CN210037682U - 一种可测量热导率和热扩散率的触觉传感器 - Google Patents
一种可测量热导率和热扩散率的触觉传感器 Download PDFInfo
- Publication number
- CN210037682U CN210037682U CN201920870410.XU CN201920870410U CN210037682U CN 210037682 U CN210037682 U CN 210037682U CN 201920870410 U CN201920870410 U CN 201920870410U CN 210037682 U CN210037682 U CN 210037682U
- Authority
- CN
- China
- Prior art keywords
- thermal
- temperature
- tactile sensor
- measuring
- measurement unit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000005259 measurement Methods 0.000 claims abstract description 69
- 238000010438 heat treatment Methods 0.000 claims abstract description 39
- 230000008859 change Effects 0.000 claims abstract description 15
- 239000000758 substrate Substances 0.000 claims abstract description 14
- 238000001514 detection method Methods 0.000 claims abstract description 13
- 238000009529 body temperature measurement Methods 0.000 claims abstract description 8
- 229910052751 metal Inorganic materials 0.000 claims description 30
- 239000002184 metal Substances 0.000 claims description 30
- 239000011241 protective layer Substances 0.000 claims description 4
- 230000002093 peripheral effect Effects 0.000 claims description 3
- 230000010354 integration Effects 0.000 abstract 1
- 239000000463 material Substances 0.000 description 21
- 238000012546 transfer Methods 0.000 description 9
- 230000009466 transformation Effects 0.000 description 7
- 238000000034 method Methods 0.000 description 6
- 230000006870 function Effects 0.000 description 3
- 230000035807 sensation Effects 0.000 description 3
- 229910000838 Al alloy Inorganic materials 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 229910021389 graphene Inorganic materials 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000008447 perception Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000005452 bending Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
Images
Landscapes
- Investigating Or Analyzing Materials Using Thermal Means (AREA)
Abstract
一种可测量热导率和热扩散率的触觉传感器,包括基底与设置在基底上的热测量单元和压力检测单元,压力检测单元用于感知接触压力,所述热测量单元包括测温区和加热区,所述加热区用于对所述热测量单元进行可控加热,所述测温区用于在触觉传感器与待测物体接触时在所述加热区未加热和加热的状态下分别测量热测量单元的初始温度和加热时的实测温度变化。利用该触觉传感器,可以实现温度以及接触物体热导率、热扩散率的测量,具有测量精度高、集成化、微型化等优点。
Description
技术领域
本实用新型涉及触觉传感器,特别是一种可用于测量热导率和热扩散率的触觉传感器。
背景技术
人体皮肤可以实现丰富的触觉感知,触觉传感器模仿人体皮肤复杂的传感系统,可以检测许多重要的信号比如压力、温度、纹理、振动等等,其中通过触觉传感器和物体的接触得到温度和传热速率等信息是一个重要的研究方向。
目前触觉传感器测量材料的热导率和热扩散率一般只能实现定性测量,无法对所接触材料热导率和热扩散率进行定量测量。在机器人探测的应用场景下,如何实现通过与材料的接触,准确定量测量多种材料热导率和热扩散率的柔性热觉触觉传感器,是现有技术亟待解决的问题。
实用新型内容
本实用新型的主要目的在于克服现有技术的不足,提供一种可用于测量热导率和热扩散率的触觉传感器。
为实现上述目的,本实用新型采用以下技术方案:
一种可测量热导率和热扩散率的触觉传感器,包括基底与设置在所述基底上的热测量单元和压力检测单元,所述压力检测单元用于感知接触压力,所述热测量单元包括测温区和加热区,所述加热区用于对所述热测量单元进行可控加热,所述测温区用于在触觉传感器与待测物体接触时在所述加热区未加热和加热的状态下分别测量热测量单元的初始温度和加热时的实测温度变化。
使用本触觉传感器对待测物体进行测量时,待测物体的热导率和热扩散率能够根据所述热测量单元未加热时的初始温度、加热时的实测温度变化、以及预先确定的本触觉传感器与待测物体接触时热测量单元温度随时间变化的关系得到。
进一步地:
所述测温区位于中心区域,所述加热区包围所述测温区。
所述热测量单元包括平面式金属结构和引线电极,所述测温区为所述金属结构的中心部分,所述加热区为所述金属结构的外围部分并与所述测温区形成电路上的串联关系,所述引线电极连接所述金属结构,用于将所述金属结构接通电源并提供所述热测量单元的电流和电压信号。
使用本触觉传感器对待测物体进行测量时,所述热测量单元对待测物体的实测温度能够根据由所述电压和所述电流确定的所述热测量单元的电阻以及预先标定得到的所述热测量单元的电阻与温度的关系得到。
所述引线电极包括第一至第四引线,其中第一引线和第二引线分别与所述加热区的两端连接,通过所述第一引线和所述第二引线测量流过所述金属结构的电流大小,第三引线和第四引线分别与所述测温区的两端连接,通过所述第三引线和所述第四引线测量流过所述测温区两端的电压大小。
所述金属结构为两边对称的迂回弯折盘绕式结构。
所述热测量单元和所述压力检测单元分别附着在所述基底的上表面和下表面。
触觉传感器还包括分别附着在压力检测单元和热测量单元的外侧表面的绝缘保护层。
本实用新型具有如下有益效果:
本实用新型提供了一种可用来测量热导率和热扩散率的触觉传感器,可被应用于对被接触材料的热导率和热扩散率进行定量测量,借助该触觉传感器测量材料的热导率和热扩散率简单有效,精度高。本实用新型的触觉传感器可以实际用于机器人灵巧手、智能义肢等需要热觉感知的场合,可以实现温度以及接触材料热导率、热扩散率的测量,具有测量精度高、集成化、微型化等优点。较佳地,该触觉传感器还可以集成用于感知接触压力的压力检测单元,由此形成同时具备热导率、热扩散率以及触觉测量功能的触觉传感器。
附图说明
图1是本实用新型实施例的测量应用场景示意图;
图2是本实用新型实施例的触觉传感器的立体分解结构示意图;
图3a和图3b是本实用新型实施例中热测量单元的结构示意图和金属结构局部放大图;
图4a和图4b是本实用新型实施例中触觉热测量单元的测量原理图和结构示意图。
图5是使用本实用新型实施例的触觉传感器进行测量的流程图;
图6是本实用新型实施例中的触觉热测量单元电阻-温度标定曲线图。
图7是本实用新型实施例的触觉传感器与铝合金接触时热测量单元测量数据点及拟合曲线。
具体实施方式
以下对本实用新型的实施方式作详细说明。应该强调的是,下述说明仅仅是示例性的,而不是为了限制本实用新型的范围及其应用。
参阅图1,在一种应用场景中,触觉传感器2贴合在机器人手指3(应用触觉传感器的设备)上,与待测物体1接触,获取被接触的待测物体温度。
参阅图2至图4b,在一种实施例中,一种可用于测量热导率和热扩散率的触觉传感器,包括基底4、设置在所述基底4上的热测量单元5和压力检测单元6,压力检测单元6用于感知接触压力,所述热测量单元5包括测温区11和加热区12,所述加热区12用于对所述热测量单元5进行可控加热,所述测温区11用于在触觉传感器与待测物体接触时在所述加热区12未加热和加热的状态下分别测量热测量单元5的初始温度和加热时的实测温度变化。
使用本触觉传感器对待测物体进行测量时,待测物体的热导率和热扩散率能够根据本触觉传感器所测量的所述热测量单元5未加热时的初始温度、加热时的实测温度变化、以及预先确定的触觉传感器与待测物体接触时热测量单元5温度随时间变化的关系得到。
在优选的实施例中,所述测温区11位于中心区域,所述加热区12包围所述测温区11。
参阅图2至图4b,在更优选的实施例中,所述热测量单元5包括平面式金属结构9和引线电极10,所述测温区11为所述金属结构9的中心部分,所述加热区12为所述金属结构9的外围部分并与所述测温区11形成电路上的串联关系,所述引线电极10连接所述金属结构9,用于将所述金属结构9接通电源并提供所述热测量单元5的电流和电压信号。使用本触觉传感器对待测物体进行测量时,所述热测量单元5对待测物体的实测温度能够根据由所述电压和所述电流确定的所述热测量单元5的电阻以及预先标定得到的所述热测量单元5的电阻与温度的关系得到。
参阅图5,具体地,可先向热测量单元5内通入一个较小电流,测量此时的电压和电流,得到加热区12未加热时热测量单元5的初始温度,然后再向热测量单元5内通入一个较大电流,测量此时的电压和电流,得到加热区12加热时热测量单元5的温度变化。
在更优选的实施例中,所述引线电极10包括第一至第四引线,其中第一引线A和第二引线D分别与所述加热区12的两端连接,通过所述第一引线A和所述第二引线D测量流过所述金属结构9的电流大小,第三引线B和第四引线C分别与所述测温区11的两端连接,通过所述第三引线B和所述第四引线C测量流过所述测温区11两端的电压大小。
采用上述引线电极的优选方案,可以避免引线电阻对电阻测量的影响,提高热测量单元电阻的测量精度。
参阅图3b和图4b,在更优选的实施例中,所述金属结构9为两边对称的迂回弯折盘绕式结构。
在具体实施例中,所述压力检测单元6可以包括:压力敏感材料和引线电极,压力敏感材料可以为激光诱导石墨烯LIG。
在较佳的实施例中,所述热测量单元5和所述压力检测单元6分别附着在所述基底4的上表面和下表面。
参阅图2,在较佳的实施例中,触觉传感器还包括分别附着在热测量单元5和压力检测单元6的外侧表面的绝缘保护层7、8。
参阅图5,一种测量物体的热导率和热扩散率的方法,使用所述的触觉传感器测量待测物体的热导率和热扩散率。
下面对该触觉传感器的具体实施例及借助该触觉传感器的测量方法进行详细介绍如下。
该触觉传感器包括基底、压力检测单元、热测量单元和绝缘保护层:压力检测单元附着在基底上表面,用于感知接触压力,通过测量压力值判断触觉传感器与待测材料接触;热测量单元附着在基底下表面,可以通过测量热测量单元与待测材料接触时的电压和电流,根据所述电压和电流,确定热测量单元的电阻;根据热测量单元的电阻,以及预先标定得到的热测量单元电阻与温度的关系,确定热测量单元与待测物体接触面的实测温度。绝缘保护层分别附着在压力检测单元和热测量单元的上表面。
测量时,根据触觉传感器与待测材料接触时热测量单元与待测物体接触面的温度随时间变化的关系,以及所述热测量单元与待测物体接触面的实测温度(包括加热区未加热时热测量单元的初始温度和加热区加热时的温度变化),得到待测材料的热导率和热扩散率。所述温度随时间变化的关系可预先通过一个理论传热模型确定。
在一个实施例中,所述压力检测单元可以包括:压力敏感材料和引线电极,压力敏感材料可以为激光诱导石墨烯LIG;
在一个实施例中,所述热测量单元包括:金属结构和引线电极,其中,所述金属结构包括:
测温区,位于金属结构的中心;
加热区,位于金属结构边缘,包围测温区;
其中,所述引线电极包括:
第一引线和第二引线,与金属结构加热区和外部电流表连接;所述外部电流表测量的电流大小为通过金属结构的电流大小。
第三引线和第四引线,与金属结构测温区和外部电流表连接;所述外部电压表测量的电压大小为金属结构测温区两端的电压大小;
具体实施时,上述四线方法测量的方案,可以避免引线电阻对电阻测量的影响,提高热测量单元电阻的测量精度。
具体实施时,金属结构包括测温区和加热区,测温区位于金属结构的中心,加热区位于金属结构边缘包围测温区的优点是:尽量避免测量过程中除垂直于接触面之外其他方向的传热,使得触觉传感器测量过程接近理论模型设定。
具体实施时,触觉传感器放置在机器人手指上,机器人控制手指与材料接触,触觉传感器压力检测单元检测到设定压力值说明实现接触。
热测量单元内通入一个较小电流,测量此时的电压和电流,测量原理如图4a和图4b所示,电流从A端流入热测量单元金属结构,从D端出,测量通过的电流和B、C两端的电压,得到测温区电阻,再根据标定得到的测温区电阻和温度的关系,如图6所示,得到未加热时热测量单元的初始温度;
热测量单元内通入一个较大电流,测量此时的电压和电流,得到热测量单元加热时的温度变化。
根据热测量单元的初始温度和加热时的温度变化,以及触觉传感器与待测物体接触时热测量单元温度随时间变化的关系,得到待测材料的热导率和热扩散率。
触觉传感器与待测物体接触时热测量单元温度随时间变化的关系可以通过建立一个传热模型求得。
在一个实施例中,所述传热模型的传热方程可以为:
所述传热方程的起始条件可以为:
T3(x,0)=T0; (4)
T2(x,0)=T0; (5)
T1(x,0)=T0; (6)
所述传热方程的边界条件可以为:
T1(x,t)|x=-∞=T0=T3(x,t)|x=∞; (10)
所述传热方程经过拉氏变换后存在的通解:
由所述边界条件可得:A1=B3=0;
对所述边界条件作拉式变换,再将所述通解带入拉式变换后的边界条件,得到:
所述温度随时间变化的函数为温度随时间变化的关系;
其中,T0为系统初始温度,T1为待测物体材料温度,T2为热觉触觉传感器的温度,T3为应用热觉触觉传感器设备的温度,x为热测量单元与待测物体接触面的距离,t为时间,α1为待测物体材料热扩散率,α2为热觉触觉传感器热扩散率,α3为应用热觉触觉传感器设备的热扩散率,k1为待测物体材料热导率,k2为热觉触觉传感器热导率,k3为应用热觉触觉传感器设备的热导率,qv为热觉触觉传感器内存在的一个内热源,L1为热觉触觉传感器的厚度,θ1为T1经过拉式变换后的值,θ2为T2经过拉式变换后的值,θ3为T3经过拉式变换后的值,Vj为权系数,N为阶数(例如取10),A1,A2,A3,B1,B2和B3为通解中待求的未知数,s为复变量,p1,p2和p3为中间变量,e为自然常数,R1为触觉传感器与待测物体之间的接触热阻,R2为触觉传感器压力检测单元的热阻。
根据式(17),及热测量单元测量得到的不同时刻的实际温度值,用最小二乘法拟合即可求出待测材料的热导率和热扩散率。
如图7为触觉传感器与铝合金接触时热测量单元测量数据点及拟合曲线。经过大量的实验表明,该触觉传感器拟合材料热导率的误差在4.5%以内,拟合材料热扩散率的误差在8.5%以内。
以上内容是结合具体/优选的实施方式对本实用新型所作的进一步详细说明,不能认定本实用新型的具体实施只局限于这些说明。对于本实用新型所属技术领域的普通技术人员来说,在不脱离本实用新型构思的前提下,其还可以对这些已描述的实施方式做出若干替代或变型,而这些替代或变型方式都应当视为属于本实用新型的保护范围。
Claims (7)
1.一种可测量热导率和热扩散率的触觉传感器,其特征在于,包括基底与设置在所述基底上的热测量单元和压力检测单元,所述压力检测单元用于感知接触压力,所述热测量单元包括测温区和加热区,所述加热区用于对所述热测量单元进行可控加热,所述测温区用于在触觉传感器与待测物体接触时在所述加热区未加热和加热的状态下分别测量热测量单元的初始温度和加热时的实测温度变化。
2.如权利要求1所述的触觉传感器,其特征在于,所述测温区位于中心区域,所述加热区包围所述测温区。
3.如权利要求1所述的触觉传感器,其特征在于,所述热测量单元包括平面式金属结构和引线电极,所述测温区为所述金属结构的中心部分,所述加热区为所述金属结构的外围部分并与所述测温区形成电路上的串联关系,所述引线电极连接所述金属结构,用于将所述金属结构接通电源并提供所述热测量单元的电流和电压信号。
4.如权利要求3所述的触觉传感器,其特征在于,所述引线电极包括第一至第四引线,其中第一引线和第二引线分别与所述加热区的两端连接,通过所述第一引线和所述第二引线测量流过所述金属结构的电流大小,第三引线和第四引线分别与所述测温区的两端连接,通过所述第三引线和所述第四引线测量流过所述测温区两端的电压大小。
5.如权利要求3或4所述的触觉传感器,其特征在于,所述金属结构为两边对称的迂回弯折盘绕式结构。
6.如权利要求1至4任一项所述的触觉传感器,其特征在于,所述热测量单元和所述压力检测单元分别附着在所述基底的上表面和下表面。
7.如权利要求6所述的触觉传感器,其特征在于,还包括分别附着在压力检测单元和热测量单元的外侧表面的两个绝缘保护层。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201920870410.XU CN210037682U (zh) | 2019-06-11 | 2019-06-11 | 一种可测量热导率和热扩散率的触觉传感器 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201920870410.XU CN210037682U (zh) | 2019-06-11 | 2019-06-11 | 一种可测量热导率和热扩散率的触觉传感器 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN210037682U true CN210037682U (zh) | 2020-02-07 |
Family
ID=69347301
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201920870410.XU Active CN210037682U (zh) | 2019-06-11 | 2019-06-11 | 一种可测量热导率和热扩散率的触觉传感器 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN210037682U (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111975454A (zh) * | 2020-07-24 | 2020-11-24 | 清华大学深圳国际研究生院 | 一种使用薄膜热电阻测量刀具温度的结构与制备方法 |
CN114034409A (zh) * | 2020-11-16 | 2022-02-11 | 中国科学院理化技术研究所 | 低温温度传感器的安装单元、低温检测装置及其安装方法 |
-
2019
- 2019-06-11 CN CN201920870410.XU patent/CN210037682U/zh active Active
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111975454A (zh) * | 2020-07-24 | 2020-11-24 | 清华大学深圳国际研究生院 | 一种使用薄膜热电阻测量刀具温度的结构与制备方法 |
CN111975454B (zh) * | 2020-07-24 | 2022-01-04 | 清华大学深圳国际研究生院 | 一种使用薄膜热电阻测量刀具温度的结构与制备方法 |
CN114034409A (zh) * | 2020-11-16 | 2022-02-11 | 中国科学院理化技术研究所 | 低温温度传感器的安装单元、低温检测装置及其安装方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN210037682U (zh) | 一种可测量热导率和热扩散率的触觉传感器 | |
EP2491360B1 (en) | Eddy current thermometer | |
CN110108751B (zh) | 一种可测量热导率和热扩散率的触觉传感器及测量方法 | |
CN102608153B (zh) | 多晶硅-金属热电偶塞贝克系数的在线测试结构 | |
CN105136326B (zh) | 一种温度传感器及其制备方法 | |
CN109540961A (zh) | 测量热学参数的方法、装置及热觉传感器 | |
CN111465131A (zh) | 一种基于厚膜技术的测温反馈电磁感应发热体 | |
CN112293804A (zh) | 加热组件、测温方法及气溶胶产生装置 | |
Bian et al. | Thermal analysis of ultrathin, compliant sensors for characterization of the human skin | |
CN111157039B (zh) | 一种可同时检测湿度、温度和流量的多功能气体传感器及其制备方法 | |
CN211982174U (zh) | 一种基于厚膜技术的测温反馈电磁感应发热体 | |
CN101548881B (zh) | 精确测量皮肤温度的薄膜铂电阻温度传感器 | |
CN202403836U (zh) | 多晶硅-金属热电偶塞贝克系数的在线测试结构 | |
CN206906303U (zh) | 多组分气体传感器 | |
CN104820449A (zh) | 一种发热模拟装置 | |
CN108801537A (zh) | 一种微压力值传感器及其制备方法 | |
CN214483280U (zh) | 加热组件及气溶胶产生装置 | |
CN209264136U (zh) | 热觉传感器 | |
WO2015020301A1 (ko) | 분포형 열전대 온도센서 및 이를 사용하는 열전대 기반 분포형 온도측정 시스템 | |
Russell | Thermal sensor for object shape and material constitution | |
JP2567441B2 (ja) | 熱伝導率の測定方法、測定装置およびサーミスタ | |
CN209086186U (zh) | 一种材料三维各向异性热导率无损测试装置 | |
CN112880847A (zh) | 温度检测装置及系统 | |
US11141076B1 (en) | Thermally activated non-invasive blood perfusion measurement systems | |
CN110996409A (zh) | 均热防烫伤石墨烯发热片及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant |