN202022637247.8U 2020-11-13 2020-11-13 一种用于同步辐射红外测试的原位电化学池 Active CN213957147U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202022637247.8U CN213957147U (zh) 2020-11-13 2020-11-13 一种用于同步辐射红外测试的原位电化学池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202022637247.8U CN213957147U (zh) 2020-11-13 2020-11-13 一种用于同步辐射红外测试的原位电化学池

Publications (1)

Publication Number Publication Date
CN213957147U true CN213957147U (zh) 2021-08-13

Family

ID=77208782

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202022637247.8U Active CN213957147U (zh) 2020-11-13 2020-11-13 一种用于同步辐射红外测试的原位电化学池

Country Status (1)

Country Link
CN (1) CN213957147U (zh)

Similar Documents

Publication Publication Date Title
CN112229812A (zh) 一种用于同步辐射红外测试的原位电化学池及检测方法
León et al. Designing spectroelectrochemical cells: A review
EP2784488B1 (en) Reaction vessel for raman spectrophotometry, and raman spectrophotometry method using the same
US8749778B2 (en) Method for evaluation of oxide semiconductor electrode, apparatus for evaluation of oxide semiconductor electrode, and apparatus for production of oxide semiconductor electrode
CN110018208A (zh) 一种用于非线性光谱原位检测的薄层电化学反应池
CN101149356A (zh) 采用纳米掺硼金刚石膜电极的电化学分析装置及其应用
CN103278551A (zh) 一种基于活性炭两电极体系的重金属电化学传感器及其检测方法
CN113281388A (zh) 一种基于光助燃料电池的阴极自供能适配体传感器的制备方法及其检测mc-lr的用途
CN213957147U (zh) 一种用于同步辐射红外测试的原位电化学池
Huang et al. Determination of atenolol and metoprolol by capillary electrophoresis with tris (2, 2′-bipyridyl) ruthenium (II) electrochemiluminescence detection
Lee et al. A reaction engineering approach to non-aqueous battery lifetime
CN204405549U (zh) 熔盐电化学原位Raman光谱测量用显微热台和样品池
CN109406593A (zh) 电化学原位反应x射线测试装置
CN109342406A (zh) 封闭式双极电极阵列的分析检测装置
CN108982627A (zh) 一种无酶葡萄糖光电化学传感器以及葡萄糖浓度的检测方法
CN201034936Y (zh) 一种表面增强红外光谱光学装置
CN111220673B (zh) 一种原位穆斯堡尔谱的电化学测试装置及应用
CN109470725A (zh) 燃料电池催化层中催化剂的同步辐射原位测试装置
WO2023000909A1 (zh) 一种分钟级高灵敏度微电流控制的拉曼检测装置及方法
CN106885774A (zh) 一种具有三明治结构的薄层光谱电化学检测装置
CN108288578B (zh) 纸基进样装置及方法
CN206470196U (zh) 一种利用拉曼光谱测定锂离子电池材料的原位池
CN115791745A (zh) 一种用于原位拉曼光谱表征的气密拉曼电解池
CN105954256A (zh) 一种原位表面增强拉曼光谱系统及其应用
CN204314313U (zh) 光电双寻址多通道生化分析仪

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant