CN212850308U - 整流电路、rfid标签芯片和rfid标签 - Google Patents

整流电路、rfid标签芯片和rfid标签 Download PDF

Info

Publication number
CN212850308U
CN212850308U CN202021300057.0U CN202021300057U CN212850308U CN 212850308 U CN212850308 U CN 212850308U CN 202021300057 U CN202021300057 U CN 202021300057U CN 212850308 U CN212850308 U CN 212850308U
Authority
CN
China
Prior art keywords
transistor
voltage
circuit
rfid
rfid tag
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202021300057.0U
Other languages
English (en)
Inventor
王俊荣
岑玮
刘春艳
刘小燕
陶维平
沈东京
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Techsun Rfid Technolgoy Co ltd
Shanghai Tianchen Micro Nano Technology Co ltd
Original Assignee
Shanghai Techsun Rfid Technology Co ltd
Shanghai Techsun Anti Counterfeiting Technology Holding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Techsun Rfid Technology Co ltd, Shanghai Techsun Anti Counterfeiting Technology Holding Co Ltd filed Critical Shanghai Techsun Rfid Technology Co ltd
Priority to CN202021300057.0U priority Critical patent/CN212850308U/zh
Application granted granted Critical
Publication of CN212850308U publication Critical patent/CN212850308U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Rectifiers (AREA)

Abstract

本实用新型公开了一种整流电路、RFID标签芯片和RFID标签,一种整流电路,包括:第一晶体管的G与VIN的A端连接、D与VIN的B端连接、S和B与第二晶体管的S和B连接在一起并接地,第二晶体管的G与VIN的B端连接、D与VIN的A端连接;第三晶体管的G与第四晶体管的G连接、D与VIN的B端连接、S和B与第四晶体管的S和B连接在一起并与第一电阻连接,第四晶体管的D与VIN的A端连接;第一电阻与第一电容连接并作为整流电路的VOUT,第一电容接地,输出电压采样电路连接于VIN和第三晶体管的G和第四晶体管的G之间并接地。本实用新型实施例公开的整流电路、RFID标签芯片和RFID标签,能够提高整流电路的工作效率。

Description

整流电路、RFID标签芯片和RFID标签
技术领域
本实用新型实施例涉及电路技术,尤其涉及一种整流电路、RFID标签芯片和RFID标签。
背景技术
对于无源射频识别(Radio Frequency Identification,RFID)电子标签模拟前端中的电源部分而言,整流电路是其关键组成部分。电子标签从天线获得的交流电压信号只有经过整流电路,才能转变为直流电压,再由稳压电路稳压后用来给芯片供电。
整流电路需要满足两个基本条件,一方面整流电路的输出电压要高,另一方面整流电路的转换效率要高。传统的电路结构中,往往采用由四个二极管构成的桥式整流结构组成整流电路。图1为传统的整流电路的示意图,如图1所示,D11、D12、D13和D14四个二极管组成桥式整流结构,在电压输出端还连接有电阻R15和电容C16。那么图1所示整流电路的输出电压VOUT与输入电压VIN的关系为:VOUT=VIN-2Vov,其中Vov是二极管导通电压压降,即输出电压要比输入电压少两个二极管导通压降,造成了能量的大量浪费。
目前在RFID电子标签中,一般使用二极管连接方式的金氧半场效晶体管 (Metal-Oxide-Semiconductor Field-Effect Transistor,MOSFET),简称场效应管 (MOS管)来替代图1中的四个二极管。但即便如此,二极管连接方式的MOS 管上仍然会产生大小为MOS管导通阈值电压的压降,从而将对整流电路的工作性能产生影响。
实用新型内容
本实用新型提供一种整流电路、RFID标签芯片和RFID标签,用于提高整流电路的工作效率。
第一方面,本实用新型实施例提供一种整流电路,包括:第一晶体管、第二晶体管、第三晶体管、第四晶体管、第一电阻、第一电容和输出电压采样电路;
第一晶体管的栅极与整流电路的交流输入侧的第一端连接,第一晶体管的漏极与交流输入侧的第二端连接,第一晶体管的源极和背栅极与第二晶体管的源极和背栅极连接在一起并接地,第二晶体管的栅极与交流输入侧的第二端连接,第二晶体管的漏极与交流输入侧的第一端连接;
第三晶体管的栅极与第四晶体管的栅极连接,第三晶体管的漏极与交流输入侧的第二端连接,第三晶体管的源极和背栅极与第四晶体管的源极和背栅极连接在一起并与第一电阻的第一端连接,第四晶体管的漏极与交流输入侧的第一端连接;
第一电阻的第二端与第一电容的上极板连接并作为整流电路的直流输出端,第一电容的下极板接地;
将第三晶体管的栅极和第四晶体管的栅极的连接点作为电压侦测端,输出电压采样电路连接于直流输出端和电压侦测端之间并接地;
输出电压采样电路用于对输出电压端的电压和电压侦测端的电压进行检测,使得电压侦测端的电压等于输出电压端的电压与第三晶体管或第四晶体管的导通电压之差。
在第一方面一种可能的实现方式中,输出电压采样电路包括第五晶体管、第二电阻和第二电容;
第五晶体管的漏极与直流输出端连接,第五晶体管的栅极、背栅极和源极连接在一起作为电压侦测端,电压侦测端与第三晶体管的栅极和第四晶体管的栅极连接;
第二电阻的第一端和第二电容的第一端均与电压侦测端连接,第二电阻的第二端和第二电容的第二端均接地。
在第一方面一种可能的实现方式中,第二电阻由电流源替代。
在第一方面一种可能的实现方式中,第五晶体管为P沟道型晶体管。
在第一方面一种可能的实现方式中,第一晶体管和第二晶体管相同,第三晶体管和第四晶体管相同。
在第一方面一种可能的实现方式中,第一晶体管和第二晶体管均为N沟道型晶体管,第三晶体管和第四晶体管均为P沟道型晶体管。
第二方面,本实用新型实施例提供一种RFID标签芯片,包括:整流电路、稳压电路和解码电路;
整流电路用于对接收到的RFID交流电压信号进行整流处理,稳压电路用于对整流后的RFID直流电压信号进行稳压处理,解码电路用于对稳压后的 RFID直流电压信号进行解码处理;
整流电路包括如第一方面任一种实现方式的整流电路。
在第二方面一种可能的实现方式中,RFID标签芯片还包括滤波电路,滤波电路用于对整流后的RFID直流电压信号进行滤波处理。
在第二方面一种可能的实现方式中,RFID标签芯片是一种符合ISO 15693 协议的RFID标签芯片。
第三方面,本实用新型实施例提供一种RFID标签,包括天线和RFID标签芯片;
天线用于接收RFID交流电压信号,并将接收的RFID交流电压信号输入 RFID标签芯片,RFID标签芯片用于对接收到的RFID交流电压信号进行解码处理;
RFID标签芯片包括如第二方面任一种方式的RFID标签芯片。
本实用新型实施例提供的整流电路、RFID标签芯片和RFID标签,第一晶体管的栅极与整流电路的交流输入侧的第一端连接,第一晶体管的漏极与交流输入侧的第二端连接,第一晶体管的源极和背栅极与第二晶体管的源极和背栅极连接在一起并接地,第二晶体管的栅极与交流输入侧的第二端连接,第二晶体管的漏极与交流输入侧的第一端连接;第三晶体管的栅极与第四晶体管的栅极连接,第三晶体管的漏极与交流输入侧的第二端连接,第三晶体管的源极和背栅极与第四晶体管的源极和背栅极连接在一起并与第一电阻的第一端连接,第四晶体管的漏极与交流输入侧的第一端连接;第一电阻的第二端与第一电容的上极板连接并作为整流电路的直流输出端,第一电容的下极板接地,将第三晶体管的栅极和第四晶体管的栅极的连接点作为电压侦测端,输出电压采样电路连接于直流输出端和电压侦测端之间并接地,输出电压采样电路用于对输出电压端的电压和电压侦测端的电压进行检测,使得电压侦测端的电压等于输出电压端的电压与第三晶体管或第四晶体管的导通电压之差,由于第一晶体管和第二晶体管采用交叉式接法连接,使得整流电路减少了一个晶体管导通阈值电压的压降,而输出电压采样电路使得整流电路减少了另一个晶体管导通阈值电压的压降,因此本实施例提供的整流电路的输出电压与输入电压相等,从而提高了整流电路的工作效率。
附图说明
图1为传统的整流电路的示意图;
图2为本实用新型实施例提供的整流电路的结构示意图;
图3为本实用新型实施例提供的另一种整流电路的结构示意图;
图4为本实用新型实施例提供的RFID标签芯片的结构示意图;
图5为本实用新型实施例提供的RFID标签的结构示意图。
具体实施方式
下面结合附图和实施例对本实用新型作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释本实用新型,而非对本实用新型的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本实用新型相关的部分而非全部结构。
图2为本实用新型实施例提供的整流电路的结构示意图,如图2所示,本实施例提供的整流电路包括:
第一晶体管M21、第二晶体管M22、第三晶体管M23、第四晶体管M24、第一电阻R25、第一电容C26和输出电压采样电路27。其中第一晶体管M21、第二晶体管M22、第三晶体管M23和第四晶体管M24可以为MOS管。
在一实施例中,第一晶体管M21和第二晶体管M22相同,第三晶体管M23 和第四晶体管M24相同。进一步地,第一晶体管M21和第二晶体管M22可以均为N沟道晶体管(例如NMOS),第三晶体管M23和第四晶体管M24可以均为P沟道晶体管(例如PMOS)。
第一晶体管M21的栅极(gate)与整流电路的交流输入侧VIN的第一端(图 2中的A点)连接,第一晶体管M21的漏极(drain)与交流输入侧VIN的第二端(图2中的B点)连接,第一晶体管M21的源极(source)和背栅极(bulk) 与第二晶体管M22的源极和背栅极连接在一起并接地(GND),第二晶体管M22 的栅极与交流输入侧VIN的第二端(B)连接,第二晶体管M22的漏极与交流输入侧VIN的第一端(A)连接;第三晶体管M23的栅极与第四晶体管M24 的栅极连接,第三晶体管M23的漏极与交流输入侧VIN的第二端(B)连接,第三晶体管M23的源极和背栅极与第四晶体管M24的源极和背栅极连接在一起并与第一电阻R25的第一端连接,第四晶体管M24的漏极与交流输入侧VIN 的第一端(A)连接;第一电阻R25的第二端与第一电容C26的上极板连接并作为整流电路的直流输出端VOUT,第一电容C26的下极板接地(GND)。
从图2中可以看出,本实施例中,将第一晶体管M21和第二晶体管M22 的连接方式变更为交叉式接法。由于交流输入侧VIN的第一端(A)和第二端 (B)是相位相差了180度的正弦波信号,当B为高电平时A为低电平,第二晶体管M22导通第一晶体管M21截止,将A的低电平直接传输到GND,中间没有损失第一晶体管M21或第二晶体管M22的导通阈值电压,且没有直通通路,没有能量损耗。同理,当A为高电平时B为低电平,第一晶体管M21导通第二晶体管M22截止,将B的低电平直接传输到GND,中间没有损失第一晶体管M21或第二晶体管M22的导通阈值电压,且没有直通通路,没有能量损耗。因此,将第一晶体管M21和第二晶体管M22的连接方式变更为交叉式接法,减少了一个晶体管的导通阈值电压压降,从而可以提高整流电路的工作效率。
将第三晶体管M23的栅极和第四晶体管M24的栅极的连接点作为电压侦测端VSEN,输出电压采样电路27连接于直流输出端VOUT和电压侦测端 VSEN之间并接地(GND);
输出电压采样电路27用于对输出电压端VOUT的电压和电压侦测端VSEN 的电压进行检测,使得电压侦测端VSEN的电压等于输出电压端的电压VOUT 与第三晶体管M23或第四晶体管M24的导通电压之差。
将第一晶体管M21和第二晶体管M22的连接方式变更为交叉式接法,虽然消除了第一晶体管M21或第二晶体管M22的导通阈值电压,但第三晶体管 M23或第四晶体管M24的导通阈值电压仍然会带来一定的压降。因此,在本实施例中,还增加了电压采样电路27,电压采样电路27对输出电压端VOUT和电压侦测端VSEN的电压进行采样并比较,使电压侦测端VSEN的电压等于输出电压端的电压VOUT与第三晶体管M23或第四晶体管M24的导通电压之差。
那么当交流输入侧VIN的第二端(B)的电压高于电压侦测端VSEN与第三晶体管M23或第四晶体管M24的导通电压之和时,也就是交流输入侧VIN 的第二端(B)的电压高于输出电压端的电压VOUT时,第三晶体管M23导通,交流输入侧VIN的第二端(B)给输出电压端VOUT充电。当交流输入侧VIN 的第二端(B)的电压低于输出电压端的电压VOUT时,也就是交流输入侧VIN 的第二端(B)的电压低于电压侦测端VSEN与第三晶体管M23或第四晶体管 M24的导通电压之和时,第三晶体管M23截止,输出电压端VOUT不会倒灌回交流输入侧VIN的第二端(B)。由于第一电阻R25和第一电容C26的存在,输出电压端VOUT的相位滞后于交流输入侧VIN的第二端(B),即当交流输入侧VIN的第二端(B)由高变低时,输出电压端的电压VOUT还来不及反应变低,即输出电压端的电压VOUT不跟随交流输入侧VIN的第二端(B)变低,那么电压侦测端VSEN的电压就不会变低,因此第三晶体管M23会截止且不会倒灌。交流输入侧VIN的第一端(A)同理。
因此本实施例提供的整流电路,同时消除了两个晶体管的导通阈值电压,也就是消除了整个整流电路中的所有导通阈值电压的压降,使得整流电路的输出电压等于输入电压,从而可以提高整流电路的工作效率。
本实施例提供的整流电路,第一晶体管的栅极与整流电路的交流输入侧的第一端连接,第一晶体管的漏极与交流输入侧的第二端连接,第一晶体管的源极和背栅极与第二晶体管的源极和背栅极连接在一起并接地,第二晶体管的栅极与交流输入侧的第二端连接,第二晶体管的漏极与交流输入侧的第一端连接;第三晶体管的栅极与第四晶体管的栅极连接,第三晶体管的漏极与交流输入侧的第二端连接,第三晶体管的源极和背栅极与第四晶体管的源极和背栅极连接在一起并与第一电阻的第一端连接,第四晶体管的漏极与交流输入侧的第一端连接;第一电阻的第二端与第一电容的上极板连接并作为整流电路的直流输出端,第一电容的下极板接地,将第三晶体管的栅极和第四晶体管的栅极的连接点作为电压侦测端,输出电压采样电路连接于直流输出端和电压侦测端之间并接地,输出电压采样电路用于对输出电压端的电压和电压侦测端的电压进行检测,使得电压侦测端的电压等于输出电压端的电压与第三晶体管或第四晶体管的导通电压之差,由于第一晶体管和第二晶体管采用交叉式接法连接,使得整流电路减少了一个晶体管导通阈值电压的压降,而输出电压采样电路使得整流电路减少了另一个晶体管导通阈值电压的压降,因此本实施例提供的整流电路的输出电压与输入电压相等,从而提高了整流电路的工作效率。
图3为本实用新型实施例提供的另一种整流电路的结构示意图,如图3所示,本实施例提供的整流电路在图2所示实施例的基础上,输出电压采样电路 27包括第五晶体管M31、第二电阻C32和第二电容C33。
第五晶体管M31的漏极与直流输出端VOUT连接,第五晶体管M31的栅极、背栅极和源极连接在一起作为电压侦测端VSEN,电压侦测端VSEN与第三晶体管M23的栅极和第四晶体管M24的栅极连接;第二电阻C32的第一端和第二电容C33的第一端均与电压侦测端VSEN连接,第二电阻C32的第二端和第二电容C33的第二端均接地(GND)。第五晶体管M31是一个二极管接法的晶体管。
第五晶体管M31与第三晶体管M23和第四晶体管M24的类型相同,在本实施例中,以第一晶体管M21、第二晶体管M22为NMOS,第三晶体管M23 和第四晶体管M24为PMOS为例,那么在一实施例中,第五晶体管M31为P 沟道型晶体管(PMOS)。那么第一晶体管M21和第二晶体管M22的导通阈值电压为Vthn,第三晶体管M23和第四晶体管M24的导通阈值电压为Vthp
输出电压端VOUT的电压一开始等于0,输出电压采样电路27没法工作,电路通过第三晶体管M23,第四晶体管M24体二极管工作,所以输出电压端 VOUT的电压慢慢升高,直到输出电压端VOUT的电压升高到大于一个Vthp,即第五晶体管M31体二极管导通。电压侦测端VSEN的电压等于VOUT-Vthp,当B点的电压大于VSEN+Vthp时,即当B点的电压大于输出电压端VOUT的电压时,第三晶体管M23导通,使得B点给输出电压端VOUT充电,当B点的电压低于输出电压端VOUT的电压时,即B点的电压低于VSEN+Vthp时,第三晶体管M23截止,输出电压端VOUT的电压不会倒灌回B点。因为第一电阻R25与第一电容C26的存在,使得输出电压端VOUT的相位滞后于B点,即当B点的电压由高变低时,输出电压端VOUT还来不及反应变低,即输出电压端VOUT的电压不跟随B点的电压变低,则电压侦测端VSEN的电压就不会变低,则第三晶体管M23会截止。从而不会倒灌,A点也同理。第五晶体管 M31采用PMOS管做二极管接法是因为与第三晶体管M23、与第四晶体管M24 也是PMOS管,能够更好的解决工艺与温度偏差的问题。
本实施例提供一种输出电压采样电路的具体结构,但本实用新型实施例提供的整流电路中,输出电压采样电路的具体结构不以本实施例为限,只要能够实现图2所示实施例中输出电压采样电路的功能,即在本实用新型实施例的保护范围内。
进一步地,在图3所示实施例的基础上,第二电阻C32可以由电流源替代。
图4为本实用新型实施例提供的RFID标签芯片的结构示意图,如图4所示,本实施例提供的RFID标签芯片包括:整流电路41、稳压电路42和解码电路43。
整流电路41用于对接收到的RFID交流电压信号进行整流处理,稳压电路 42用于对整流后的RFID直流电压信号进行稳压处理,解码电路43用于对稳压后的RFID直流电压信号进行解码处理。整流电路41包括如图2或图3实施例所示的任一种整流电路,稳压电路42和解码电路43为符合RFID标签芯片解码需求的任一种稳压电路或解码电路。
进一步地,图4所示实施例的基础上,还包括滤波电路,滤波电路设置于整流电路和稳压电路之间,滤波电路用于对整流后的RFID直流电压信号进行滤波处理。
进一步地,图4所示RFID标签芯片是一种符合国际标准化组织 (InternationalOrganization for Standardization,ISO)15693协议的RFID标签芯片。
图5为本实用新型实施例提供的RFID标签的结构示意图,如图5所示,本实施例提供的RFID标签包括:天线51和RFID标签芯片52。
天线51用于接收RFID交流电压信号,并将接收的RFID交流电压信号输入RFID标签芯片52,RFID标签芯片52用于对接收到的RFID交流电压信号进行解码处理。RFID标签芯片52包括如图4实施例所示的RFID标签芯片。
具体地,天线51接收到RFID交流电压信号后,发出RFID交流电压信号分别至整流电路、滤波电路和稳压电路,整流电路和稳压电路依次接收到RFID 交流电压信号并对其进行整流、滤波、稳压处理,经过整流、滤波、稳压后,得到一RFID直流电压信号。一方面,RFID直流电压信号作为RFID标签芯片的电源电压,另一方面,RFID标签芯片中的解码电路对整流后的RFID直流电压信号进行解码处理。
注意,上述仅为本实用新型的较佳实施例及所运用技术原理。本领域技术人员会理解,本实用新型不限于这里所述的特定实施例,对本领域技术人员来说能够进行各种明显的变化、重新调整和替代而不会脱离本实用新型的保护范围。因此,虽然通过以上实施例对本实用新型进行了较为详细的说明,但是本实用新型不仅仅限于以上实施例,在不脱离本实用新型构思的情况下,还可以包括更多其他等效实施例,而本实用新型的范围由所附的权利要求范围决定。

Claims (10)

1.一种整流电路,其特征在于,包括:第一晶体管、第二晶体管、第三晶体管、第四晶体管、第一电阻、第一电容和输出电压采样电路;
所述第一晶体管的栅极与所述整流电路的交流输入侧的第一端连接,所述第一晶体管的漏极与所述交流输入侧的第二端连接,所述第一晶体管的源极和背栅极与所述第二晶体管的源极和背栅极连接在一起并接地,所述第二晶体管的栅极与所述交流输入侧的第二端连接,所述第二晶体管的漏极与所述交流输入侧的第一端连接;
所述第三晶体管的栅极与所述第四晶体管的栅极连接,所述第三晶体管的漏极与所述交流输入侧的第二端连接,所述第三晶体管的源极和背栅极与所述第四晶体管的源极和背栅极连接在一起并与所述第一电阻的第一端连接,所述第四晶体管的漏极与所述交流输入侧的第一端连接;
所述第一电阻的第二端与所述第一电容的上极板连接并作为所述整流电路的直流输出端,所述第一电容的下极板接地;
将所述第三晶体管的栅极和所述第四晶体管的栅极的连接点作为电压侦测端,所述输出电压采样电路连接于所述直流输出端和所述电压侦测端之间并接地;
所述输出电压采样电路用于对所述输出电压端的电压和所述电压侦测端的电压进行检测,使得所述电压侦测端的电压等于所述输出电压端的电压与所述第三晶体管或所述第四晶体管的导通电压之差。
2.根据权利要求1所述的电路,其特征在于,所述输出电压采样电路包括第五晶体管、第二电阻和第二电容;
所述第五晶体管的漏极与所述直流输出端连接,所述第五晶体管的栅极、背栅极和源极连接在一起作为电压侦测端,所述电压侦测端与所述第三晶体管的栅极和所述第四晶体管的栅极连接;
所述第二电阻的第一端和所述第二电容的第一端均与所述电压侦测端连接,所述第二电阻的第二端和所述第二电容的第二端均接地。
3.根据权利要求2所述的电路,其特征在于,所述第二电阻由电流源替代。
4.根据权利要求2所述的电路,其特征在于,所述第五晶体管为P沟道型晶体管。
5.根据权利要求1~4任一项所述的电路,其特征在于,所述第一晶体管和所述第二晶体管相同,所述第三晶体管和所述第四晶体管相同。
6.根据权利要求1~4任一项所述的电路,其特征在于,所述第一晶体管和所述第二晶体管均为N沟道型晶体管,所述第三晶体管和所述第四晶体管均为P沟道型晶体管。
7.一种RFID标签芯片,其特征在于,包括:整流电路、稳压电路和解码电路;
所述整流电路用于对接收到的无源射频识别RFID交流电压信号进行整流处理,所述稳压电路用于对整流后的RFID直流电压信号进行稳压处理,所述解码电路用于对稳压后的RFID直流电压信号进行解码处理;
所述整流电路包括如权利要求1~6任一项所述的整流电路。
8.根据权利要求7所述的RFID标签芯片,其特征在于,还包括滤波电路,所述滤波电路用于对整流后的RFID直流电压信号进行滤波处理。
9.根据权利要求7或8所述的RFID标签芯片,其特征在于,所述RFID标签芯片是一种符合国际标准化组织ISO 15693协议的RFID标签芯片。
10.一种RFID标签,其特征在于,包括天线和RFID标签芯片;
所述天线用于接收无源射频识别RFID交流电压信号,并将接收的RFID交流电压信号输入所述RFID标签芯片,所述RFID标签芯片用于对接收到的RFID交流电压信号进行解码处理;
所述RFID标签芯片包括如权利要求7~9任一项所述的RFID标签芯片。
CN202021300057.0U 2020-07-06 2020-07-06 整流电路、rfid标签芯片和rfid标签 Active CN212850308U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202021300057.0U CN212850308U (zh) 2020-07-06 2020-07-06 整流电路、rfid标签芯片和rfid标签

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202021300057.0U CN212850308U (zh) 2020-07-06 2020-07-06 整流电路、rfid标签芯片和rfid标签

Publications (1)

Publication Number Publication Date
CN212850308U true CN212850308U (zh) 2021-03-30

Family

ID=75181564

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202021300057.0U Active CN212850308U (zh) 2020-07-06 2020-07-06 整流电路、rfid标签芯片和rfid标签

Country Status (1)

Country Link
CN (1) CN212850308U (zh)

Similar Documents

Publication Publication Date Title
Lam et al. Integrated low-loss CMOS active rectifier for wirelessly powered devices
US7843709B2 (en) Rectifier circuit and radio communication device using the same
EP1643645B1 (en) Rectifier circuit
US5173849A (en) Integratable synchronous rectifier
US7078937B2 (en) Logic circuitry powered by partially rectified ac waveform
US20080259665A1 (en) Rectifier Circuit, Circuit Arrangement and Method for Manufactiring a Rectifier Circuit
JP2008011584A (ja) 整流回路
Hwang et al. A 13.56-MHz low-voltage and low-control-loss RF-DC rectifier utilizing a reducing reverse loss technique
Raben et al. Improved efficiency in the CMOS cross-connected bridge rectifier for RFID applications
JP6507378B2 (ja) 整流回路および、これを備えた非接触給電装置
CN212850308U (zh) 整流电路、rfid标签芯片和rfid标签
CN102474250A (zh) 触发电路和整流器、尤其是用于具有压电微型发电机的能量自给的微系统的触发电路和整流器
CN102157926A (zh) 限压保护电路
US7233133B2 (en) High-efficiency two-step DC-to-DC converter
KR101000340B1 (ko) Pmos 다이오드 모듈, nmos 다이오드 모듈 및 이를 이용하는 정류회로
EP0389515B1 (en) Integratable synchronous rectifier
WO2008119206A1 (fr) Redresseur résistant à une tension élevée, doté de transistors cmos standard
WO2016165100A1 (zh) 整流电路
JP2014036484A (ja) 整流回路及びそれを備えた受信回路、無線電力回収回路
CN111130367B (zh) 一种基于固定阈值消除和差分倍压的整流单元、整流器和rfid标签
JP2010259206A (ja) 倍電圧整流回路およびそれを用いた非接触式icカード
CN101777553B (zh) 内建结型场效应晶体管的功率晶体管芯片及其应用电路
CN211557150U (zh) 一种开关电源、无刷电机驱动电路以及电机
CN210958161U (zh) 一种新型同步整流mos驱动电路
CN111464052B (zh) 一种用于无线nfc能量采集的新型整流器电路

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant
CP01 Change in the name or title of a patent holder

Address after: 201614 Room 301, building 4, No. 509, Guanghua Road, Xiaokunshan Town, Songjiang District, Shanghai

Patentee after: SHANGHAI TECHSUN RFID TECHNOLGOY Co.,Ltd.

Patentee after: Shanghai Tianchen micro nano technology Co.,Ltd.

Address before: 201614 Room 301, building 4, No. 509, Guanghua Road, Xiaokunshan Town, Songjiang District, Shanghai

Patentee before: SHANGHAI TECHSUN RFID TECHNOLGOY Co.,Ltd.

Patentee before: SHANGHAI TECHSUN ANTI-COUNTERFEITING TECHNOLOGY HOLDING Co.,Ltd.

CP01 Change in the name or title of a patent holder