CN210155839U - 一种基于5g车联网的绿波通行系统 - Google Patents

一种基于5g车联网的绿波通行系统 Download PDF

Info

Publication number
CN210155839U
CN210155839U CN201921523826.0U CN201921523826U CN210155839U CN 210155839 U CN210155839 U CN 210155839U CN 201921523826 U CN201921523826 U CN 201921523826U CN 210155839 U CN210155839 U CN 210155839U
Authority
CN
China
Prior art keywords
vehicle
traffic
power supply
capacitor
obu
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201921523826.0U
Other languages
English (en)
Inventor
郭小宽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangzhou Youke Technology Service Co Ltd
Original Assignee
Guangzhou Youke Technology Service Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangzhou Youke Technology Service Co Ltd filed Critical Guangzhou Youke Technology Service Co Ltd
Priority to CN201921523826.0U priority Critical patent/CN210155839U/zh
Application granted granted Critical
Publication of CN210155839U publication Critical patent/CN210155839U/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Traffic Control Systems (AREA)

Abstract

本实用新型公开了一种基于5G车联网的绿波通行系统,包含配置于通行道路上的正向车辆红绿灯、配置于通行道路上的反向车辆红绿灯、切换开关组件、交通信号机、路侧单元RSU、高精度定位模块、边缘MEC、车载单元OBU、显示装置和电源模块;所述电源模块包含PV光伏组件和供电转换电路,所述PV光伏组件通过供电转换电路连接车载单元OBU,其结合实时车辆信息和红绿灯信息,通过网联式交互,增加车辆协同感知范围,利用MEC边缘计算低时延下发给车端,便于车辆实时作出正确驾驶决策和调整灯态信息,确保行驶方向多个路口连续性绿波,达到高效通行目的。

Description

一种基于5G车联网的绿波通行系统
技术领域
本实用新型涉及绿波通行控制领域,尤其涉及一种基于5G车联网的绿波通行系统。
背景技术
目前城市信号灯控制的交通路口通行效率不高,主要表现为:早晚高峰时段拥堵比较严重;闲时段(尤其是夜间)车辆必须等待红绿灯周期性变化,车辆不能根据匹配通过路口的车速实时调整控制红绿灯状态;视线受限或司机对红绿灯信息的误判也会造成车辆追尾或闯红灯引起的交通事故导致拥堵。智能联网汽车将实现安全可靠、高效节能和信息服务,将来会改变人们生活出行。随着我国车联网产业上升到国家战略高度,产业政策持续利好,车联网技术标准体系已经从国家标准层面完成顶层设计,多个产业应用联盟也开始重视研究车联网应用和技术创新。实时车路协同是车联网典型应用场景之一,车路协同需要5G网络提供低时延和高可靠等关键技术,需要“智能的车”和“聪明的路”来改变当前交通状态,提升通行效率。
优先通行是实现绿波通行的基础功能,国内外进行了相关研究并提出几种算法,这些算法存在缺点和不足,以至于无法进一步应用推广,如:通过PC5接口调整红绿灯状态,受限于5.9G通信距离短和容易遮挡的影响,车路协同感知范围变小,无法提前作出预判和调整驾驶策略;固定位置改变红绿灯状态,没有结合实时车速、行驶方向、路口车流量大小等因素综合判断,算法不够灵活,不能保障快速通行。
现有的红绿灯预设控制程序,控制程序根据预设时间切换红绿灯上的信号灯,以实现传递不同的交通信号。红绿灯预设控制程序最主要的原因就是实现城市道路交通的有序通行,然而,预设的控制程序在人流量稀少的路段并不十分适用,毕竟驾驶员不希望在空荡的道路上耗费无谓的等候时间。
实用新型内容
为了克服现有技术的上述缺陷提供一种基于5G车联网的绿波通行系统,其结合实时车辆信息和红绿灯信息,通过网联式交互,增加车辆协同感知范围,利用MEC边缘计算低时延下发给车端,便于车辆实时作出正确驾驶决策和调整灯态信息,确保行驶方向多个路口连续性绿波,达到高效通行目的。
为实现上述目的,本实用新型提供如下技术方案:
一种基于5G车联网的绿波通行系统,包含配置于通行道路上的正向车辆红绿灯、配置于通行道路上的反向车辆红绿灯、切换开关组件、交通信号机、路侧单元RSU、高精度定位模块、边缘MEC、车载单元OBU、显示装置和电源模块;所述交通信号机通过切换开关组件分别连接配置于通行道路上的正向车辆红绿灯和配置于通行道路上的反向车辆红绿灯;所述交通信号机与路侧单元RSU连接,所述路侧单元RSU分别与高精度定位模块、边缘MEC连接,所述边缘MEC与车载单元OBU连接,所述车载单元OBU分别与显示装置和高精度定位模块连接;所述电源模块包含PV光伏组件和供电转换电路,所述PV光伏组件通过供电转换电路连接车载单元OBU;
所述供电转换电路包含DC12V电压输入端、第一二极管、第一电容、第二电容、LM2576S-5.0电源芯片、第二二极管、第一电感、第三电容、5V电压输出端、5V电压输入端、第四电容、TPS7A7001电源芯片、第一电阻、第二电阻、第五电容和3.3V电压输出端;
所述DC12V电压输入端分别连接第一二极管的负极、第一电容的一端、第二电容的一端和LM2576S-5.0电源芯片的VIN端,第一二极管的另一端分别与第一电容的另一端、第二电容的另一端、LM2576S-5.0电源芯片的EN#端、LM2576S-5.0电源芯片的GND端、第二二极管的正极、第三电容的一端连接并接地;所述第二二极管的负极分别连接LM2576S-5.0电源芯片的VOUT端和第一电感的一端,第一电感的另一端分别与第三电容的另一端、LM2576S-5.0电源芯片的FB端、5V输出端连接;
所述5V输入端分别与第四电容的一端、TPS7A7001电源芯片的EN端和TPS7A7001电源芯片的IN端,第四电容的另一端接地,TPS7A7001电源芯片的GND端与第一电阻的一端连接,第一电阻的另一端分别与第二电阻的一端和TPS7A7001电源芯片的FB端,第二电阻的另一端分别与第五电容的一端、TPS7A7001电源芯片的OUT端、3.3V输出端,所述第五电容的另一端接地;
作为本实用新型一种基于5G车联网的绿波通行系统的进一步优选方案,所述切换开关组件包括NPN型的三极管,三极管的基极经基极电阻与交通信号机的输出端电连接,三极管的发射极接地,三极管的集电极经常开式继电器与红绿灯电连接。
作为本实用新型一种基于5G车联网的绿波通行系统的进一步优选方案,所述交通信号机,用于周期性控制交叉路口交通信号灯变化,便于指导机动车、非机动车及行人安全通行;
路侧单元RSU:支持LTE、LTE-V2X、5G、5G-V2X通信制式,部署在红绿灯显示装置附近位置,支持与交通基础设施和车载单元OBU通信;
高精度定位模块:支持GPS、北斗多模定位能力,用于提供物体有效位置信息,且精度为厘米级;
边缘MEC:部署绿波通行控制策略及其他业务应用策略,边缘计算平台部署在基站侧或近端边缘机房,本地业务下沉到网络边缘,进一步降低网络传输时延,实时车路协同时延要求小于10 ms;
车载单元OBU:支持通信制式包含LTE、LTE-V2X、5G、5G-V2X,同时集成高精度定位模块和本地节点计算模块,支持OBU与OBU之间通信、OBU与RSU之间通信;
显示装置:用于显示红绿灯状态和车速引导信息,可嵌入仪表盘或高精度地图,便于驾驶员观察。
作为本实用新型一种基于5G车联网的绿波通行系统的进一步优选方案,还包括存储模块,所述车载单元OBU电连接所述存储模块以读取所述存储模块上的数据和/或将数据写入所述存储模块。
作为本实用新型一种基于5G车联网的绿波通行系统的进一步优选方案,路侧单元RSU通过UDP/TCP协议与交通信号机通信,交通信号机按照最小周期上报自身状态信息给路侧单元RSU,同时路侧单元RSU具有调整控制信号机功能。
作为本实用新型一种基于5G车联网的绿波通行系统的进一步优选方案,路侧单元RSU通过5G网络把交通信号机获取的红绿灯信息上报给MEC,利用MEC低时延下发给车载终端OBU,RSU和OBU建立实时通信,车路感知协同,使得车辆提前获取红绿灯状态信息,便于调整灯态及控制合理车速,以最优车速行驶。
作为本实用新型一种基于5G车联网的绿波通行系统的进一步优选方案,所述红绿灯信息包括灯态、倒计时和位置。
本实用新型采用以上技术方案与现有技术相比,具有以下技术效果:
1、本实用新型一种基于5G车联网的绿波通行系统,实现了更低时延的实时车路协同以及多个路口红绿灯信息协同感知,进而实现连续性绿波优先通行,减少路口交通拥堵,并提升运输效率;
2、本实用新型结合实时车辆信息和红绿灯信息,通过网联式交互,增加车辆协同感知范围,利用MEC边缘计算低时延下发给车端,便于车辆实时作出正确驾驶决策和调整灯态信息,确保行驶方向多个路口连续性绿波,达到高效通行目的;
3、结合5G网络边缘MEC低时延、高可靠等关键技术,对MEC与C-V2X融合实现绿波通行系统;该系统能够扩大智能网联车辆感知范围,多个路口红绿灯信息同时上报或调整处理,车与路信息实时协同感知,减少路口交通拥堵,可实现多个路口连续性绿波优先通行,提升交通运输效率。
附图说明
图1为本实用新型的整体示意图。
图2为本实用新型的供电转换电路电路图。
具体实施方式
下面将结合本实用新型实施例中的附图,对本实用新型实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本实用新型一部分实施例,而不是全部的实施例。基于本实用新型中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本实用新型保护的范围。
具体方案如下:一种基于5G车联网的绿波通行系统,如图1所示,包含配置于通行道路上的正向车辆红绿灯、配置于通行道路上的反向车辆红绿灯、切换开关组件、交通信号机、路侧单元RSU、高精度定位模块、边缘MEC、车载单元OBU、显示装置和电源模块;所述交通信号机通过切换开关组件分别连接配置于通行道路上的正向车辆红绿灯和配置于通行道路上的反向车辆红绿灯;所述交通信号机与路侧单元RSU连接,所述路侧单元RSU分别与高精度定位模块、边缘MEC连接,所述边缘MEC与车载单元OBU连接,所述车载单元OBU分别与显示装置和高精度定位模块连接;所述电源模块包含PV光伏组件和供电转换电路,所述PV光伏组件通过供电转换电路连接车载单元OBU;
如图2所示,所述供电转换电路包含DC12V电压输入端、第一二极管、第一电容、第二电容、LM2576S-5.0电源芯片、第二二极管、第一电感、第三电容、5V电压输出端、5V电压输入端、第四电容、TPS7A7001电源芯片、第一电阻、第二电阻、第五电容和3.3V电压输出端;
所述DC12V电压输入端分别连接第一二极管的负极、第一电容的一端、第二电容的一端和LM2576S-5.0电源芯片的VIN端,第一二极管的另一端分别与第一电容的另一端、第二电容的另一端、LM2576S-5.0电源芯片的EN#端、LM2576S-5.0电源芯片的GND端、第二二极管的正极、第三电容的一端连接并接地;所述第二二极管的负极分别连接LM2576S-5.0电源芯片的VOUT端和第一电感的一端,第一电感的另一端分别与第三电容的另一端、LM2576S-5.0电源芯片的FB端、5V输出端连接;
所述5V输入端分别与第四电容的一端、TPS7A7001电源芯片的EN端和TPS7A7001电源芯片的IN端,第四电容的另一端接地,TPS7A7001电源芯片的GND端与第一电阻的一端连接,第一电阻的另一端分别与第二电阻的一端和TPS7A7001电源芯片的FB端,第二电阻的另一端分别与第五电容的一端、TPS7A7001电源芯片的OUT端、3.3V输出端,所述第五电容的另一端接地;
优选的,所述切换开关组件包括NPN型的三极管,三极管的基极经基极电阻与交通信号机的输出端电连接,三极管的发射极接地,三极管的集电极经常开式继电器与红绿灯电连接。
优选的,还包括存储模块,所述车载单元OBU电连接所述存储模块以读取所述存储模块上的数据和/或将数据写入所述存储模块。
优选的,路侧单元RSU通过UDP/TCP协议与交通信号机通信,交通信号机按照最小周期上报自身状态信息给路侧单元RSU,同时路侧单元RSU具有调整控制信号机功能。
优选的,路侧单元RSU通过5G网络把交通信号机获取的红绿灯信息上报给MEC,利用MEC低时延下发给车载终端OBU,RSU和OBU建立实时通信,车路感知协同,使得车辆提前获取红绿灯状态信息,便于调整灯态及控制合理车速,以最优车速行驶。
优选的,所述红绿灯信息包括灯态、倒计时和位置。
具体原理如下:绿波通行业务是指车辆根据自身信息(包括车速、位置、离红绿灯距离等)和红绿灯信息(包括灯态、倒计时、位置等),综合计算判断,调整对应路口红绿灯状态及匹配通过路口车速,达到快速通行目的,有效缓解路口拥堵。
路侧单元(Road Side Unit,RSU)从交通信号机实时获取红绿灯的灯态信息,通过5G网络边缘MEC下发给搭载车载单元(On board Unit,OBU)的智能网联车辆;
交通信号机:周期性控制交叉路口交通信号灯变化,便于指导机动车、非机动车及行人安全通行;
路侧单元RSU:支持LTE、LTE-V2X、5G、5G-V2X等通信制式,部署在红绿灯显示装置附近位置,支持与交通基础设施(例如:信号机、传感器等)和车载单元OBU通信;
高精度定位模块:支持GPS、北斗等多模定位能力,提供物体有效位置信息,精度为厘米级;
边缘MEC:部署绿波通行控制策略及其他业务应用策略,边缘计算平台部署在基站侧或近端边缘机房,本地业务下沉到网络边缘,进一步降低网络传输时延,实时车路协同时延要求小于10 ms;
车载单元OBU:支持LTE、LTE-V2X、5G、5G-V2X等通信制式,同时集成高精度定位模块和本地节点计算模块,支持OBU与OBU之间通信、OBU与RSU之间通信;
显示装置:主要用于显示红绿灯状态和车速引导信息,可嵌入仪表盘或高精度地图,便于驾驶员观察。
在车辆驾驶过程中,当前遇到红绿灯变化,通过路口时间简化为6种模型:
当前是红灯,且倒计时为最小值范围,默认是小于等于5 s,车辆不能安全通过路口;
当前是红灯,且倒计时不是最小值范围,车辆不能安全通过路口;
若当前是黄灯,且是持续3 s闪烁,车辆不能安全通过路口;
若当前是绿灯,且倒计时为最小值范围,默认是小于等于3 s,车辆不能安全通过路口;
若当前是绿灯,且倒计时为大于3 s,车辆不能安全通过路口;
若当前是绿灯,车辆能安全通过路口。
实际应用中车辆实时根据路况信息调整匹配车速变化,即可能存在加速、匀速、降速。本文为了便于理解,假设车辆保持匀速行驶,车辆通过路口至少时间模型:T=D/V。其中,D为车辆实时离红绿灯路口距离,V为车辆实时车速。
系统设计核心是红灯则缩短和绿灯则延长,若当前是绿灯,且剩余倒计时时间不足保障车辆安全通过,立即调整延长绿灯时长到最大值,且倒计时显示为最大值,同时在车端仪表盘或高精度地图等装置同步显示灯态变化,车辆自动调整匹配车速,确保安全通过路口;若当前是红灯,且剩余倒计时可调整,在当前距离立即调整缩短红灯时长到最小值,且倒计时显示为最小值,缩短红灯等待时间目的是为了快速变为绿灯,同样显示灯态变化和调整匹配车速安全行驶。
基于MEC应用的绿波通行是实时车路协同典型业务应用之一,绿波通行系统组网架构,其中,红绿灯的灯态显示顺序从上到下分别是红灯、黄灯、绿灯;
系统涉及智能网联C-V2X(Cellular-Vehicle-to-Everything)设备、交通信号机、基站、边缘MEC、核心网和应用平台等设备。边缘MEC部署在基站侧或边缘机房,绿波通行调整控制策略和高精度地图等算法部署在MEC上,利用5G系统MEC边缘计算能力,将高带宽、低时延、本地化业务下沉到网络边缘,进一步提高网络传输效率。采用基于边缘MEC处理方式,具有较大技术优势:
(1)通过Uu口网联方式,不受PC5通信距离的限制,满足车与周边通信单元之间的信息交互,增加车辆对周围环境感知范围;
(2)本地化业务下沉到MEC网络边缘,利于低时延高可靠传输;
(3)多个路口红绿灯信息实时上报给MEC,MEC提供统一的管理决策与服务平台,实现多维时空环境下的联合作业应用,降低对现有智能系统感知和决策计算能力;
(4)基于路口车流量大小和多方向管控,以及大数据处理,调整红绿灯状态,实现绿波通行。
根据RSU归属MEC的属性,多个交通路口RSU实时上报信号机的红绿灯状态信息(包括灯状态、倒计时等),通过5G网络MEC边缘服务器低时延下发给车载单元OBU,OBU和RSU互为实时通信,构成实时车路协同感知系统。智能网联车辆实时感知到前方多个路口的红绿灯状态信息,行驶方向距离最近的红绿灯状态在车内仪表盘或高精度地图同步呈现,系统实时基于车辆根据自身信息(包括车速、位置、离红绿灯距离等)和红绿灯信息(包括灯态、倒计时、位置等),综合计算和判断是否能安全通过路口。基于红灯则缩短和绿灯则延长的调整原则,系统实时计算每个路口安全通行时间,有利于保证智能网联车辆,尤其是BRT公交、救急车、保障车等高优先权或特殊车辆,在绿灯状态下,以最优车速安全地通过路口,减少路口拥堵,从而提高通行效率,实现多个路口连续性绿波通行。同时也能起到节能减排作用,尤其是夜间行驶的时候比较明显。车辆与红绿灯具有动态调整自适应协同控制功能,是LTE-V/5G智能网联实时车路协同系统发展关键技术,也是自动驾驶技术发展的趋势;
RSU和信号机映射关系表示为:RSU安装位置紧挨红绿灯,每个RSU和交通信号机有对应唯一标识;一个RSU连接一个信号机,当然也可以同时连接多个信号机,考虑到实际应用,建议优先采用一对一映射关系。通信协议如下:
(1)RSU通过UDP/TCP协议与红绿灯的信号机通信,信号机按照最小周期上报自身状态信息(包括灯态、倒计时等)给RSU,同时RSU具有调整控制信号机功能;
(2)实时车路协同要求V2X设备(RSU和OBU)和交通基础设施(信号机、传感器)上报周期小于100 ms;
(3)利用RSU自身高精度模块定位,可实时获取自身位置信息,即对应红绿灯位置信息;
(4)RSU通过5G网络,把红绿灯信息(包括灯态、倒计时、位置等)上报给MEC,利用MEC低时延下发给车载终端OBU,RSU和OBU建立实时通信,车路感知协同,使得车辆提前获取红绿灯状态信息,便于调整灯态及控制合理车速,以最优车速行驶。
具体计算过程如下:
系统基于车辆根据自身信息(包括车速、位置、离红绿灯距离等)和红绿灯信息(包括灯态、倒计时、位置等),综合计算和判断是否能安全通过路口。假设当前红绿灯倒计时剩余时间为t,当前实时车速V,保持匀速。
(1)通过交互车端信息和红绿灯信息,实时计算出当前车辆离红绿灯路口的距离D;
(2)通过速率/时间关系,实时得出安全通过路口至少需要时间T,T=D/V。
2.2.2 决策和控制过程
根据上述实时计算结果,将T与t实时比较,若T>t,且t为绿灯倒计时时间,说明剩余绿灯时间太短,此时不能保证车辆安全通过路口,在不加速情况下,需要触发绿灯延长流程;若T<t时,且t为红灯倒计时时间,说明剩余红灯时间太长,在不减速情况下,此时车辆需要停止在路口等待变为绿灯,因此需要触发红灯缩短流程。假设当前车辆距离路口150 m(实际应用距离是变量D),当前车速为60 km/h,首先判断灯态,实现绿波通行过程如下:
(1)若当前是红灯,且倒计时显示为最小值范围,默认最小值是5 s(可配),为了安全起见,1~5 s内建议不做调整变化。一般情况下,默认剩余15 s内倒计时装置才显示。系统在行驶过程中灯状态信息和车速信息均有语音形式提示/界面实时呈现提示,提示内容包括但不限于:当前车速、灯状态、灯剩余时间、离路口距离、通过路口剩余时间、建议加速/匀速/减速到“XX km/h”等,进行合理车速信息引导,辅助提示司机或车辆。距离路口大于150 m,参考城市路口限速一般不高于60 km/h,5 s车辆运行最大距离85 m左右,因此在这个过程中,其实不需要减速,等5 s过后红灯正常变为绿灯,车辆在绿灯状态下,能够快速安全通过路口,实现绿波通行。
(2)若当前是红灯,且剩余时间大于5 s(可能大于15 s或小于15 s),满足红灯缩短条件,立即按照最大量缩短红灯时长x,减少到最小值5 s,且倒计时显示为最小值5 s,后面流程同步骤(1)。
(3)若当前是黄灯,通常是最大值不超过3 s,且持续闪烁,也是不可调整状态,等它正常变为红灯,后面流程同步骤(2),即红灯缩短。
(4)若当前是绿灯,且倒计时显示为最小值范围,默认最小值3 s,绿灯在1~3 s内建议也不再调整变化。6 s后正常变红灯,满足红灯缩短条件,立即按照最大量缩短红灯时长x,减到最小值5 s,且倒计时显示为最小值5 s,流程同步骤(2)。如果整个过程车辆不减速,11 s内灯态不可调整,预估11 s车辆运行距离183 m左右,出现闯红灯危险,因此在不可调整时间内,系统提醒车辆降速调整到50 km/h以下,后面流程同步骤(1)。因此遇到这种情况,车辆也可以提前在200 m左右调整控制红绿灯状态。
(5)若当前是绿灯,且剩余时间大于3 s(可能大于15 s或小于15 s),满足绿灯延长条件,立即按照最大量延长绿灯时长x,增加到最大值,且倒计时显示为最大值,足以保证车辆在绿灯状态下能够快速安全通过路口,实现绿波通行。系统在车辆行驶过程中灯状态信息和车速信息均有语音形式提示/界面实时呈现提示系统进行实时语音形式提示/界面实时呈现提示。
决策和控制过程
考虑到十字路口复杂性,在实际应用中,可能存在单方向或多方向短时间内同时多个车辆向红绿灯(RSU)发起调整控制请求,每个车辆根据自身需求发起调整请求,到底是哪个方向优先调整或哪个不允许调整,这时需要MEC统一管理调度处理及控制红绿灯策略。本系统进一步结合特殊车辆、路口每个方向车流量大小、调整周期等综合因素来判断和控制,有效减少频繁调整红绿灯状态次数,使得调整控制更加合理性和人性化。考虑到路口拥堵时车路流量大,交互处理数据量大,采用边缘云MEC服务器处理方式,服务器可部署在近端基站或边缘机房。路口监控设备(摄像头、雷达等)实时监测路口每个方向动态路况信息(车流量大小),并实时上报给边缘云MEC服务器,服务器与车载单元通信,MEC实时下发和更新调整策略,实现实时车路协同系统。多车协同调整控制红绿灯处理策略如下:
具有高优先权的特殊车辆(110/120/119等)
绿波通行红绿灯调整控制周期T(如默认4 s),即4 s内仅允许调整控制本方向红绿灯状态1次。特殊车辆是根据车载单元ID标识定义的,具有调整控制红绿灯最高优先级,因此调整周期可设置短些。
若仅本方向存在特殊车辆,并发起红绿灯调整控制请求,系统优先响应调整控制本方向红绿灯状态的请求,不考虑其他方向车流量大小和非特殊车辆调整周期,直接对这些特殊车辆给予高优先通行权限,即立即响应绿灯延长或红灯缩短处理原则。
在同一个周期T1,若有多个特殊车辆发起红绿灯调整控制请求(如A车第1 s发起请求,B车第3 s发起请求),系统仅处理第一辆车(A车)请求响应,其他车辆(B车)请求不处理,只能排队等待;第一个周期处理结束,若第二周期还是有车(B车)发出请求,则在第7 s响应处理请求。
普通车辆
绿波通行红绿灯调整控制周期t(如默认8 s),即8 s内允许调整控制本方向红绿灯状态1次。
同一方向(目前同向和相向红绿灯状态是保护同步的),在同一个周期t内,同时存在多个车辆发起红绿灯调整控制请求,且垂直方向并没有车辆经过,也不存在特殊车辆,系统仅处理第一辆车请求响应,其他车辆请求不处理,只能排队等待第二个周期,即本周不能满足绿波通行;若第二周期还有车辆发出请求(包括第一周期不能满足绿波通行的车辆),处理策略同第一个周期。
同一方向和垂直方向,在同一个周期t内,同时存在多个车辆发起红绿灯调整控制请求,也不存在特殊车辆,需要结合路口每个方向车流量大小和调整周期来判断和控制,系统优先响应调整控制车流量最大(拥堵严重的)的方向对应的红绿灯状态;第一个周期t1处理结束,若本方向车流量仍然过大,第二个周期t2还是调整控制本方向的红绿灯状态,其他方向只能排队等待处理,以此类推。
快速公交BRT
BRT是直行,社会车辆仅允许掉头的场景。绿波通行红绿灯调整控制周期t(如默认8 s),即8 s内允许调整本方向红绿灯状态1次。
仅有BRT车辆接近路口时,且发起红绿灯调整控制请求,系统响应处理BRT方向发起红绿灯调整控制请求,提高BRT通行效率和调度运力。
BRT车辆和社会车辆同时接近路口时,且同时发起红绿灯调整请求,系统优先响应处理BRT方向发起红绿灯调整控制请求,社会车辆请求排队等待;等没有BRT车辆发起红绿灯调整请求,才响应处理社会车辆发起红绿灯调整请求,提高BRT通行效率和调度运力。
仅有社会车辆接近路口时,且发起红绿灯调整控制请求,系统响应处理社会车辆方向发起红绿灯调整请求,减少社会车辆等待红灯时间;
最后应说明的几点是:首先,在本申请的描述中,需要说明的是,除非另有规定和限定,术语“安装”、“相连”、“连接”应做广义理解,可以是机械连接或电连接,也可以是两个元件内部的连通,可以是直接相连,“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变,则相对位置关系可能发生改变;
其次:本实用新型公开实施例附图中,只涉及到与本公开实施例涉及到的结构,其他结构可参考通常设计,在不冲突情况下,本实用新型同一实施例及不同实施例可以相互组合;
最后:以上所述仅为本实用新型的优选实施例而已,并不用于限制本实用新型,凡在本实用新型的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本实用新型的保护范围之内。

Claims (7)

1.一种基于5G车联网的绿波通行系统,其特征在于:包含配置于通行道路上的正向车辆红绿灯、配置于通行道路上的反向车辆红绿灯、切换开关组件、交通信号机、路侧单元RSU、高精度定位模块、边缘MEC、车载单元OBU、显示装置和电源模块;所述交通信号机通过切换开关组件分别连接配置于通行道路上的正向车辆红绿灯和配置于通行道路上的反向车辆红绿灯;所述交通信号机与路侧单元RSU连接,所述路侧单元RSU分别与高精度定位模块、边缘MEC连接,所述边缘MEC与车载单元OBU连接,所述车载单元OBU分别与显示装置和高精度定位模块连接;所述电源模块包含PV光伏组件和供电转换电路,所述PV光伏组件通过供电转换电路连接车载单元OBU;
所述供电转换电路包含DC12V电压输入端、第一二极管、第一电容、第二电容、LM2576S-5.0电源芯片、第二二极管、第一电感、第三电容、5V电压输出端、5V电压输入端、第四电容、TPS7A7001电源芯片、第一电阻、第二电阻、第五电容和3.3V电压输出端;
所述DC12V电压输入端分别连接第一二极管的负极、第一电容的一端、第二电容的一端和LM2576S-5.0电源芯片的VIN端,第一二极管的另一端分别与第一电容的另一端、第二电容的另一端、LM2576S-5.0电源芯片的EN#端、LM2576S-5.0电源芯片的GND端、第二二极管的正极、第三电容的一端连接并接地;所述第二二极管的负极分别连接LM2576S-5.0电源芯片的VOUT端和第一电感的一端,第一电感的另一端分别与第三电容的另一端、LM2576S-5.0电源芯片的FB端、5V输出端连接;
所述5V输入端分别与第四电容的一端、TPS7A7001电源芯片的EN端和TPS7A7001电源芯片的IN端,第四电容的另一端接地,TPS7A7001电源芯片的GND端与第一电阻的一端连接,第一电阻的另一端分别与第二电阻的一端和TPS7A7001电源芯片的FB端,第二电阻的另一端分别与第五电容的一端、TPS7A7001电源芯片的OUT端、3.3V输出端,所述第五电容的另一端接地。
2.根据权利要求1所述的一种基于5G车联网的绿波通行系统,其特征在于:所述切换开关组件包括NPN型的三极管,三极管的基极经基极电阻与交通信号机的输出端电连接,三极管的发射极接地,三极管的集电极经常开式继电器与红绿灯电连接。
3.根据权利要求1所述的一种基于5G车联网的绿波通行系统,其特征在于:所述交通信号机,用于周期性控制交叉路口交通信号灯变化,便于指导机动车、非机动车及行人安全通行;
路侧单元RSU:支持LTE、LTE-V2X、5G、5G-V2X通信制式,部署在红绿灯显示装置附近位置,支持与交通基础设施和车载单元OBU通信;
高精度定位模块:支持GPS、北斗多模定位能力,用于提供物体有效位置信息,且精度为厘米级;
边缘MEC:部署绿波通行控制策略及其他业务应用策略,边缘计算平台部署在基站侧或近端边缘机房,本地业务下沉到网络边缘,进一步降低网络传输时延,实时车路协同时延要求小于10 ms;
车载单元OBU:支持通信制式包含LTE、LTE-V2X、5G、5G-V2X,同时集成高精度定位模块和本地节点计算模块,支持OBU与OBU之间通信、OBU与RSU之间通信;
显示装置:用于显示红绿灯状态和车速引导信息,可嵌入仪表盘或高精度地图,便于驾驶员观察。
4.根据权利要求1所述的一种基于5G车联网的绿波通行系统,其特征在于:还包括存储模块,所述车载单元OBU电连接所述存储模块以读取所述存储模块上的数据和/或将数据写入所述存储模块。
5.根据权利要求1所述的一种基于5G车联网的绿波通行系统,其特征在于:路侧单元RSU通过UDP/TCP协议与交通信号机通信,交通信号机按照最小周期上报自身状态信息给路侧单元RSU,同时路侧单元RSU具有调整控制信号机功能。
6.根据权利要求1所述的一种基于5G车联网的绿波通行系统,其特征在于:路侧单元RSU通过5G网络把交通信号机获取的红绿灯信息上报给MEC,利用MEC低时延下发给车载终端OBU,RSU和OBU建立实时通信,车路感知协同,使得车辆提前获取红绿灯状态信息,便于调整灯态及控制合理车速,以最优车速行驶。
7.根据权利要求6所述的一种基于5G车联网的绿波通行系统,其特征在于:所述红绿灯信息包括灯态、倒计时和位置。
CN201921523826.0U 2019-09-13 2019-09-13 一种基于5g车联网的绿波通行系统 Expired - Fee Related CN210155839U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201921523826.0U CN210155839U (zh) 2019-09-13 2019-09-13 一种基于5g车联网的绿波通行系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201921523826.0U CN210155839U (zh) 2019-09-13 2019-09-13 一种基于5g车联网的绿波通行系统

Publications (1)

Publication Number Publication Date
CN210155839U true CN210155839U (zh) 2020-03-17

Family

ID=69767473

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201921523826.0U Expired - Fee Related CN210155839U (zh) 2019-09-13 2019-09-13 一种基于5g车联网的绿波通行系统

Country Status (1)

Country Link
CN (1) CN210155839U (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111739302A (zh) * 2020-08-07 2020-10-02 宁波均联智行科技有限公司 自动代客泊车的方法及系统
CN112258862A (zh) * 2020-11-10 2021-01-22 长沙理工大学 一种基于车路协同技术下车辆闯红灯预警方法
CN114339678A (zh) * 2022-01-06 2022-04-12 高新兴智联科技有限公司 一种基于v2x的车辆辅助驾驶通信方法和通信系统
CN114419904A (zh) * 2021-12-28 2022-04-29 中睿智能交通技术有限公司 一种基于车路云协同的信号机控制系统及控制方法
CN114944067A (zh) * 2022-05-16 2022-08-26 浙江海康智联科技有限公司 一种基于车路协同的弹性公交专用车道实现方法
CN114973700A (zh) * 2022-05-18 2022-08-30 浙江嘉兴数字城市实验室有限公司 一种基于车路协同应用的信号机网联安全装置及工作方法
CN114973695A (zh) * 2021-02-26 2022-08-30 长沙智能驾驶研究院有限公司 一种车辆优先通行控制方法及相关设备
CN115100886A (zh) * 2022-06-15 2022-09-23 新唐信通(浙江)科技有限公司 一种便于调度的车路协同交通声光装置
CN115512556A (zh) * 2022-09-28 2022-12-23 清华大学 用于特殊车辆优先通行的交通信号控制方法及装置
CN115631637A (zh) * 2022-10-26 2023-01-20 东风汽车集团股份有限公司 一种智能绿波速度判定方法及系统

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111739302A (zh) * 2020-08-07 2020-10-02 宁波均联智行科技有限公司 自动代客泊车的方法及系统
CN112258862A (zh) * 2020-11-10 2021-01-22 长沙理工大学 一种基于车路协同技术下车辆闯红灯预警方法
CN114973695A (zh) * 2021-02-26 2022-08-30 长沙智能驾驶研究院有限公司 一种车辆优先通行控制方法及相关设备
CN114973695B (zh) * 2021-02-26 2023-09-26 长沙智能驾驶研究院有限公司 一种车辆优先通行控制方法及相关设备
CN114419904A (zh) * 2021-12-28 2022-04-29 中睿智能交通技术有限公司 一种基于车路云协同的信号机控制系统及控制方法
CN114419904B (zh) * 2021-12-28 2024-04-02 中睿智能交通技术有限公司 一种基于车路云协同的信号机控制系统及控制方法
WO2023130528A1 (zh) * 2022-01-06 2023-07-13 高新兴智联科技有限公司 一种基于v2x的车辆辅助驾驶通信方法和通信系统
CN114339678A (zh) * 2022-01-06 2022-04-12 高新兴智联科技有限公司 一种基于v2x的车辆辅助驾驶通信方法和通信系统
CN114944067A (zh) * 2022-05-16 2022-08-26 浙江海康智联科技有限公司 一种基于车路协同的弹性公交专用车道实现方法
CN114944067B (zh) * 2022-05-16 2023-08-15 浙江海康智联科技有限公司 一种基于车路协同的弹性公交专用车道实现方法
CN114973700A (zh) * 2022-05-18 2022-08-30 浙江嘉兴数字城市实验室有限公司 一种基于车路协同应用的信号机网联安全装置及工作方法
CN114973700B (zh) * 2022-05-18 2024-03-26 浙江嘉兴数字城市实验室有限公司 一种基于车路协同应用的信号机网联安全装置及工作方法
CN115100886A (zh) * 2022-06-15 2022-09-23 新唐信通(浙江)科技有限公司 一种便于调度的车路协同交通声光装置
CN115512556A (zh) * 2022-09-28 2022-12-23 清华大学 用于特殊车辆优先通行的交通信号控制方法及装置
CN115631637A (zh) * 2022-10-26 2023-01-20 东风汽车集团股份有限公司 一种智能绿波速度判定方法及系统

Similar Documents

Publication Publication Date Title
CN210155839U (zh) 一种基于5g车联网的绿波通行系统
WO2022063331A1 (zh) 一种基于v2x的编队行驶智能网联客车
CN106467112A (zh) 车载辅助驾驶系统
CN104021684B (zh) 一种车路协同交通控制系统
CN107945540A (zh) 一种信号灯路口的车路协同控制系统
CN109166328B (zh) 一种基于胶轮虚拟轨道列车的运行控制系统及方法
CN210155833U (zh) 一种基于车路协同技术的公交优先交通信号控制系统
CN102658792B (zh) 车辆自动转换远近灯光的方法
CN108682168B (zh) 一种减少信号交叉口停车的车速引导系统及方法
WO2022042355A1 (zh) 路权分配与监管方法及装置
CN113178086A (zh) 基于车流量传感器实现区域交通绿波带的控制装置及方法
CN114708741B (zh) 一种基于v2x技术的多相位公交优先控制方法
CN113706893A (zh) 一种新型智慧公交协同管理系统
CN116222605A (zh) 一种基于物联网的智慧停车管理方法、系统及介质
CN108682144A (zh) 一种相同路段车辆串联行驶系统
CN111429728A (zh) 一种基于智慧灯杆的智慧交通系统及其方法
CN202528901U (zh) 车辆自动转换远近灯光的装置
CN219246203U (zh) 一种基于多源异构传感器的行人过街安全预警装置
CN111524372B (zh) 基于人工智能车路协同的公交信号优先实现方法和系统
CN117253370A (zh) 一种智慧城市道路车辆管控系统
CN117315962A (zh) 紧急车辆的优先通行方法、智慧交通系统及云平台
CN114973695B (zh) 一种车辆优先通行控制方法及相关设备
CN114023086A (zh) 一种基于v2x的交叉口交通信号控制系统
CN112133119A (zh) 一种基于v2x车联网技术的智能化车联系统
CN108376474A (zh) 基于ZigBee定位和数据传输的应急车道停车自动报警系统

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200317

Termination date: 20210913