CN212027912U - 带有硫捕集器的大功率柴油机污染物排放逆流催化转化协同处理装置 - Google Patents

带有硫捕集器的大功率柴油机污染物排放逆流催化转化协同处理装置 Download PDF

Info

Publication number
CN212027912U
CN212027912U CN202020354686.5U CN202020354686U CN212027912U CN 212027912 U CN212027912 U CN 212027912U CN 202020354686 U CN202020354686 U CN 202020354686U CN 212027912 U CN212027912 U CN 212027912U
Authority
CN
China
Prior art keywords
wall
flow
channel
sulfur
tail gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202020354686.5U
Other languages
English (en)
Inventor
邓洋波
李荣瑞
高青楼
刘志君
李智强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Maritime University
Original Assignee
Dalian Maritime University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Maritime University filed Critical Dalian Maritime University
Priority to CN202020354686.5U priority Critical patent/CN212027912U/zh
Application granted granted Critical
Publication of CN212027912U publication Critical patent/CN212027912U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Abstract

本实用新型提供一种带有硫捕集器的大功率柴油机污染物排放逆流催化转化协同处理装置。包括:装置主体壳体、气流管路和设置于其中的壁流式过滤体,壁流式过滤体的两侧对称设置硫捕集器,各硫捕集器的外侧均设有多孔陶瓷,气流管路中布置一对阀门,通过调节阀门的启闭控制装置内气流的流动模式。本实用新型应用于燃用重质残渣油的船舶柴油机污染物控制中,可以有效地抑制后处理装置额外输入能量影响发动机经济性、催化剂硫污染中毒和积灰阻塞技术难题,实现尾气中的颗粒物的高效捕集、在DPF通道壁面上黑碳颗粒物被氧化、NOx被还原为N2及尾气中的CO和HC等成分被氧化,反向吹除DPF内的积聚灰烬,实现DPF再生和CO、HC、PM和NOx多种污染物协同处理。

Description

带有硫捕集器的大功率柴油机污染物排放逆流催化转化协同 处理装置
技术领域
本实用新型涉及柴油机尾气后处理技术领域,尤其涉及一种带有硫捕集器的大功率柴油机污染物排放逆流催化转化协同处理装置。
背景技术
近年来,我国下大力治理雾霾,使得陆上污染源得到了有效控制,治霾效果明显。船舶作为移动污染源,其排放的CO、HC、颗粒物、硫氧化物、氮氧化物等废气污染物对我国大气环境影响显著,尤其是沿海地区和沿江地区受影响最大。因缺乏有效应对措施,船舶柴油机污染物排放短时间内难以得到有效控制。
船舶柴油机尾气排放已经成为沿海和沿河区域大气环境的主要污染源,污染物中CO、HC、SOx、NOx和PM不仅会对人体健康造成危害,还会对环境产生严重污染。二冲程低速柴油机是大中型远洋运输船舶的主要动力装置,为了降低成本,均使用高硫含量重质燃料油和中间燃料油,污染物排放主要包括CO、HC、PM、NOx和SOx。目前,采用燃用低硫燃料油技术或湿式脱硫技术,可以有效地抑制SOx排放。由于船舶柴油机排烟温度低、污染物排放浓度高和成分复杂,氧化催化器(DOC,Diesel Oxidation Catalyst)处理CO和HC技术、SCR处理NOx排放技术和DPF技术等陆用柴油机成熟的后处理技术,存在低温起燃难、污染物排放组分制约、催化剂硫污染失活和积灰阻塞等尚未解决的关键技术问题,很难推广应用在船舶柴油机污染物排放后处理中。近几年,针对燃用HFO和IFO的船舶柴油机污染物排放控制技术的研究,如DOC处理CO和HC技术、SCR脱硝技术、湿式混合系统脱硫技术和DPF技术,都是针对单一污染物排放开展的,各项技术也会相互影响和制约,而且存在构成装置结构庞大、控制系统复杂和对柴油机性能产生负面影响问题。目前,国内外已经实施船舶柴油机PM、NOx和SOx排放限制法规,船舶颗粒物排放也必将受到限制,开展船舶柴油机与SOx排放控制装置匹配的多种污染物协同处理技术研究迫在眉睫。
实用新型内容
根据上述提出的技术问题,而提供一种带有硫捕集器的大功率柴油机污染物排放逆流催化转化协同处理装置。本实用新型将快速再生硫捕集技术、 DPNR技术和逆流催化氧化技术结合在一起,形成适用于船舶柴油机污染物排放控制的后处理技术。
一种带有硫捕集器大功率柴油机污染物排放逆流催化转化协同处理装置,包括装置主体壳体、气流管路和设置于其中的壁流式过滤体,所述装置主体壳体设有进气口和排气口,所述壁流式过滤体的两侧对称设置硫捕集器,各硫捕集器的外侧均设有多孔陶瓷,所述气流管路中布置一对阀门,通过调节阀门的启闭控制装置内气流的流动模式,所述流动形式包括流经壁流式过滤体的正向流动、反向流动和不流经壁流式过滤体的旁通流动,所述装置主体壳体还设有伸入壳体内部的柴油蒸汽喷射装置,其用于喷入柴油蒸汽后调整装置内贫、富氧含量和温度分布;所述壁流式过滤体用于在贫、富氧含量尾气间歇地交替条件下,对尾气及其中的颗粒物进行化学反应;所述硫捕集器用于抑制壁流式过滤体催化剂硫污染中毒失活;所述多孔陶瓷用于保留硫捕集器和壁流式过滤体的反应温度。
进一步地,所述多孔陶瓷具有平行通道,所述硫捕集器具有平行通道,所述壁流式过滤体具有平行通道,即其相邻通道两端交替开口和封闭,相邻通道间壁为多孔基体,过滤体入口端敞开而末端封闭,标注为通道a;而另一个通道入口端封闭而出口端敞开,标注为通道b;
所述正向流动过程中,尾气流通左侧多孔陶瓷和左侧硫捕集器,流入壁流式过滤体通道a,穿过池壁流入相邻通道b,尾气中颗粒物被捕集在通道a 壁面,其化学反应后的残余物沉积在通道a的壁面上;
所述反向流动过程中,尾气流通右侧多孔陶瓷和右侧硫捕集器,流入壁流式过滤体通道b,穿过池壁流入相邻通道a,尾气中颗粒物被捕集在通道b 壁面,其化学反应后的残余物沉积在通道b的壁面上。
进一步地,所述装置主体壳体上设有灰斗,其用于收集反向气流吹过壁面后散落的残余物。
进一步地,所述多孔陶瓷由碳化硅压制成型;所述硫捕集器由碳化硅压制成型,在通道壁面上涂敷催化剂载体和催化剂;所述壁流式过滤体由碳化硅颗粒材料压制成型,在通道壁面上涂敷催化剂载体和催化剂。
进一步地,所述硫捕集器在通道壁面上涂敷SiO2催化剂载体和Pt/Ag催化剂,壁流式过滤体通道壁面上涂敷Al2O3和Ce(Zr)O2催化剂载体,催化剂载体分散着双金属Pt-Ba-K催化剂。
进一步地,装置的进、出口管道上、气流管路上、多孔陶瓷、硫捕集器和DPF内布置有温度传感器、压力传感器和氧气浓度传感器。
本实用新型应用于燃用重质残渣油(含硫量0.1wt%~3.0wt%,重金属含量5mg/kg~1000mg/kg)的船舶柴油机污染物控制中,可以有效地抑制后处理装置额外输入能量影响发动机经济性、催化剂硫污染中毒失活和积灰阻塞技术难题,实现尾气中的颗粒物的高效捕集、在DPF通道壁面上黑碳颗粒物被氧化、NOx被还原为N2及尾气中的CO和HC等成分被氧化,反向吹除 DPF内的积聚灰烬,实现DPF再生和CO、HC、PM和NOx多种污染物协同处理。
本实用新型通过周期换向流动、化学反应、蓄热和放热方式最大限度节省驱动装置运行额外能源输入;通过两侧布置无催化涂层多孔陶瓷控制高温区域在硫捕集器和DPF中;通过在DPF上游布置快速再生硫捕集器抑制DPF 催化剂硫污染中毒;本实用新型可大幅减少船舶柴油机污染物的排放,直接减少船舶废气对沿海港口地区的大气环境污染。
基于上述理由本实用新型可在柴油机尾气后处理技术领域广泛推广。
附图说明
为了更清楚地说明本实用新型实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图做以简单地介绍,显而易见地,下面描述中的附图是本实用新型的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本实用新型内部结构透视图。
图2为本实用新型主视图。
图3为本实用新型多孔陶瓷、硫捕集器、壁流式过滤体具体排布示意图。
图4为本实用新型运行时多孔陶瓷、硫捕集器、壁流式过滤体温度示意图。
图5为本实用新型壁面过滤状态示意图。
图6为本实用新型SOx于硫捕集器的催化转化机理示意图,其中(a)为富氧条件下,(b)为贫氧条件下。
图7为本实用新型尾气于壁流式过滤体的催化转化机理示意图,其中(a) 为富氧条件下,(b)为贫氧条件下。
图中:1、壁流式过滤体;2、硫捕集器;3、多孔陶瓷;4、第一阀门;5、第二阀门;6、柴油蒸汽喷射装置;7、压力传感器;8、氧气浓度传感器;9、温度传感器;10、进气阀;11、出气阀,12为灰斗,13为通道a,14为通道 b,15、颗粒物,16、灰烬颗粒,17、池壁。图中气流的实线为正向流动,虚线为反向流动。
具体实施方式
为使本实用新型实施例的目的、技术方案和优点更加清楚,下面将结合本实用新型实施例中的附图,对本实用新型实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本实用新型一部分实施例,而不是全部的实施例。基于本实用新型中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本实用新型保护的范围。
如图1、2所示,本实用新型实施例公开了一种带有硫捕集器大功率柴油机污染物排放逆流催化转化协同处理装置,包括:装置主体壳体、气流管路和设置于其中的壁流式过滤体1,所述装置主体壳体设有进气口和排气口,同时设置进气阀10和出气阀11。作为本实用新型的创新点之一,装置由两块惰性多孔陶瓷3和两块快速再生硫捕集器2对称布置在过滤体(DPF,Diesel particulate filter)两侧构成,DPF具有同时处理PM和NOx功能(DPNR,Diesel particulate and NOx reduction),所述气流管路中布置一对阀门,即第一阀门4和第二阀门5,通过调节阀门的启闭控制装置内气流的流动模式,所述流动形式包括流经多孔陶瓷壁3、硫捕集器2和壁流式过滤体1的正向流动、反向流动和不流经壁流式过滤体1的旁通流动,所述装置主体壳体还设有伸入壳体内部的柴油蒸汽喷射装置6,其用于喷入柴油蒸汽后调整装置内贫、富氧含量和温度分布;所述壁流式过滤体1用于在贫、富氧含量尾气间歇地交替条件下,对尾气及其中的颗粒物15进行化学反应;所述硫捕集器2 用于吸收、存储和释放尾气中SOx,抑制壁流式过滤体1催化剂硫污染中毒失活;所述多孔陶瓷3用于控制硫捕集器2和壁流式过滤体1的反应温度范围。
如图3所示,所述多孔陶瓷3具有平行通道,所述硫捕集器2具有平行通道,所述壁流式过滤体1具有平形通道,即其相邻通道两端交替开口和封闭,相邻通道间壁为多孔基体,过滤体入口端敞开而末端封闭,标注为通道 a13;而另一个通道入口端封闭而出口端敞开,标注为通道b14;
所述第一阀门4和第二阀门5均为电动阀,微机控制产生装置内气流周期换向流动,利用污染物或加入极少量燃料自维持周期化学反应放热和蓄热,形成中部硫捕集器2和过滤体1高温和两侧多孔陶瓷3高温度梯度的温度分布;通过调节喷入柴油蒸汽喷入时间和喷入量,主动控制装置内富氧和贫氧含量交替环境及温度分布。
所述正向流动过程中,尾气流通左侧多孔陶瓷3和左侧硫捕集器2,流入壁流式过滤体1通道a13,穿过池壁17流入相邻通道b14,尾气中颗粒物 15被捕集在通道a13壁面,其化学反应后的残余物沉积在通道a13的壁面上;
所述反向流动过程中,尾气流通右侧多孔陶瓷3和右侧硫捕集器2,流入壁流式过滤体1通道b14,穿过池壁17流入相邻通道a13,尾气中颗粒物 15被捕集在通道b14壁面,其化学反应后的残余物沉积在通道b14的壁面上。
具体地,总有一块硫捕集器2位于DPF上游,与DPF贫富氧含量交替变化同步。在富氧环境下,捕集吸附尾气中SOx、存储SOx,在贫氧含量环境下释放SOx,来抑制DPF催化剂硫污染中毒;在贫氧环境中,吸附SOx形成的硫酸盐释放出SO2排出装置;在装置内贫、富氧含量交替环境下,DPF通道间壁壁面上发生NOx吸附、存储和脱附、附着壁面上黑碳颗粒物15被氧化、 NOx被还原为N2及尾气中的CO和HC等成分被氧化,实现NOx和黑碳协同化学反应及DPF再生;利用周期往复流动,反向气流扰动作用形成颗粒物15 在催化剂表面上动态附着,增大了催化剂与颗粒物15接触机会,进而提高了黑碳颗粒物15的氧化效率;利用周期往复流动,实现DPF反向吹除附着过滤通道壁面灰烬,所述装置主体壳体上设有灰斗12,其用于收集反向气流吹过壁面后散落的残余物。
具体地,所述多孔陶瓷3由碳化硅压制成型;所述硫捕集器2由碳化硅压制成型,在通道壁面上涂敷SiO2催化剂载体和Pt/Ag催化剂;所述壁流式过滤体1由碳化硅颗粒材料压制成型,壁面上涂敷Al2O3和Ce(Zr)O2催化剂载体,催化剂载体分散着双金属Pt-Ba-K催化剂。
逆流催化转化协同处理后处理装置工作原理是:装置工作在周期往复流模式时,燃用重油船舶柴油机排放的尾气在多孔陶瓷3、硫捕集器2和DPF 中周期换向流动。正向流动过程中,尾气流通左侧多孔陶瓷3和左侧硫捕集器2后,流入DPF通道a13穿过池壁17流入相邻通道b14,尾气中颗粒物 15被捕集在通道a13壁面涂层上,如图5所示。在贫、富氧含量尾气间歇地交替条件下,在硫捕集器2涂层内发生SOx吸附、存储、硫酸盐分解并释放 SO2过程,如图6(a)(b)。同时,在同步的贫、富氧含量尾气间歇地交替条件下,DPF通道a13壁面涂层内发生NOx吸附、存储和脱附化学反应,附着壁面上颗粒物15被氧化、而NOx被还原成N2,尾气中的CO和HC等成分也被氧化,化学反应过程如图7(a)(b)。化学反应灰烬16、重金属灰尘、硫酸盐和硝酸盐物质等残余物沉积在通道a13一侧壁面上。另外,在正向周期流动过程中,化学反应放出的热量加热并蓄存在DPF、右侧硫捕集器2和右侧多孔陶瓷3池壁17内。然后,流通过滤体内尾气换向,变为反向流动。
如图5所示,反向流动过程中,尾气流通右侧多孔陶瓷3和右侧硫捕集器2后,流入DPF通道b14。尾气被正向流动过程中蓄存在池壁17内热量加热,然后穿过DPF池壁17流入相邻通道a13,尾气中颗粒物15被捕集在通道b14的域壁面上,同时,反向气流吹离在正向流动过程中沉积在通道a13 壁面上残余物,由气流携带沉降到灰斗12内。在高温壁面作用下,右侧硫捕集器2通道内和DPF通道b14内、池壁17壁面上和池壁17涂层内发生与正向流动过程中相同的化学反应,残余物沉积在通道b14的壁面上。化学反应放出的热量又加热并蓄存在左侧多孔陶瓷3、左侧硫捕集器2和DPF池壁17 内。然后,流通多孔陶瓷3、硫捕集器2和DPF的尾气换向,再变为正向流动过程,此过程周而复始。在周期往复流模式下,在装置中沿轴向形成两侧多孔陶瓷3具有高温度梯度,而中部两个硫捕集器2和DPF具有平坦高温分布,如图4。当多孔陶瓷3、硫捕集器2和DPF中温度超过催化剂载体和催化剂热承受能力时,装置内转换为不流经多孔陶瓷3、硫捕集器2和DPF结构旁通流动模式。
后处理装置的进、出口管道上、气流管路上、多孔陶瓷3、硫捕集器2 和DPF内布置有温度传感器9、压力传感器7和氧气浓度传感器8,微机通过对传感器传递的压力、温度和氧气含量等参数,利用存储的操作条件进行评估,然后来设定往复周期时间、燃烧器关启、燃料喷射器燃料喷射量和喷射时间、过滤体内贫、富氧环境等装置的运行参数,并通过测量与控制系统控制装置的运行模式。
本实用新型通过周期换向流动、化学反应、蓄热和放热方式最大限度节省驱动装置运行额外能源输入;通过两侧布置无催化涂层多孔陶瓷3控制高温区域在硫捕集器2和DPF中;通过在DPF上游布置快速再生硫捕集器2 抑制DPF催化剂硫污染中毒失活;通过测试和控制系统实现装置内温度、贫富氧含量环境和过热保护;利用DPNR技术实现CO、HC、PM和NOx多种污染物逆流催化转化和DPF再生;通过逆流反向吹除DPF壁面灰烬。船舶柴油机污染物排放逆流催化转化协同处理技术装置与SOx吸收装置连接,去除排放的SOx,而构成船舶柴油机污染物排放一体化处理技术。
最后应说明的是:以上各实施例仅用以说明本实用新型的技术方案,而非对其限制;尽管参照前述各实施例对本实用新型进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本实用新型各实施例技术方案的范围。

Claims (4)

1.一种带有硫捕集器的大功率柴油机污染物排放逆流催化转化协同处理装置,包括:装置主体壳体和设置于其中的气流管路与壁流式过滤体,所述装置主体壳体设有进气口和排气口,其特征在于,所述壁流式过滤体的两侧对称设置硫捕集器,各硫捕集器的外侧均设有多孔陶瓷,所述气流管路中布置一对阀门,通过调节阀门的启闭控制装置内气流的流动模式,所述流动模式包括流经壁流式过滤体的正向流动、反向流动和不流经壁流式过滤体的旁通流动,所述装置主体壳体还设有伸入壳体内部的柴油蒸汽喷射装置,其用于喷入柴油蒸汽后调整装置内贫、富氧含量和温度分布;所述壁流式过滤体用于在贫、富氧含量尾气间歇地交替条件下,对尾气及其中的颗粒物进行化学反应;所述硫捕集器用于抑制壁流式过滤体催化剂硫污染中毒失活;所述多孔陶瓷用于保留硫捕集器和壁流式过滤体的反应温度。
2.根据权利要求1所述的带有硫捕集器的大功率柴油机污染物排放逆流催化转化协同处理装置,其特征在于,所述多孔陶瓷具有平行通道,所述硫捕集器具有平行通道,所述壁流式过滤体具有平行通道,即其相邻通道两端交替开口和封闭,相邻通道间壁为多孔基体,过滤体入口端敞开而末端封闭,标注为通道a;而另一个通道入口端封闭而出口端敞开,标注为通道b;
所述正向流动过程中,尾气流通左侧多孔陶瓷和左侧硫捕集器,流入壁流式过滤体通道a,穿过池壁流入相邻通道b,尾气中颗粒物被捕集在通道a壁面,其化学反应后的残余物沉积在通道a的壁面上;
所述反向流动过程中,尾气流通右侧多孔陶瓷和右侧硫捕集器,流入壁流式过滤体通道b,穿过池壁流入相邻通道a,尾气中颗粒物被捕集在通道b壁面,其化学反应后的残余物沉积在通道b的壁面上。
3.根据权利要求1所述的带有硫捕集器的大功率柴油机污染物排放逆流催化转化协同处理装置,其特征在于,所述装置主体壳体上设有灰斗,其用于收集反向气流吹过壁面后散落的残余物。
4.根据权利要求1所述的带有硫捕集器的大功率柴油机污染物排放逆流催化转化协同处理装置,其特征在于,所述多孔陶瓷由碳化硅压制成型;所述硫捕集器由碳化硅压制成型,在通道壁面上涂敷催化剂载体和催化剂;所述壁流式过滤体由碳化硅颗粒材料压制成型,在通道壁面上涂敷催化剂载体和催化剂。
CN202020354686.5U 2020-03-19 2020-03-19 带有硫捕集器的大功率柴油机污染物排放逆流催化转化协同处理装置 Active CN212027912U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202020354686.5U CN212027912U (zh) 2020-03-19 2020-03-19 带有硫捕集器的大功率柴油机污染物排放逆流催化转化协同处理装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202020354686.5U CN212027912U (zh) 2020-03-19 2020-03-19 带有硫捕集器的大功率柴油机污染物排放逆流催化转化协同处理装置

Publications (1)

Publication Number Publication Date
CN212027912U true CN212027912U (zh) 2020-11-27

Family

ID=73485279

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202020354686.5U Active CN212027912U (zh) 2020-03-19 2020-03-19 带有硫捕集器的大功率柴油机污染物排放逆流催化转化协同处理装置

Country Status (1)

Country Link
CN (1) CN212027912U (zh)

Similar Documents

Publication Publication Date Title
US9587540B2 (en) Method and device for reactivating exhaust-gas purification systems of diesel engines with low-pressure EGR
US6732507B1 (en) NOx aftertreatment system and method for internal combustion engines
CN111255551A (zh) 带有硫捕集器的大功率柴油机污染物排放逆流催化转化协同处理装置
EP1818522A1 (en) Sulfur purge control method for exhaust gas purifying system and exhaust gas purifying system
CA2309309A1 (en) Nox trap and particulate filter system for an internal combustion engine
CN108316993B (zh) 往复流动式船舶柴油机连续催化再生柴油颗粒过滤器
JP2006320854A (ja) 選択還元型触媒及びそれを用いたエンジンの排ガス浄化装置
EP3354873B1 (en) System for reducing harmful emissions of an internal combustion engine
JP2004162600A (ja) 内燃機関の排気浄化装置
KR20120036004A (ko) 버너를 사용하여 배출가스 저감 성능을 향상시키는 자동차 배출가스 저감 장치
CN111335984A (zh) 紧凑式柴油机污染物排放逆流催化转化协同处理装置及系统
CN212027912U (zh) 带有硫捕集器的大功率柴油机污染物排放逆流催化转化协同处理装置
JP2018145869A (ja) 排気ガス浄化システム、及び排気ガス浄化システムの硫黄被毒抑制方法
JP2010196551A (ja) 内燃機関の排気浄化装置
JP3905264B2 (ja) エンジンの排ガス浄化装置
JP2006329020A (ja) エンジンの排ガス浄化装置
KR101806180B1 (ko) 배기 가스 정화 장치
JP2010185369A (ja) エンジンの燃料供給装置
JP2004092584A (ja) 内燃機関の排気浄化装置
JP2004176636A (ja) 内燃機関の排気浄化装置
JP3876905B2 (ja) 排気ガス浄化システムの脱硫制御方法及び排気ガス浄化システム
JP2012087703A (ja) 内燃機関の排気処理装置
CN212106009U (zh) 紧凑式柴油机污染物排放逆流催化转化协同处理装置
WO2008072013A1 (en) System and method for exhaust gas after-treatment
KR102388063B1 (ko) 소형선박용 배기가스 유해물질 저감장치

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant