CN209804667U - Laminated antireflection film for crystalline silicon solar cell - Google Patents
Laminated antireflection film for crystalline silicon solar cell Download PDFInfo
- Publication number
- CN209804667U CN209804667U CN201920583284.XU CN201920583284U CN209804667U CN 209804667 U CN209804667 U CN 209804667U CN 201920583284 U CN201920583284 U CN 201920583284U CN 209804667 U CN209804667 U CN 209804667U
- Authority
- CN
- China
- Prior art keywords
- layer
- silicon
- crystalline silicon
- solar cell
- silicon dioxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 229910021419 crystalline silicon Inorganic materials 0.000 title claims abstract description 40
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 85
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 43
- 235000012239 silicon dioxide Nutrition 0.000 claims abstract description 36
- 239000002131 composite material Substances 0.000 claims abstract description 30
- 229910052581 Si3N4 Inorganic materials 0.000 claims abstract description 23
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims abstract description 23
- TVUBDAUPRIFHFN-UHFFFAOYSA-N dioxosilane;oxygen(2-);titanium(4+) Chemical compound [O-2].[O-2].[Ti+4].O=[Si]=O TVUBDAUPRIFHFN-UHFFFAOYSA-N 0.000 claims abstract description 21
- 239000006087 Silane Coupling Agent Substances 0.000 claims description 6
- 238000003475 lamination Methods 0.000 claims 1
- 239000010410 layer Substances 0.000 abstract description 87
- 230000000694 effects Effects 0.000 abstract description 14
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 abstract description 3
- 238000002161 passivation Methods 0.000 abstract description 3
- 230000001699 photocatalysis Effects 0.000 abstract description 3
- 229910052710 silicon Inorganic materials 0.000 abstract description 3
- 239000010703 silicon Substances 0.000 abstract description 3
- 239000000758 substrate Substances 0.000 abstract description 3
- 239000011247 coating layer Substances 0.000 abstract 1
- 239000010408 film Substances 0.000 description 28
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 10
- 239000010936 titanium Substances 0.000 description 5
- 239000004408 titanium dioxide Substances 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 230000003595 spectral effect Effects 0.000 description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 238000010248 power generation Methods 0.000 description 3
- 238000002310 reflectometry Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- 238000005538 encapsulation Methods 0.000 description 2
- 230000031700 light absorption Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000004806 packaging method and process Methods 0.000 description 2
- 238000007146 photocatalysis Methods 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 239000007822 coupling agent Substances 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 238000005121 nitriding Methods 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
Landscapes
- Laminated Bodies (AREA)
Abstract
本实用新型提供一种晶硅太阳能电池用的叠层减反射膜,包括在晶硅太阳能电池表面依次层叠的氮化硅层、二氧化硅层以及二氧化钛‑二氧化硅复合层,所述氮化硅层、二氧化硅层以及二氧化钛‑二氧化硅复合层均为独立的减反射膜层。可以对反射光依次进行干涉抵消,形成三重减反射,效果更好;氮化硅层作为接触Si基体(即晶硅太阳能电池)的减反射膜,其不但具有减反特性,还具有表面钝化作用,能有效的提高晶硅电池的少数载流子寿命;二氧化钛‑二氧化硅复合层作为最表层的减反射膜,具有一定的硬度和光催化作用,这能有效的防止晶硅电池片的表面擦伤和污渍附着;二氧化硅作为中间层,起到过渡结合的作用,使层叠结构更为紧凑、牢固。
The utility model provides a laminated anti-reflection film for a crystalline silicon solar cell, which comprises a silicon nitride layer, a silicon dioxide layer and a titanium dioxide-silicon dioxide composite layer sequentially stacked on the surface of a crystalline silicon solar cell. The silicon layer, the silicon dioxide layer and the titanium dioxide-silicon dioxide composite layer are all independent anti-reflection coating layers. The reflected light can be interfered and canceled in turn to form a triple anti-reflection, which has a better effect; the silicon nitride layer is used as an anti-reflection film contacting the Si substrate (that is, a crystalline silicon solar cell), which not only has anti-reflection characteristics, but also has surface passivation. It can effectively improve the minority carrier life of crystalline silicon cells; the titanium dioxide-silicon dioxide composite layer, as the outermost anti-reflection film, has a certain hardness and photocatalytic effect, which can effectively prevent the surface of crystalline silicon cells from Scratches and stains adhere; silica, as the middle layer, plays the role of transitional bonding, making the laminated structure more compact and firm.
Description
技术领域technical field
本实用新型涉及光伏发电领域,具体涉及一种晶硅太阳能电池用的叠层减反射膜。The utility model relates to the field of photovoltaic power generation, in particular to a laminated anti-reflection film for crystalline silicon solar cells.
背景技术Background technique
晶硅太阳能电池片作用是将太阳能转化为电能使用,其转换效率一般定义为晶硅太阳能电池片的输出功率与入射到晶硅太阳能电池片表面的太阳光总功率之比。晶硅太阳能电池组件是太阳能发电系统中的核心部分,也是太阳能发电系统中最重要的部分。因此,为了增加封装后晶硅太阳能电池片对光的吸收以提高转换效率,则要减少太阳光照射到晶硅太阳能电池片表面过程中产生的反射损失。The role of crystalline silicon solar cells is to convert solar energy into electrical energy, and its conversion efficiency is generally defined as the ratio of the output power of crystalline silicon solar cells to the total power of sunlight incident on the surface of crystalline silicon solar cells. The crystalline silicon solar cell module is the core part of the solar power generation system, and also the most important part of the solar power generation system. Therefore, in order to increase the absorption of light by the packaged crystalline silicon solar cells to improve the conversion efficiency, it is necessary to reduce the reflection loss generated during the process of sunlight irradiating the surface of the crystalline silicon solar cells.
随着太阳能技术的发展,通常在晶硅太阳能电池表面镀上减反射膜来减少反射损失以增加对光的吸收。目前出现了多种减反射膜,通常采用单一层结构,难以获得理想的减反射效果。With the development of solar technology, anti-reflection coatings are usually coated on the surface of crystalline silicon solar cells to reduce reflection loss and increase light absorption. At present, there are many kinds of anti-reflection coatings, which usually adopt a single-layer structure, and it is difficult to obtain ideal anti-reflection effects.
实用新型内容Utility model content
为此,本实用新型提供一种结构紧凑、合理、减反射效果更好的晶硅太阳能电池用的叠层减反射膜。Therefore, the utility model provides a laminated anti-reflection film for crystalline silicon solar cells with compact structure, reasonable structure and better anti-reflection effect.
为实现上述目的,本实用新型提供的技术方案如下:In order to achieve the above object, the technical scheme provided by the utility model is as follows:
一种晶硅太阳能电池用的叠层减反射膜,包括在晶硅太阳能电池表面依次层叠的氮化硅层、二氧化硅层以及二氧化钛-二氧化硅复合层,所述氮化硅层、二氧化硅层以及二氧化钛-二氧化硅复合层均为独立的减反射膜层。A laminated anti-reflection film for a crystalline silicon solar cell, comprising a silicon nitride layer, a silicon dioxide layer and a titanium dioxide-silicon dioxide composite layer sequentially stacked on the surface of a crystalline silicon solar cell, the silicon nitride layer, the two Both the silicon oxide layer and the titanium dioxide-silicon dioxide composite layer are independent anti-reflection film layers.
进一步的,所述二氧化钛-二氧化硅复合层的折射率大于二氧化硅层的折射率。Further, the refractive index of the titanium dioxide-silicon dioxide composite layer is greater than that of the silicon dioxide layer.
进一步的,所述氮化硅层的折射率为2.01。Further, the refractive index of the silicon nitride layer is 2.01.
进一步的,所述氮化硅层的膜层厚度为75-80nm。Further, the film thickness of the silicon nitride layer is 75-80 nm.
进一步的,所述二氧化硅层的折射率为1.43。Further, the refractive index of the silicon dioxide layer is 1.43.
进一步的,所述二氧化硅层的膜层厚度为105-112nm。Further, the film thickness of the silicon dioxide layer is 105-112 nm.
进一步的,所述二氧化钛-二氧化硅复合层的折射率为1.74。Further, the refractive index of the titanium dioxide-silicon dioxide composite layer is 1.74.
进一步的,所述二氧化钛-二氧化硅复合层的膜层厚度为85-92nm。Further, the film thickness of the titanium dioxide-silicon dioxide composite layer is 85-92 nm.
进一步的,所述二氧化硅层为具有硅烷偶联剂的二氧化硅层。Further, the silicon dioxide layer is a silicon dioxide layer with a silane coupling agent.
通过本实用新型提供的技术方案,具有如下有益效果:The technical solution provided by the utility model has the following beneficial effects:
采用依次层叠的氮化硅层、二氧化硅层以及二氧化钛-二氧化硅复合层,且所述氮化硅层、二氧化硅层以及二氧化钛-二氧化硅复合层均为独立的减反射膜层,可以对反射光依次进行干涉抵消,形成三重减反射,效果更好;Silicon nitride layer, silicon dioxide layer and titanium dioxide-silicon dioxide composite layer stacked in sequence, and the silicon nitride layer, silicon dioxide layer and titanium dioxide-silicon dioxide composite layer are all independent anti-reflection film layers , the reflected light can be sequentially interfered and canceled to form a triple anti-reflection with better effect;
氮化硅层作为接触Si基体(即晶硅太阳能电池)的减反射膜,其不但具有减反特性,还具有表面钝化作用,能有效的提高晶硅电池的少数载流子寿命;二氧化钛-二氧化硅复合层作为最表层的减反射膜,二氧化钛和二氧化硅的混合能得到Si-O-Ti键,该键具有交联作用,是两种物质均匀分散,同时得到折射率介于两物质之间的薄膜,二氧化钛使得该层具有一定的硬度和光催化作用,这能有效的防止晶硅电池片的表面擦伤和污渍附着;二氧化硅作为中间层,起到过渡结合的作用,使层叠结构更为紧凑、牢固;The silicon nitride layer is used as an anti-reflection film in contact with the Si substrate (i.e., crystalline silicon solar cells), which not only has anti-reflection properties, but also has surface passivation, which can effectively improve the minority carrier lifetime of crystalline silicon cells; titanium dioxide- The silicon dioxide composite layer is used as the outermost anti-reflection film. The mixture of titanium dioxide and silicon dioxide can obtain Si-O-Ti bonds. The thin film between substances, titanium dioxide makes the layer have a certain hardness and photocatalysis, which can effectively prevent the surface of the crystalline silicon cell from scratches and stains from adhering; The stacked structure is more compact and firm;
本方案的叠层减反射膜结构紧凑、合理、减反射效果更好,在晶硅太阳能电池封装条件下,对波长220-1200nm范围内的光都具有很好的减反射效果,从而使晶硅太阳能电池封装后的转换效率提高。The laminated anti-reflection film of this solution has a compact and reasonable structure and better anti-reflection effect. Under the packaging conditions of crystalline silicon solar cells, it has a good anti-reflection effect on light in the wavelength range of 220-1200nm, so that the crystalline silicon The conversion efficiency of the solar cell after encapsulation is improved.
附图说明Description of drawings
图1所示为实施例中叠层减反射膜的结构示意图。FIG. 1 is a schematic diagram of the structure of the laminated anti-reflection film in the embodiment.
具体实施方式Detailed ways
为进一步说明各实施例,本实用新型提供有附图。这些附图为本实用新型揭露内容的一部分,其主要用以说明实施例,并可配合说明书的相关描述来解释实施例的运作原理。配合参考这些内容,本领域普通技术人员应能理解其他可能的实施方式以及本实用新型的优点。图中的组件并未按比例绘制,而类似的组件符号通常用来表示类似的组件。In order to further illustrate various embodiments, the utility model provides accompanying drawings. These drawings are part of the disclosure content of the present invention, which are mainly used to illustrate the embodiments, and can be used in conjunction with the relevant descriptions in the specification to explain the operating principles of the embodiments. With reference to these contents, those skilled in the art should be able to understand other possible implementations and advantages of the present utility model. Components in the figures are not drawn to scale, and similar component symbols are generally used to denote similar components.
现结合附图和具体实施方式对本实用新型进一步说明。The utility model is further described now in conjunction with accompanying drawing and specific embodiment.
实施例一Embodiment one
参照图1所示,本实施例提供的一种晶硅太阳能电池用的叠层减反射膜,包括在晶硅太阳能电池1表面依次层叠的氮化硅层10、二氧化硅层20以及二氧化钛-二氧化硅复合层30,所述氮化硅层10、二氧化硅层20以及二氧化钛-二氧化硅复合层30均为独立的减反射膜层。Referring to FIG. 1 , a laminated anti-reflection film for crystalline silicon solar cells provided in this embodiment includes a silicon nitride layer 10, a silicon dioxide layer 20, and a titanium dioxide- The silicon dioxide composite layer 30, the silicon nitride layer 10, the silicon dioxide layer 20 and the titanium dioxide-silicon dioxide composite layer 30 are all independent antireflection film layers.
采用依次层叠的氮化硅层10、二氧化硅层20以及二氧化钛-二氧化硅复合层30,且所述氮化硅层10、二氧化硅层20以及二氧化钛-二氧化硅复合层30均为独立的减反射膜层,可以对反射光依次进行干涉抵消,形成三重减反射,效果更好;The silicon nitride layer 10, silicon dioxide layer 20 and titanium dioxide-silicon dioxide composite layer 30 stacked in sequence are adopted, and the silicon nitride layer 10, silicon dioxide layer 20 and titanium dioxide-silicon dioxide composite layer 30 are all The independent anti-reflection film layer can interfere and cancel the reflected light in turn to form a triple anti-reflection layer with better effect;
氮化硅层10作为接触Si基体(即晶硅太阳能电池)的减反射膜,其不但具有减反特性,还具有表面钝化作用,能有效的提高晶硅电池的少数载流子寿命;二氧化钛-二氧化硅复合层30作为最表层的减反射膜,二氧化钛和二氧化硅的混合能得到Si-O-Ti键,该键具有交联作用,是两种物质均匀分散,同时得到折射率介于两物质之间的薄膜,二氧化钛使得该层具有一定的硬度和光催化作用,这能有效的防止晶硅电池片的表面擦伤和污渍附着;二氧化硅层20作为中间层,起到过渡结合的作用,使层叠结构更为紧凑、牢固;The silicon nitride layer 10 is used as an anti-reflection film contacting the Si substrate (i.e. crystalline silicon solar cell), which not only has anti-reflection properties, but also has a surface passivation effect, which can effectively improve the minority carrier life of the crystalline silicon cell; titanium dioxide -The silicon dioxide composite layer 30 is used as the anti-reflection film on the outermost layer, and the mixture of titanium dioxide and silicon dioxide can obtain Si-O-Ti bonds, which have cross-linking effect, and the two substances are uniformly dispersed, and at the same time, the refractive index medium is obtained. In the thin film between the two substances, titanium dioxide makes the layer have a certain hardness and photocatalysis, which can effectively prevent the surface scratches and stains of the crystalline silicon cell; The role of the laminated structure is more compact and firm;
本方案的叠层减反射膜结构紧凑、合理、减反射效果更好,在晶硅太阳能电池封装条件下,对波长220-1200nm范围内的光都具有很好的减反射效果,从而使晶硅太阳能电池封装后的转换效率提高。The laminated anti-reflection film of this solution has a compact and reasonable structure and better anti-reflection effect. Under the packaging conditions of crystalline silicon solar cells, it has a good anti-reflection effect on light in the wavelength range of 220-1200nm, so that the crystalline silicon The conversion efficiency of the solar cell after encapsulation is improved.
本实施例中,所述氮化硅层10的折射率为2.01,其厚度为75-80nm;所述二氧化硅层20的折射率为1.43,其厚度为105-112nm;所述二氧化钛-二氧化硅复合层30的折射率为1.74,其厚度为85-92nm。该层叠的叠层减反射膜对波长220-1200nm范围内的光都具有很好的减反射效果的同时,能够对波长为640nm左右的光谱响应区域具有最低的反射率,且各层的膜厚能够保持最薄。In this embodiment, the refractive index of the silicon nitride layer 10 is 2.01, and its thickness is 75-80 nm; the refractive index of the silicon dioxide layer 20 is 1.43, and its thickness is 105-112 nm; The refractive index of the silicon oxide composite layer 30 is 1.74, and its thickness is 85-92 nm. The stacked anti-reflection film has a good anti-reflection effect on light in the wavelength range of 220-1200nm, and at the same time has the lowest reflectivity for the spectral response region with a wavelength of about 640nm, and the film thickness of each layer is Be able to keep the thinnest.
同时,二氧化钛-二氧化硅复合层30的折射率大于二氧化硅层20的折射率,介质折射率形成高-低的结构,能够提高入射光量和反射光的全反射的光量。At the same time, the refractive index of the titanium dioxide-silicon dioxide composite layer 30 is greater than that of the silicon dioxide layer 20, and the refractive index of the medium forms a high-low structure, which can increase the amount of incident light and total reflection of reflected light.
实施例二Embodiment two
本实施例提供的一种晶硅太阳能电池用的叠层减反射膜,与实施例一中的结构大致相同,不同之处在于:本具体实施例中,所述氮化硅层10的折射率为2.01,其厚度为75-80nm,该氮化硅层10对波长为640nm左右的光谱响应区域具有低的反射率;所述二氧化硅层20的折射率为1.43,其厚度为90-95nm,该二氧化硅层20对波长为540nm左右的光谱响应区域具有低的反射率;所述二氧化钛-二氧化硅复合层30的折射率为1.74,其厚度为60-65nm,该二氧化钛-二氧化硅复合层对波长为450nm左右的光谱响应区域具有低的反射率。该层叠的叠层减反射膜对波长220-1200nm范围内的光都具有很好的减反射效果,且对可见光的减反射效果更好,且各层的膜厚能够保持最薄。A laminated anti-reflection film for crystalline silicon solar cells provided in this embodiment has roughly the same structure as that in Embodiment 1, except that in this specific embodiment, the refractive index of the silicon nitride layer 10 is 2.01, and its thickness is 75-80nm, and the silicon nitride layer 10 has a low reflectivity to the spectral response region with a wavelength of about 640nm; the refractive index of the silicon dioxide layer 20 is 1.43, and its thickness is 90-95nm , the silicon dioxide layer 20 has a low reflectivity in the spectral response region with a wavelength of about 540nm; the refractive index of the titanium dioxide-silicon dioxide composite layer 30 is 1.74, and its thickness is 60-65nm. The silicon composite layer has a low reflectance to the spectral response region with a wavelength of about 450nm. The laminated laminated anti-reflection film has good anti-reflection effect on light in the wavelength range of 220-1200nm, and better anti-reflection effect on visible light, and the film thickness of each layer can be kept the thinnest.
当然的,在其他实施例中,氮化硅层10、二氧化硅层20以及二氧化钛-二氧化硅复合层30的折射率不局限于上述所述,可跟根据实际制备而变化,如氮化硅10的折射率设为2.04,二氧化硅层20的折射率为1.45,二氧化钛-二氧化硅复合层30的折射率为1.76等等。其各层膜层的厚度可根据公式:n*e=(1/4)λ进行计算得出,其中,n为膜层的折射率,e为膜层的厚度,λ为反射光的波长。可以将氮化硅层10、二氧化硅层20以及二氧化钛-二氧化硅复合层30均设定成针对同一波段的光进行最佳的减反射,也可以将氮化硅层10、二氧化硅层20以及二氧化钛-二氧化硅复合层30分别设定成针对不同波段的光进行最佳的减反射。Of course, in other embodiments, the refractive index of the silicon nitride layer 10, the silicon dioxide layer 20 and the titanium dioxide-silicon dioxide composite layer 30 is not limited to the above-mentioned, and can be changed according to actual preparation, such as nitriding The refractive index of silicon 10 is set at 2.04, the refractive index of silicon dioxide layer 20 is 1.45, the refractive index of titanium dioxide-silica composite layer 30 is 1.76, and so on. The thickness of each film layer can be calculated according to the formula: n*e=(1/4)λ, wherein, n is the refractive index of the film layer, e is the thickness of the film layer, and λ is the wavelength of reflected light. The silicon nitride layer 10, the silicon dioxide layer 20 and the titanium dioxide-silicon dioxide composite layer 30 can all be set to perform optimal anti-reflection for the light of the same wavelength band, or the silicon nitride layer 10, the silicon dioxide The layer 20 and the titanium dioxide-silicon dioxide composite layer 30 are respectively set to perform optimal anti-reflection for light of different wavelength bands.
实施例三Embodiment three
本实施例提供的一种晶硅太阳能电池用的叠层减反射膜,与实施例一中的结构大致相同,不同之处在于:本具体实施例中,所述二氧化硅层20为具有硅烷偶联剂的二氧化硅层,对二氧化硅层20进行改性,可以改善薄膜的力学性能,使其柔韧性、成膜性更好,二氧化硅的过渡结合性能更好。A laminated anti-reflection film for crystalline silicon solar cells provided in this embodiment has roughly the same structure as in Embodiment 1, except that in this specific embodiment, the silicon dioxide layer 20 is made of silane The silicon dioxide layer of the coupling agent, modifying the silicon dioxide layer 20 can improve the mechanical properties of the film, making it more flexible and film-forming, and the transitional bonding performance of silicon dioxide is better.
硅烷偶联剂以及硅烷偶联剂运用于二氧化硅层20的制备均为现有技术,如现有技术中的KH550、KH560、KH570等硅烷偶联剂,硅烷偶联剂运用于二氧化硅层的制备的技术参照申请号为201210169644.4、名称为一种具有疏水自清洁功能的装饰性复合涂层及其制备方法的发明申请专利等。Silane coupling agents and silane coupling agents used in the preparation of silicon dioxide layer 20 are all prior art, such as silane coupling agents such as KH550, KH560, KH570 in the prior art, and silane coupling agents are applied to silicon dioxide The technical reference for the preparation of the layer is the application number 201210169644.4, the invention application patent named a decorative composite coating with hydrophobic self-cleaning function and its preparation method, etc.
尽管结合优选实施方案具体展示和介绍了本实用新型,但所属领域的技术人员应该明白,在不脱离所附权利要求书所限定的本实用新型的精神和范围内,在形式上和细节上可以对本实用新型做出各种变化,均为本实用新型的保护范围。Although the utility model has been specifically shown and described in conjunction with preferred embodiments, those skilled in the art should understand that, without departing from the spirit and scope of the utility model defined by the appended claims, changes in form and details may be made. Making various changes to the utility model is within the protection scope of the utility model.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201920583284.XU CN209804667U (en) | 2019-04-26 | 2019-04-26 | Laminated antireflection film for crystalline silicon solar cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201920583284.XU CN209804667U (en) | 2019-04-26 | 2019-04-26 | Laminated antireflection film for crystalline silicon solar cell |
Publications (1)
Publication Number | Publication Date |
---|---|
CN209804667U true CN209804667U (en) | 2019-12-17 |
Family
ID=68831120
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201920583284.XU Expired - Fee Related CN209804667U (en) | 2019-04-26 | 2019-04-26 | Laminated antireflection film for crystalline silicon solar cell |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN209804667U (en) |
-
2019
- 2019-04-26 CN CN201920583284.XU patent/CN209804667U/en not_active Expired - Fee Related
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101866956B (en) | Anti-reflective film and preparation method thereof | |
CN101436616B (en) | Double-layer reflection-decreasing film for silicon solar cell and preparation method thereof | |
CN101533861B (en) | Three-layer antireflective film for solar battery and preparation method thereof | |
TW200534351A (en) | Back contact and back reflector for thin film silicon solar cells | |
CN208923157U (en) | Solar battery antireflective film, cell piece and battery component | |
CN110571285B (en) | Photovoltaic module glass and manufacturing method thereof, photovoltaic module | |
CN102005485A (en) | Multilayer anti-reflection film for solar cell and preparation method thereof | |
CN111029415A (en) | Front-side composite film for improving chromatic aberration around the edge of tubular PERC solar cells | |
CN107331712A (en) | A kind of solar cell anti-reflection film | |
CN106549065A (en) | A kind of antiradar reflectivity film layer structure | |
CN102354712A (en) | Wide spectrum high reflectivity irregularly shaped distributed Brag reflector (IDBR) and manufacturing method thereof | |
CN102130185A (en) | Dual-layer silicon nitride film for crystalline silicon solar cell and preparation method thereof | |
CN109052985A (en) | The crystal silicon solar energy battery anti-reflection photovoltaic glass of high hard wideband | |
US20110030778A1 (en) | Method of Passivating and Reducing Reflectance of a Photovoltaic Cell | |
CN209804667U (en) | Laminated antireflection film for crystalline silicon solar cell | |
CN203690312U (en) | Anti-reflection film and solar cell with anti-reflection film | |
CN104091839B (en) | A kind of manufacture method of the antireflective coating for solar battery sheet | |
CN101383382A (en) | Composite passivation anti-reflection film for crystalline silicon solar cells and preparation method thereof | |
CN208315558U (en) | A kind of antireflective coating, solar battery and photovoltaic module | |
CN201307596Y (en) | Silicon solar battery dual-layer anti-reflection film | |
CN115451594B (en) | A wide spectrum solar energy absorption enhancement device and preparation method thereof | |
CN112490297B (en) | Three-layer antireflection film for space triple-junction gallium arsenide solar cell and preparation method thereof | |
CN209880624U (en) | Solar cell antireflection film structure | |
TW201445748A (en) | Color solar cell and solar panel containing the same | |
CN210272379U (en) | Multilayer antireflection film structure for crystalline silicon solar cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20191217 |
|
CF01 | Termination of patent right due to non-payment of annual fee |