SUMMERY OF THE UTILITY MODEL
The utility model aims at providing an automatic carloader to solve the drawback of artifical loading.
In order to achieve the above object, the utility model adopts the following technical scheme:
an automatic car loader comprises a pushing and arranging mechanism arranged at the output side of a conveyor, a stacking mechanism arranged at one side of the pushing and arranging mechanism far away from the conveyor, and a lifting mechanism used for lifting or descending the stacking mechanism; the lifting mechanism is arranged below the row pushing mechanism, two ends of the lifting mechanism are fixedly connected with the stacking mechanism and the conveyor respectively, and the row pushing mechanism is fixedly connected with the conveyor.
Further, the pushing and arranging mechanism comprises a supporting plate horizontally arranged at the output end of the conveyor, a shifting piece vertically arranged on the top surface of the supporting plate and a transverse pushing device used for driving the shifting piece to move along the direction vertical to the conveying direction of the conveyor, the supporting plate is fixedly connected with the transverse pushing device, and the shifting piece is connected with the supporting plate in a sliding manner; the shifting piece is vertically arranged in a corresponding transverse sliding groove in the supporting plate in a penetrating mode, the bottom surface of the shifting piece is lower than that of the supporting plate, the shifting piece is in sliding fit with the supporting plate, and the transverse pushing device is fixedly connected with the bottom of the shifting piece; and the lower part of the supporting plate is provided with a lifting device for enabling the supporting plate to vertically move, and the lifting device is fixedly connected with the conveyor.
Further, the transverse pushing device is arranged on the lower side of the shifting piece, the transverse pushing device comprises a belt and a motor, the moving direction of the belt is consistent with the moving direction of the shifting piece, the motor is used for driving the belt to move, the belt is fixedly connected with the shifting piece, and the shifting piece is driven by the motor to reciprocate along the sliding groove; the supporting plate comprises an upper flat plate and a lower flat plate which are parallel to each other, a gap is formed between the upper flat plate and the lower flat plate, and the upper flat plate and the lower flat plate are fixedly connected; the sliding groove is formed in the upper flat plate, the shifting piece is connected with the upper flat plate in a sliding mode, the transverse pushing device is arranged between the upper flat plate and the lower flat plate, the motor is fixedly connected with the lower flat plate or the upper flat plate, and the belt is rotatably connected with the lower flat plate or the upper flat plate.
Further, a transverse pushing rod is arranged between the supporting plate and the conveyor, the pushing rod is higher than the shifting sheet, and a longitudinal pushing device for pushing the supporting plate to move longitudinally is arranged on one side of the pushing rod, which is far away from the supporting plate; the longitudinal pushing device is a longitudinal pushing cylinder, a cylinder body of the pushing cylinder is fixed, and a push rod of the pushing cylinder is fixedly connected with the push rod; the lifting device is a vertical moving cylinder, a cylinder body of the vertical moving cylinder is fixedly connected with the conveyor, and a push rod of the vertical moving cylinder is fixedly connected with the supporting plate.
Furthermore, the lifting mechanism comprises a bevel gear swing arm unit and a driving unit for driving the bevel gear swing arm unit to swing up and down; the bevel gear swing arm unit drives the stacking mechanism to move up and down in a horizontal moving mode when swinging; the bevel gear swing arm unit comprises two bevel gear followers which are fixedly connected with the stacking mechanism and the conveyor respectively, a longitudinal supporting tube is arranged between the two bevel gear followers, and the two bevel gear followers are fixedly connected with the supporting tube; the driving unit is arranged above the supporting tube, and one end of the driving unit, which is far away from the supporting tube, inclines towards the fixed end; the middle part of the supporting tube is rotatably connected with the lower end of the driving unit, and the upper end of the driving unit is fixedly connected with the conveyor.
Further, each bevel gear follower comprises a C-shaped frame, a pair of mutually meshed fixed bevel gears and transmission bevel gears which are arranged in the frame, and a connecting plate which is arranged on one side of the frame far away from the bottom of the frame; the connecting plate is parallel to the axis of the fixed bevel gear and is fixedly connected with the fixed bevel gear, the fixed bevel gear is rotationally connected with the frame, and the transmission bevel gear is rotationally connected with the bottom of the frame; two frame symmetries set up at the stay tube both ends and all with stay tube fixed connection, be equipped with the transmission shaft in the stay tube, the transmission shaft both ends are run through the setting respectively on two frames correspond downtheholely, the transmission shaft both ends respectively with the transmission bevel gear fixed connection that corresponds, two frames all rotate with the transmission shaft to be connected, the stay tube rotates with the transmission shaft to be connected, two fixed bevel gears 180 degrees apart along the stay tube circumferencial direction, the connecting plate that is close to pile up neatly mechanism is fixed connection with pile up neatly mechanism, another connecting plate and conveyer fixed connection.
Further, the driving unit comprises a lifting oil cylinder and a support rotatably connected with the tail of a cylinder body of the lifting oil cylinder, an ejector rod of the lifting oil cylinder is rotatably connected with the middle of the supporting tube, and the bottom of the support is fixedly connected with the conveyor.
Further, the stacking mechanism comprises a horizontal bedplate, a liftable box pushing rod, a driving device and a jacking device, wherein the driving device is arranged between the box pushing rod and the bedplate and used for driving the box pushing rod to horizontally move along the direction vertical to the box pushing rod, and the jacking device is used for enabling the box pushing rod to ascend and descend; the driving device is arranged below the bedplate, the box pushing rod, the jacking device, the driving device and the bedplate are sequentially and fixedly connected, the box pushing rod is perpendicular to the conveying direction of the conveyor, and the bedplate is fixedly connected with the lifting mechanism.
Furthermore, the driving device comprises a lead screw perpendicular to the box pushing rod, a lead screw nut in threaded transmission with the lead screw and a box pushing rod driving motor for driving the lead screw to rotate; the lead screw is parallel to the bedplate, the bedplate is rotationally connected with the lead screw, and the push box rod driving motor is fixedly connected with the bedplate; the jacking device is a jacking cylinder perpendicular to the bedplate, a cylinder body of the cylinder is fixedly connected with the screw nut, and a push rod of the cylinder is fixedly connected with the box pushing rod.
Further, the bedplate comprises a top plate and a bottom plate arranged below the top plate in parallel, the bottom plate and the top plate are fixedly connected through a support arranged between the top plate and the bottom plate, the box pushing rod driving motor is fixedly connected with the top plate or the bottom plate, and the lead screw is rotatably connected with the top plate or the bottom plate; the top plate is provided with a horizontal through groove perpendicular to the box pushing rod, the jacking device is connected with the through groove in a sliding mode, and the bottom plate is fixedly connected with the lifting mechanism.
The utility model discloses an actively the effect does:
1. the utility model discloses the setting is at the output side of conveyer, including pushing away row mechanism, pile up neatly mechanism and elevating system, it pushes away row mechanism and pushes away the packing box that comes with the conveyer transport one row, then carry pile up neatly mechanism, pile up neatly mechanism puts the freight train carriage with the packing box in a row in order in piling up under elevating system and band conveyer's cooperation, the packing box need not artifical the participation in pushing away row and pile up neatly in-process, the operating efficiency of loading has been improved, the labor intensity is reduced, the manpower is saved, the condition that article damage in the packing box is caused to the artificial reason has also been avoided simultaneously, unnecessary loss of property has been reduced.
2. The stacking mechanism and the pushing and arranging mechanism can act respectively, pushing and arranging operation is carried out simultaneously during stacking operation, and loading efficiency is further improved.
3. The plectrum of the pushing and arranging mechanism is driven by the synchronous belt, the driving motor of the plectrum is a stepping motor, the displacement of the plectrum can be accurately controlled, the movement amount of the plectrum is sequentially decreased by a set value, and the set value is the width of the packaging box, so that the pushing and arranging of the packaging box are more accurate, and the collision between the packaging boxes or the overcurrent of the motor due to resistance are prevented.
4. The pushing and arranging mechanism is provided with a longitudinal pushing device and a lifting device, and can push the packaging boxes pushed into a row out of the supporting plate to enter the next working procedure.
5. The lifting mechanism is provided with a fixed bevel gear, a transmission bevel gear and a supporting tube which are mutually meshed, so that the bevel gear swing arm unit keeps the level of the platform when swinging, and the lifting mechanism has a compact structure, small occupied space and reliable operation.
Detailed Description
As shown in fig. 1, an automatic car loader comprises a pushing and arranging mechanism 1 arranged at the output side of a conveyor 4, a stacking mechanism 3 arranged at the side of the pushing and arranging mechanism 1 far away from the conveyor 4, and a lifting mechanism 2 used for lifting or lowering the stacking mechanism 3; the lifting mechanism 2 is arranged below the row pushing mechanism 1, the left end and the right end of the lifting mechanism 2 are fixedly connected with the stacking mechanism 3 and the conveyor 4 respectively, the row pushing mechanism 1 is fixedly connected with the conveyor 4, and the conveyor 4 is a belt conveyor.
As shown in fig. 1 to fig. 3, the pushing and arranging mechanism 1 includes a rectangular supporting plate transversely disposed at the output end of the conveyor, two T-shaped shifting pieces 112 vertically disposed on the top surface of the supporting plate, and a transverse pushing device for driving the shifting pieces 112 to horizontally move along the conveying direction perpendicular to the conveyor 4. After the packing boxes 5 are sequentially conveyed to the supporting plate by the conveyor 4, the transverse pushing device drives the shifting sheet 112 to do transverse reciprocating motion to sequentially push the packing boxes 5 into a row, so that the pushing and arranging operation of the packing boxes 5 is completed. The process does not need manual participation, improves the operation efficiency and reduces the labor intensity.
The supporting plate comprises a rectangular upper flat plate 1 and a rectangular lower flat plate 104 which are parallel to each other, a gap is formed between the upper flat plate 101 and the lower flat plate 104, vertical cylindrical connecting columns are uniformly distributed at positions, close to the edges, between the upper flat plate 101 and the lower flat plate 104, and the upper flat plate 101 and the lower flat plate 104 are fixedly connected with the connecting columns through screws. The two shifting pieces 112 vertically penetrate through the two corresponding parallel rectangular sliding grooves 102 in the upper flat plate 101, the sliding grooves 102 are perpendicular to the conveying direction of the conveyor 4, and the lower portions of the two shifting pieces 112 are in sliding fit with the upper flat plate 101.
The transverse pushing device is arranged between the upper flat plate 101 and the lower flat plate 104 and comprises a transverse belt 114 and a motor 113 for driving the belt 114 to move, two T-shaped rails 115 which are parallel to each other and correspond to the transverse pushing device are arranged below the sliding groove 102, the rails 115 are parallel to the sliding groove 102, rectangular movable blocks with T-shaped grooves at the bottoms are arranged on the rails 115, and the movable blocks are in sliding fit with the rails 109. The bottoms of the two shifting pieces 112 are connected by a rectangular connecting piece which is horizontally arranged at the lower end thereof and is perpendicular to the rail 109, and the connecting piece is positioned between the shifting pieces 112 and the movable block. The corresponding shifting sheet 112, the connecting sheet and the movable block are fixedly connected in sequence through screws. The belt 114 is disposed between two rails 115 and is rotatably coupled to the lower plate 104 by bearing assemblies disposed at either end of the drive belt 114. The belt 114 is fixedly connected with the middle part of the connecting piece through a screw. The motor 113 is arranged at one end of the belt 114, the motor 113 is fixedly connected with the lower flat plate 104 through screws, and when the motor 113 drives the belt 114 to rotate, the motor 113 drives the shifting piece 112 to reciprocate along the sliding groove 102, so that the packing boxes 5 conveyed to the upper flat plate 101 are sequentially pushed into a row.
The belt 114 is a synchronous belt, and the motor 113 is a stepping motor. The skilled person can control the displacement of the pick 112 precisely by controlling the number of revolutions of the motor 113, so that each movement of the pick 112 is decreased by a set value, which is the width of the packing box 5. Thereby, the pushing and arranging of the packing boxes 5 are more accurate, and the collision between the packing boxes 5 or the overcurrent of the motor 113 due to the resistance is prevented.
A flat support 106 is arranged below the lower flat plate 104, the support 106 is formed by assembling and welding profile steel, and the support 106 is fixedly connected with two side surfaces of the conveyor 4 through screws. And a lifting device for vertically moving the lower flat plate 104 is arranged between the lower flat plate 104 and the bracket 106. The lifting device is a vertical moving cylinder 105. The number of the vertical moving cylinders 105 is two, and the two vertical moving cylinders 105 are symmetrically arranged at the front end and the rear end of the lower flat plate 104. The cylinder bodies of the two vertical moving cylinders 105 are fixedly connected with the support 6 through screws, and the push rods of the two vertical moving cylinders 105 are fixedly connected with the lower flat plate 104 through screws. When the push rods of the two vertical moving cylinders 105 are positioned at the top dead center, the upper flat plate 101 and the upper surface of the conveying belt of the conveyor 4 are positioned on the same plane.
A transverse push rod 103 is arranged between the upper flat plate 101 and the conveyor 4, the push rod 103 is made of a square tube, and gaps are reserved between the upper flat plate 101 and the conveyor 104 and the push rod 103. The push rod 103 is a rectangular tube, and the top surface of the push rod 103 is flush with the upper surface of the conveying belt of the conveyor 4. When the push rods of the two vertical movement cylinders 105 are positioned at the bottom dead center, the push rod 103 is higher than the shifting piece 112, and a longitudinal pushing device for pushing the push rod 103 to move longitudinally is arranged on the right side of the push rod 103.
The longitudinal pushing device is a pushing cylinder 111 longitudinally arranged at two sides of the conveyor 4. Two rectangular ejector rods 108 are vertically welded to the right side of the push rod 103, and the two ejector rods 108 are rectangular tubes. Two ejector rods 108 are arranged on two sides of the conveyor 4 and are in clearance fit with the conveyor 4. Slide rails which are parallel to the two ejector rods 108 and used for guiding are arranged below the two ejector rods, and the slide rails are fixedly connected with the side faces of the conveyor 4 through screws. The bottom of each ejector rod 108 close to the right end is fixedly connected with two sliding blocks 110 through screws, and the sliding blocks 110 are in sliding connection with corresponding sliding rails. The cylinder bodies of the two pushing cylinders 111 are respectively and fixedly connected with the corresponding side surfaces of the conveyor 4 through screws, and the push rods of the two pushing cylinders 111 are respectively and fixedly connected with the right slide block 110 through screws. Rectangular limiting blocks 109 are arranged between the two push rods 103 and the two sliders 110 close to the left, and the two limiting blocks 109 and the corresponding slide rails are fixedly connected through screws.
Each vertical moving cylinder 105 is provided with a magnetic switch for detecting the bottom dead center of the vertical moving cylinder, and the pushing cylinder 111 is provided with a magnetic switch for detecting the bottom dead center of the vertical moving cylinder.
Go up dull and stereotyped 101 to being equipped with vertical through-hole along packing box 5, the through-hole lower part is equipped with the photoelectric switch with last dull and stereotyped 101 fixed connection, photoelectric switch light emission direction is up.
And the limit block 109 is fixedly connected with a travel switch of which the contact point faces the sliding block 110 through a screw.
As shown in fig. 1, 4 and 5, the lifting mechanism 2 includes a bevel gear swing arm unit and a driving unit for driving the bevel gear swing arm unit to swing up and down. The two ends of the bevel gear swing arm unit are respectively a swing end at the left end and a fixed end at the right end, the swing end is fixedly connected with the stacking mechanism 3 with the packaging box 5 placed in through screws, and the bevel gear swing arm unit drives the stacking mechanism 3 at the left side to move up and down in a swinging mode. One end of the driving unit is fixed, and the other end of the driving unit is hinged with the bevel gear swing arm unit. The driving unit drives the bevel gear swing arm unit to swing up and down, so that the packaging box 5 on the stacking mechanism 3 is driven to move up and down, manual carrying of the packaging box 5 is replaced, carrying efficiency is improved, labor intensity is reduced, and meanwhile collision and damage of the packaging box 5 during carrying up and down are avoided.
The bevel gear swing arm unit comprises two bevel gear followers which are respectively arranged at two ends of the bevel gear swing arm unit, a cylindrical support tube 208 is arranged between the two bevel gear followers, and the two bevel gear followers are both welded with the support tube 208. The drive unit is arranged above the support tube 8, and the upper end of the drive unit inclines rightwards; the middle part of the supporting pipe 208 is rotatably connected with the lower left end of the driving unit.
Each bevel gear follower comprises a transversely lying C-shaped frame 206, a pair of intermeshing fixed bevel gears 204 and a drive bevel gear 205 disposed within the frame 206, and a rectangular connecting plate 202 disposed on the side of the frame 206 remote from the bottom thereof. The connecting plate 202 is parallel to the axis of the fixed bevel gear 204, the fixed bevel gear 204 is rotatably connected with the inner side of the frame 206, the center of the fixed bevel gear 204 is provided with a mandrel 203 in a penetrating manner, the mandrel 203 and the fixed bevel gear 204 are in interference connection and are in key transmission, two ends of the mandrel 203 are arranged in corresponding holes in the side portion of the frame 206 in a penetrating manner, and the mandrel 203 and the frame 206 are in rotational connection. The connecting plate 202 is provided with first lugs 201 at positions corresponding to two side portions of the frame 206, and two ends of the mandrel 203 are welded with the corresponding first lugs 201. The transmission bevel gear 205 is rotatably connected with the bottom of the frame 206, the two frames 206 are symmetrically arranged at two ends of the support tube 208 and are welded with the support tube 208, the transmission shaft 207 is arranged in the support tube 208, two ends of the transmission shaft 207 are respectively arranged in corresponding holes on the two frames 206 in a penetrating manner, two ends of the transmission shaft 207 are respectively in interference connection with the corresponding transmission bevel gear 205 and are in transmission through a key, the two frames 206 are rotatably connected with the transmission shaft 207, the support tube 8 is rotatably connected with the transmission shaft 207, the two fixed bevel gears 204 are arranged at two opposite sides of the transmission shaft 207 in the radial direction, and the two connecting plates 202 are vertically parallel. The left connecting plate 202 is fixedly connected with the stacking mechanism 3 through screws, and the right connecting plate 202 is fixedly connected with a vertical column welded at the bottom of the conveyor 204.
When the driving unit drives the supporting tube 209 to rotate, the stacking mechanism 3 is kept horizontal under the transmission of the fixed bevel gear 204 and the transmission bevel gear 205, so as to ensure that the packing box 5 placed on the stacking mechanism cannot slide off. The bevel gear swing arm unit has compact structure, small occupied space and reliable operation.
Two sides of the conveyor 4 are respectively provided with a set of bevel gear swing arm unit, the middle parts of the support tubes 8 of the two swing arm units are respectively provided with a second lug 210, the two second lugs 210 are provided with a rotating rod 9 in a penetrating way, and the two second lugs 210 are respectively connected with a rotating rod 209 in a rotating way. Both ends of the rotating rod 209 are rotatably connected with the driving unit. Every drive unit all includes lift cylinder 211 and rotates the support 212 of being connected with lift cylinder 211 cylinder body afterbody, the end that lift cylinder 211 ejector pin and bull stick 209 correspond rotates to be connected, support 212 bottom is through screw and the L shape bent plate fixed connection of welding in conveyer 4 side. Two bevel gear swing arm units and corresponding drive units make the lift of platform more stable and reliable, have also improved the strength of lifting simultaneously.
As shown in fig. 1, 6 and 7, the palletizing mechanism comprises a horizontal platen and a liftable box pushing rod 309, a driving device arranged between the box pushing rod 309 and the platen for driving the box pushing rod 309 to move horizontally in the vertical direction of the box pushing rod 309, and a jacking device for lifting the box pushing rod 309. The box pushing rod 9 is a square tube, the driving device is arranged below the bedplate, the box pushing rod 309, the jacking device, the driving device and the bedplate are fixedly connected in sequence, and the right side of the bedplate is fixedly connected with the lifting mechanism 3. The jacking device jacks up the box pushing rods 309 with the top surfaces flush with the upper surface of the bedplate to enable the box pushing rods 309 to be higher than the bedplate, and then the box pushing rods 309 are driven by the driving device to horizontally move to push a row of packing boxes 5 placed on the bedplate out of the bedplate and stack the packing boxes into the wagon carriage. The process does not need manual participation, improves the operation efficiency and reduces the labor intensity.
The driving device comprises two sets, and each set of driving device comprises a lead screw 303 perpendicular to the box pushing rod 309, a lead screw nut 307 in threaded transmission with the lead screw 303, and a box pushing rod driving motor 311 for driving the lead screw 303 to rotate. The lead screw 303 is parallel to the bedplate, the bedplate is rotationally connected with the lead screw 303, the box pushing rod driving motor 311 is fixedly connected with the bedplate, and the lead screw nut 307 is fixedly connected with the jacking device. The two sets of driving devices make the pushing of the packing box 5 more stable, and the pushing force is larger at the same time, so as to adapt to the packing boxes 5 with various weights.
The bedplate comprises a rectangular top plate 305 and a rectangular bottom plate 301 arranged below the top plate 305 in parallel, wherein support columns 306 are uniformly distributed between the bottom plate 301 and the top plate 305, the top plate 305 and the bottom plate 301 are fixedly connected with the support columns 306 through screws, and the right side of the bottom plate 301 is fixedly connected with a connecting plate 202 corresponding to the lifting mechanism through screws. The two sets of drive means are symmetrically disposed between the base plate 301 and the top plate 305. Two lead screws 303 all are parallel with bottom plate 301 and all are perpendicular with push away case pole 309, bottom plate 301 all is provided with the flange of rectangle with the corresponding position in every lead screw 303 both ends, the flange all welds on the rectangular plate that sets up in its bottom, the rectangular plate is parallel with lead screw 303, the rectangular plate passes through screw fixed connection with bottom plate 301. The lead screws 303 are rotatably connected with the corresponding lugs. One side of each lead screw 303 is provided with a sliding rod 312 parallel to the lead screw, and two ends of each sliding rod 312 are fixedly connected with the corresponding lugs through screws. The right end of each lead screw 303 is provided with a rectangular lead screw nut 307 in threaded transmission with the lead screw, and the lead screw nut 307 is in sliding fit with the corresponding sliding rod 312. A box pushing rod driving motor 311 fixedly connected with the bottom plate 301 through screws is arranged between the two lead screws 303. The two lead screws 303 are connected with a box pushing rod driving motor 311 through a synchronous belt respectively, so that two ends of the box pushing rod 309 move synchronously.
The jacking devices are two sets corresponding to the driving devices, each jacking device is a rectangular jacking cylinder 308 perpendicular to the bottom plate 301 and the top plate 305, a cylinder body of each jacking cylinder 308 is fixedly connected with the inner side of a corresponding screw nut 307 through a screw, push rods of the jacking cylinders 308 are fixedly connected with positions, close to two ends, of box pushing rods 309 through transverse L-shaped connecting plates 310, the push rods of the jacking cylinders 308 are fixedly connected with the corresponding connecting plates 310 through screws, and each connecting plate 310 is fixedly connected with the right side of the box pushing rod 309 through a screw. The top plate 5 is provided with a groove corresponding to the box pushing rod 309 in the same direction as the box pushing rod 309, the groove vertically penetrates through the top plate 305, and the box pushing rod 309 is in sliding fit with the groove. The top plate 305 is provided with two horizontal through grooves 304 which are vertically crossed and communicated with the grooves, the two through grooves 304 are parallel to each other, and the two jacking cylinders 308 are in sliding connection with the corresponding through grooves 304.
Each jacking cylinder 308 is provided with two magnetic switches for detecting the position of the push rod thereof, and the slide bar 312 is provided with position switches near the left end and the right end thereof. The middle part of the top plate 305 is provided with a through hole, the lower part of the through hole is fixed with a photoelectric switch for detecting whether the upper part of the top plate 305 has the packing box 5, and the light emitted by the photoelectric switch is upward.
The utility model discloses the accessible sets up the elevating system in its one side and carries out high position control.
The stacking mechanism 3 and the pushing and arranging mechanism 1 can act respectively, pushing and arranging operations are carried out simultaneously during stacking operation, and loading efficiency is improved.
The utility model discloses a working process does:
1. when the pushing and arranging mechanism 1 is in an initial state, the vertically moving cylinder 105 at the top of the pushing rod 103 jacks upwards, when the pushing rod reaches the top dead center, the top dead center magnetic switch on the pushing rod is triggered, at the moment, the upper flat plate 101 is flush with the conveying belt of the conveyor 4, the conveyor 4 sequentially conveys the packing boxes 5 to the top surface of the upper flat plate 101, and sequentially triggers the photoelectric switches arranged on the upper flat plate 101.
2. The motor 113 drives the shifting sheet 12 to horizontally shift the packing box 5 in turn according to the triggering signal of the photoelectric switch, and the distance shifted by the shifting sheet 112 each time is decreased by a set value, which is the width of the packing box 5.
3. After the top surface of the upper flat plate 101 of the packing box 5 is fully lined with a row, the vertical moving cylinder 105 downwards drives the upper flat plate 101 and the lined packing box 5 to downwards move, when the bottom dead center of the vertical moving cylinder 105 is reached, a point magnetic switch for stopping the vertical moving cylinder 105 downwards is triggered, and at the moment, the poking piece 112 is lower than the pushing rod 103.
4. The pushing cylinder 111 drives the pushing rod 103 to push the rows of the packing boxes 5 to the top plate 305 which is flush with the upper flat plate 101, the slider 110 close to the left triggers the travel switch on the limiting block 109, and the push rod of the pushing cylinder 111 resets rightwards to trigger the magnetic switch at the bottom dead center of the pushing cylinder 111. The vertical moving cylinder 105 pushes the upper flat plate 101 to reset upwards, and triggers the top dead center magnetic switch of the vertical moving cylinder 105 to perform the next pushing and arranging operation.
5. When the stacking mechanism 3 is in an initial state, the push rod of the jacking cylinder 308 is located at the bottom dead center, and the upper surface of the box pushing rod 309 is flush with the top surface of the top plate 305 at the moment. When the row of packing boxes 5 is pushed to the top plate 5 by the pushing and arranging mechanism, the photoelectric switch on the top plate 5 is triggered. Subsequently, the rod of the lift cylinder 211 of the lift mechanism 2 is pushed out, and the top plate 305 reaches the lowest point. The jack-up cylinder 308 is then actuated to jack the box-pushing rod 309 upward and above the top plate 5.
6. After the top rod of the jacking cylinder 308 reaches the top dead center, the magnetic switch of the top dead center is triggered, and the box pushing rod driving motor 311 drives the screw nut 307, the jacking cylinder 308 and the box pushing rod 309 to move leftwards together, so that the packing box 5 on the top plate 305 is pushed out into the boxcar.
7. After the packing box 5 is pushed out of the top plate 305, the screw nut 307 triggers the position switch at the left end of the slide bar 312, the box pushing bar driving motor 311 drives the box pushing bar 309 to move rightwards, and triggers the position switch at the right end of the slide bar 312, and the box pushing bar driving motor 311 stops running. The jacking cylinder 308 acts to drive the box pushing rod 309 to downwards touch the bottom dead center magnetic switch of the jacking cylinder 308. The lifting mechanism 2 then drives the palletizing mechanism 3 upwards to its initial position in preparation for the next palletizing operation.
8. The height of the conveyor 4 can be increased along with the number of stacked layers, so that the packing boxes 5 can be sequentially stacked to different heights in the boxcar.