CN211964899U - 压缩声焦域轴向长度的透镜式多频聚焦超声换能器、换能系统 - Google Patents

压缩声焦域轴向长度的透镜式多频聚焦超声换能器、换能系统 Download PDF

Info

Publication number
CN211964899U
CN211964899U CN202020125652.9U CN202020125652U CN211964899U CN 211964899 U CN211964899 U CN 211964899U CN 202020125652 U CN202020125652 U CN 202020125652U CN 211964899 U CN211964899 U CN 211964899U
Authority
CN
China
Prior art keywords
piezoelectric
lens
frequency
axial length
concave surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202020125652.9U
Other languages
English (en)
Inventor
杨增涛
郑维成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing Medical University
Original Assignee
Chongqing Medical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing Medical University filed Critical Chongqing Medical University
Priority to CN202020125652.9U priority Critical patent/CN211964899U/zh
Application granted granted Critical
Publication of CN211964899U publication Critical patent/CN211964899U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Transducers For Ultrasonic Waves (AREA)

Abstract

本实用新型提供一种压缩声焦域轴向长度的透镜式多频聚焦超声换能器、换能系统,用于解决现有技术中声焦域长度较长的问题。为实现上述目的及其他相关目的,本实用新型提供一种透镜式多频聚焦超声换能器,包括:压电片,所述压电片包括压电凹面和压电平面,所述压电凹面为球面结构,所述压电片具有多个厚度不同的谐振单元;声透镜,所述声透镜包括透镜凹面和透镜平面,所述透镜凹面为球面结构,所述透镜平面和所述压电平面贴合。本方案能够有效缩短声焦域轴向长度。

Description

压缩声焦域轴向长度的透镜式多频聚焦超声换能器、换能 系统
技术领域
本实用新型涉及超声医疗领域,特别是涉及一种压缩声焦域轴向长度的透镜式多频聚焦超声换能器、换能系统。
背景技术
高强度聚焦超声(HIFU)是一种近年来新兴的体外无创治疗肿瘤技术,通过放置在体外的聚焦超声换能器,将超声能量聚焦在体内形成高能量的焦区,体内组织吸收超声能量使焦区内的组织产生凝固性坏死而不损伤声路径以及靶区周围正常组织。传统的HIFU换能器为单一频率模式,声焦域为椭球形,轴向长度是横向长度的几倍(6以上)。在临床治疗过程中发现,单频HIFU消融横向薄层病变组织时,由于声焦域轴向长度过长,可能损伤到靶区外的正常组织,增加治疗过程中的安全风险。
现有改变声焦域轴向长度的方法主要有:提高换能器工作频率、优化换能器结构和采用多频换能器。目前,应用于临床治疗HIFU换能器的频率都在1MHz左右,提高换能器工作频率能使声焦域轴向长度变短,但这是以牺牲超声波对组织的穿透性为代价的。因此,有学者从换能器结构上入手,发现增加聚焦换能器的开口半径能够从一定程度上缩短声焦域轴向长度,但在实际应用中,开口半径过大会导致入射物体的声窗口增大,从而影响使用范围。 20世纪90年代以来,国内外学者开始了双频或多频聚焦换能器的探究,Li等人从理论上系统性的分析了双频聚焦换能器的声焦域,结果表明,与单频聚焦换能器声焦域轴向长度相比,双频聚焦换能器声焦域轴向长度变长。Jianguo Ma等人采用两块等厚度压电片串联的方式实现1.5MHz+3MHz的双频聚焦超声换能器,结果表明,双频聚焦超声换能器的声焦域轴向长度介于1.5MHz和3MHz的单频聚焦超声换能器的声焦域轴向长度之间。采用双频的方式虽然能改变声焦域轴向长度,但由于不同频率的个数太少达不到压缩声焦域轴向长度的目的。
发明内容
鉴于以上所述现有技术的缺点,本实用新型的目的在于提供一种压缩声焦域轴向长度的透镜式多频聚焦超声换能器、换能系统,用于解决现有技术中声焦域长度较长的问题。
为实现上述目的及其他相关目的,本实用新型提供一种压缩声焦域轴向长度的透镜式多频聚焦超声换能器,包括:
压电片,所述压电片包括压电凹面和压电平面,所述压电凹面为球面结构,所述压电片具有多个厚度不同的谐振单元;
声透镜,所述声透镜包括透镜凹面和透镜平面,所述透镜凹面为球面结构,所述透镜平面和所述压电平面贴合。
可选的,所述压电片的中心厚度为t1,所述压电片的边缘厚度为H,其中H-t1小于
Figure DEST_PATH_GDA0002716590670000021
λ为压电片的最高频率的波长。
可选的,所述压电片的压电平面的直径为d,所述透镜凹面的半径在
Figure DEST_PATH_GDA0002716590670000022
之间。
可选的,所述压电片的中心厚度0.2mm<t1<5mm,所述压电片的边缘厚度0.2mm<t1< 5mm,且t1<H。
可选的,所述压电片由1-3型压电复合材料制成。
一种换能系统,包括所述的透镜式多频聚焦超声换能器;
还包脉冲源,所述脉冲源用于激励所述压电片,所述脉冲源为多频脉冲源。
可选的,所述脉冲源为矩形脉冲。
可选的,所述矩形脉冲包含的频率为0.5-2MHz。
一种换能系统的声焦域轴向长度的确定方法,其包括如下步骤:
根据瑞利积分原理将透镜式多频聚焦超声换能器辐射面分成若干个微元dS,每个微元都可以视为辐射相应频率的球面波源,而空间声场中A点处产生的声压是由所有微元在该点处产生的声压叠加后的结果;
根据压电片的厚度确定压电片的频率f(R):
Figure DEST_PATH_GDA0002716590670000023
其中:h(R)为压电片厚度,c为弹性刚度常数,e为压电应力常数,ε为介电常数,ρ为压电复合材料密度,E为恒定电场,S为恒定应变,dS为积分微元,R为坐标原点至积分微元dS中心的距离;
空间声场中A点处声压的表达式如下:
Figure DEST_PATH_GDA0002716590670000024
式中,f(R)为频率,ρ0为传播媒质的密度,u为透镜式多频聚焦超声换能器辐射面上法向振速分布,ω(R)=2πf(R)为角频率,t为时间,k(R)=2πf(R)/c1为波数,c1为媒质中的声速,α为声透镜材料的吸收系数,其中,
Figure DEST_PATH_GDA0002716590670000031
c2为声透镜材料的声速;R2为声透镜的曲率半径。
其中,微元dS到A点的距离l的表达形式如下:
Figure DEST_PATH_GDA0002716590670000032
式中,l0为坐标原点到A点处的距离,θ为l0与Z轴的夹角,
Figure DEST_PATH_GDA0002716590670000033
为过场点A(x,y,z)且垂直相交OZ轴的直线与平面YOZ之间的夹角,β2为过积分面元dS且垂直相交OZ轴的直线与平面YOZ之间的夹角。
联立式(1),(2),(3)求得P(l,θ,t);
透镜式多频聚焦超声换能器的稳态声压以一段时间内的有效声压值Pe表示:
Figure DEST_PATH_GDA0002716590670000034
Figure DEST_PATH_GDA0002716590670000035
式中,T表示一段时间,f(R)max为最大频率即压电片的中心厚度为t1处对应的频率,f(R)min为最小频率即所述压电片的边缘厚度为H处对应的频率。
根据式(4)计算出透镜式多频聚焦超声换能器的声焦域轴向长度。
如上所述,本实用新型的压缩声焦域轴向长度的透镜式多频聚焦超声换能器、换能系统,至少具有以下有益效果:
本实用新型提出了透镜式多频聚焦超声换能器,即通过多个谐振单元实现了对不同频率的脉冲源的共振,同时配合声透镜压缩了声焦域轴向长度,在治疗横向薄层病变组织时,可以不损伤或者减少正常组织的损伤,减少治疗过程中的安全风险,解决了现有单频HIFU聚焦超声换能器声焦域轴向长度过长的问题。
附图说明
图1显示为本实用新型的一种压电片的纵向半剖示意图。
图2显示为本实用新型的一种压电片和声透镜配合的示意图。
图3显示为本实用新型的透镜式多频聚焦超声换能器辐射面辐射声压示意图。
图4显示为本实用新型的透镜式多频聚焦超声换能器系统的声焦域和传统的声焦域的对比图。
元件标号说明:压电片1,声透镜2,压电凹面11,空气背衬110,压电平面12,透镜凹面21,透镜平面22。
具体实施方式
以下由特定的具体实施例说明本实用新型的实施方式,熟悉此技术的人士可由本说明书所揭露的内容轻易地了解本实用新型的其他优点及功效。
请参阅图1至图4。须知,本说明书附图所示的结构、比例、大小等,均仅用以配合说明书所揭示的内容,以供熟悉此技术的人士了解与阅读,并非用以限定本实用新型可实施的限定条件,故不具技术上的实质意义,任何结构的修饰、比例关系的改变或大小的调整,在不影响本实用新型所能产生的功效及所能达成的目的下,均应仍落在本实用新型所揭示的技术内容能涵盖的范围内。同时,本说明书中所引用的如“上”、“下”、“左”、“右”、“中间”及“一”等的用语,亦仅为便于叙述的明了,而非用以限定本实用新型可实施的范围,其相对关系的改变或调整,在无实质变更技术内容下,当亦视为本实用新型可实施的范畴。
以下各个实施例仅是为了举例说明。各个实施例之间,可以进行组合,其不仅仅限于以下单个实施例展现的内容。
请参阅图1和图2,本实用新型提供一种透镜式多频聚焦超声换能器的实施例,包括:压电片1和声透镜2,所述压电片1包括压电凹面11和压电平面12,所述压电凹面11为球面结构,压电凹面11为空气背衬110,所述压电片1具有多个厚度不同的谐振单元;所述声透镜2包括透镜凹面21和透镜平面22,所述透镜凹面21为球面结构,所述透镜平面22和所述压电平面12贴合,透镜凹面21为辐射面。通过多个谐振单元实现了对不同频率的脉冲源的共振,同时配合声透镜2压缩了声焦域轴向长度,在治疗横向薄层病变组织时,可以不损伤或者减少正常组织的损伤,减少治疗过程中的安全风险,解决了现有单频HIFU聚焦超声换能器声焦域轴向长度过长的问题。
本实施例中,请参阅图1和图2,所述压电片1的中心厚度为t1,所述压电片1的边缘厚度为H,其中H-t1小于
Figure DEST_PATH_GDA0002716590670000041
所述压电片的中心厚度0.2mm<t1<5mm,所述压电片的边缘厚度0.2mm<H<5mm,且t1<H,为保证H与t1所对应的频率范围包含中华人民共和国医药行业标准YY 0592-2005中所规定的0.5-2MHz的范围。可选的,具体的电片中心t1=1.7mm(此厚度下的共振频率fmax=1.1MHz),边缘H=2mm(此厚度下的共振频率fmin=0.94MHz)所述压电片1的压电平面12的直径为d=40mm,压电凹面11的半径R1为667mm。H-t1小于
Figure DEST_PATH_GDA0002716590670000042
λ为最低频率的波长,即Δf=fmax-fmin应尽量小于0.16MHz。由于透镜式多频聚焦超声换能器具有多个不同的谐振频率,当Δf小于0.16MHz时聚焦效果更好。
本实施例中,所述透镜凹面21的半径R2
Figure DEST_PATH_GDA0002716590670000051
之间。R2取值在
Figure DEST_PATH_GDA0002716590670000052
之间,聚焦效果较好。
本实施例中,请参阅图1,所述压电片1由1-3型压电复合材料制成,1-3型压电复合材料由PZT-5和环氧树脂结合而成。用1-3型压电复合材料是由于其横向应力被聚合物介质吸收,环氧树脂的剪切模量远小于压电相的剪切模量,各个PZT柱之间的相互耦合很小,当1-3 型压电复合材料制作成换能器时,可以认为它是由不同厚度的PZT柱组成,这些PZT柱可以独立的振动。
一种换能系统的实施例,包括以上任一实施例所述的透镜式多频聚焦超声换能器;还包脉冲源,所述脉冲源用于激励所述压电片1,所述脉冲源为多频脉冲源。可选的,所述脉冲源为矩形脉冲。透镜式多频聚焦超声换能器拥有多个谐振频率点,怎么同时驱动这些谐振点是要解决的重要问题之一,可以采用矩形脉冲的方式驱动透镜式多频聚焦超声换能器,因为矩形脉冲的频域拥有多个不同的频率,能同时驱动透镜式多频聚焦超声换能器的多个谐振点。进一步可选的,所述矩形脉冲的频率为0.5-2MHz。
一种换能系统的声焦域轴向长度的确定方法,其包括如下步骤:
根据瑞利积分原理将换能器辐射面分成若干个微元dS,每个微元都可以视为辐射相应频率的球面波源,而空间声场中A点处产生的声压是由所有微元在该点处产生的声压叠加后的结果;
根据压电片1的厚度确定压电片1的频率f(R):
Figure DEST_PATH_GDA0002716590670000053
其中:h(R)为压电片1厚度,c为弹性刚度常数,e为压电应力常数,ε为介电常数,ρ为1-3压电复合材料密度,E为恒定电场,S为恒定应变,dS为积分微元,R为坐标原点至积分微元dS中心的距离;
空间声场中A点处声压的表达式如下:
Figure DEST_PATH_GDA0002716590670000054
式中,f(R)为频率,ρ0为传播媒质的密度,u为透镜式多频聚焦超声换能器辐射面上法向振速分布,ω(R)=2πf(R)为角频率,t为时间,k(R)=2πf(R)/c1为波数,c1为媒质中的声速,α为声透镜材料的吸收系数,其中,
Figure DEST_PATH_GDA0002716590670000061
c2为声透镜材料的声速,R2为声透镜的曲率半径;
其中,微元dS到A点的距离l的表达形式如下:
Figure DEST_PATH_GDA0002716590670000062
式中,l0为坐标原点到A点处的距离,θ为l0与Z轴的夹角,
Figure DEST_PATH_GDA0002716590670000063
为过场点A(x,y,z)且垂直相交OZ轴的直线与平面YOZ之间的夹角,β2为过积分面元dS且垂直相交OZ轴的直线与平面YOZ之间的夹角;
联立式(1),(2),(3)求得P(l,θ,t);
透镜式多频聚焦超声换能器的稳态声压以一段时间内的有效声压值Pe表示:
Figure DEST_PATH_GDA0002716590670000064
Figure DEST_PATH_GDA0002716590670000065
式中,T表示一段时间,f(R)max为最大频率即压电片1的中心厚度为t1处对应的频率, f(R)min为最小频率即所述压电片1的边缘厚度为H处对应的频率;
将P(l,θ,t)带入式中,并联立式(4)和式(5)求得一段时间内的有效声压值Pe
根据式(4)计算出透镜式多频聚焦超声换能器的声焦域轴向长度。
将透镜式多频聚焦超声换能器的声焦域轴向长度与相同开口直径d、相同曲率半径R2下的1MHz透镜式单频聚焦超声换能器的声焦域轴向长度进行对比。如图4所示,透镜式多频聚焦超声换能器的声焦域轴向长度为3mm,透镜式单频聚焦超声换能器的声焦域轴向长度为 8mm。
综上所述,本实用新型提出了透镜式多频聚焦超声换能器,即通过多个谐振单元实现了对不同频率的脉冲源的共振,同时配合声透镜2压缩了声焦域轴向长度,在治疗横向薄层病变组织时,可以不损伤或者减少正常组织的损伤,减少治疗过程中的安全风险,解决了现有单频HIFU聚焦超声换能器声焦域轴向长度过长的问题。所以,本实用新型有效克服了现有技术中的种种缺点而具高度产业利用价值。
上述实施例仅例示性说明本实用新型的原理及其功效,而非用于限制本实用新型。任何熟悉此技术的人士皆可在不违背本实用新型的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本实用新型所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本实用新型的权利要求所涵盖。

Claims (8)

1.一种压缩声焦域轴向长度的透镜式多频聚焦超声换能器,其特征在于,包括:
压电片,所述压电片包括压电凹面和压电平面,所述压电凹面为球面结构,所述压电片具有多个厚度不同的谐振单元;
声透镜,所述声透镜包括透镜凹面和透镜平面,所述透镜凹面为球面结构,所述透镜平面和所述压电平面贴合。
2.根据权利要求1所述的压缩声焦域轴向长度的透镜式多频聚焦超声换能器,其特征在于:所述压电片的中心厚度为t1,所述压电片的边缘厚度为H,其中H-t1小于
Figure DEST_PATH_FDA0002716590660000011
λ为压电片的最高频率的波长。
3.根据权利要求1或2所述的压缩声焦域轴向长度的透镜式多频聚焦超声换能器,其特征在于:所述压电片的压电平面的直径为d,所述透镜凹面的半径在
Figure DEST_PATH_FDA0002716590660000012
之间。
4.根据权利要求3所述的压缩声焦域轴向长度的透镜式多频聚焦超声换能器,其特征在于:所述压电片的中心厚度0.2mm<t1<5mm,所述压电片的边缘厚度0.2mm<t1<5mm,且t1<H。
5.根据权利要求1所述的压缩声焦域轴向长度的透镜式多频聚焦超声换能器,其特征在于:所述压电片由1-3型压电复合材料制成。
6.一种换能系统,其特征在于:包括权利要求1-5任一所述的透镜式多频聚焦超声换能器;
还包脉冲源,所述脉冲源用于激励所述压电片,所述脉冲源为多频脉冲源。
7.根据权利要求6所述的换能系统,其特征在于:所述脉冲源为矩形脉冲。
8.根据权利要求7所述的换能系统,其特征在于:所述矩形脉冲包含的频率为0.5-2MHz。
CN202020125652.9U 2020-01-20 2020-01-20 压缩声焦域轴向长度的透镜式多频聚焦超声换能器、换能系统 Active CN211964899U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202020125652.9U CN211964899U (zh) 2020-01-20 2020-01-20 压缩声焦域轴向长度的透镜式多频聚焦超声换能器、换能系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202020125652.9U CN211964899U (zh) 2020-01-20 2020-01-20 压缩声焦域轴向长度的透镜式多频聚焦超声换能器、换能系统

Publications (1)

Publication Number Publication Date
CN211964899U true CN211964899U (zh) 2020-11-20

Family

ID=73372181

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202020125652.9U Active CN211964899U (zh) 2020-01-20 2020-01-20 压缩声焦域轴向长度的透镜式多频聚焦超声换能器、换能系统

Country Status (1)

Country Link
CN (1) CN211964899U (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111112037A (zh) * 2020-01-20 2020-05-08 重庆医科大学 透镜式多频聚焦超声换能器、换能系统及其声焦域轴向长度的确定方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111112037A (zh) * 2020-01-20 2020-05-08 重庆医科大学 透镜式多频聚焦超声换能器、换能系统及其声焦域轴向长度的确定方法

Similar Documents

Publication Publication Date Title
US7674233B2 (en) Method and apparatus for focussing ultrasonic energy
EP2524651B1 (en) Ultrasonic transducer
US20060184072A1 (en) Ultrasonic medical treatment device with variable focal zone
CN111112037A (zh) 透镜式多频聚焦超声换能器、换能系统及其声焦域轴向长度的确定方法
CN102670242B (zh) 一种超声聚焦换能器
CN102105111A (zh) 超声波换能器系统
CN211964899U (zh) 压缩声焦域轴向长度的透镜式多频聚焦超声换能器、换能系统
CN108742528A (zh) 一种无水耦合的快速线性共焦扫描光声探头及其成像方法
CN211887791U (zh) 压缩声焦域轴向长度的变厚度聚焦超声换能器、换能系统
CN111687025A (zh) 双背衬超声换能器及制备方法
CN106823165A (zh) 一种带立体成像探头的单曲面条状功率超声装置
CN1879976A (zh) 球冠式凹球面超声换能器
CN112914508A (zh) 基于椭球面曲率的光声/超声双模态高频探头
US4659956A (en) Compound focus ultrasonic transducer
CN111151432A (zh) 压缩声焦域轴向长度的变厚度聚焦超声换能器、换能系统及其声焦域轴向长度的确定方法
CN1942218A (zh) 准自聚焦高强度大功率超声换能器
TW202245698A (zh) 具有諧波特性之壓電收發器的成像裝置
CN115105738B (zh) 一种可用于浅皮下透皮给药的小型换能器及其制作方法
CN201101823Y (zh) 高强度聚焦超声聚焦器
US20180345044A1 (en) Ultrasonic material, method for preparing the material, and ultrasonic probe comprising the material
CA3088814C (en) Ultrasonic transducer and focused ultrasound treatment device
CN114904170A (zh) 一种高强度聚焦超声治疗换能器及治疗设备
CN2384576Y (zh) 短轴方向复合聚焦的凸阵换能器
US20240082876A1 (en) Imaging devices having piezoelectric transceivers with harmonic characteristics
WO2023019554A1 (zh) 一种多频超声换能器及具有其的超声成像系统、方法

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant