CN209658587U - A kind of spin terahertz transmitter - Google Patents
A kind of spin terahertz transmitter Download PDFInfo
- Publication number
- CN209658587U CN209658587U CN201920006273.5U CN201920006273U CN209658587U CN 209658587 U CN209658587 U CN 209658587U CN 201920006273 U CN201920006273 U CN 201920006273U CN 209658587 U CN209658587 U CN 209658587U
- Authority
- CN
- China
- Prior art keywords
- topological
- layer
- magnetic field
- ferromagnetic layer
- terahertz
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Lasers (AREA)
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
Abstract
本实用新型实施例提供一种自旋太赫兹发射器,至少包括飞秒激光器、拓扑结构薄膜和磁场发生器,所述飞秒激光器输出的泵浦光通过所述拓扑结构薄膜,产生基于所述磁场发生器产生磁场的方向的太赫兹波,所述拓扑结构薄膜包括拓扑绝缘体层、铁磁层和非铁磁层,并且所述拓扑绝缘体层、铁磁层和非铁磁层依次排列贴合且构成异质结构。本实用新型实施例提供的发射器结构简单、发射原理简单、发射频率高、脉冲宽度宽、成本低。
An embodiment of the present invention provides a spin terahertz emitter, which at least includes a femtosecond laser, a topological thin film, and a magnetic field generator. The pump light output by the femtosecond laser passes through the topological thin film to generate The magnetic field generator generates terahertz waves in the direction of the magnetic field. The topological structure thin film includes a topological insulator layer, a ferromagnetic layer and a non-ferromagnetic layer, and the topological insulator layer, ferromagnetic layer and non-ferromagnetic layer are arranged and bonded in sequence And form a heterogeneous structure. The transmitter provided by the embodiment of the utility model has the advantages of simple structure, simple transmitting principle, high transmitting frequency, wide pulse width and low cost.
Description
技术领域technical field
本实用新型实施例涉及太赫兹脉冲产生技术领域,尤其涉及一种自旋太赫兹发射器。The embodiment of the utility model relates to the technical field of terahertz pulse generation, in particular to a spin terahertz transmitter.
背景技术Background technique
太赫兹(Terahertz,THz)波介于远红外和微波之间,覆盖频率范围从0.1—10THz.太赫兹波不仅在医学成像、安全检查、产品检测、空间通信等领域有广泛的应用前景,而且太赫兹脉冲是凝聚态物质中许多低能量元激发的共振探针。太赫兹波具有许多独特性质,比如透射性、安全性、很强的光谱分辨本领等,这些性质赋予太赫兹波广泛的应用前景,包括太赫兹雷达和通信、光谱和成像、无损探伤、安全检测等方面。Terahertz (THz) waves are between far-infrared and microwaves, covering the frequency range from 0.1 to 10 THz. Hertzian pulses are resonant probes of the excitation of many low-energy elements in condensed matter. Terahertz waves have many unique properties, such as transmission, safety, strong spectral resolution, etc. These properties endow terahertz waves with a wide range of application prospects, including terahertz radar and communication, spectroscopy and imaging, non-destructive flaw detection, security detection etc.
然而,太赫兹应用对高效、高功率、低成本、室温工作的太赫兹辐射源依然具有强烈的需求。目前常用的基于光子学方法的太赫兹源主要包括:碲化锌(ZnTe)光整流效应和低温生长的砷化镓(LT-GaAs)光电导天线产生太赫兹脉冲。这两种方法具有成熟度高、产生THz脉冲的电场强度高、稳定性好的优点,但这两种材料制备复杂,较高的成本限制太赫兹器件的广泛应用。因此在现有源的基础上改进,或基于新的物理原理发展满足上述要求的太赫兹辐射源具有重要意义。However, terahertz applications still have a strong demand for terahertz radiation sources with high efficiency, high power, low cost, and room temperature operation. At present, the commonly used terahertz sources based on photonics methods mainly include: zinc telluride (ZnTe) photorectification effect and low temperature grown gallium arsenide (LT-GaAs) photoconductive antenna to generate terahertz pulses. These two methods have the advantages of high maturity, high electric field strength for generating THz pulses, and good stability, but the preparation of these two materials is complicated, and the high cost limits the wide application of THz devices. Therefore, it is of great significance to improve on the basis of existing sources, or to develop terahertz radiation sources that meet the above requirements based on new physical principles.
自旋电子学是指控制和操纵电子自旋,研究其输运性质及构建新型器件的一门学科。自旋电子学的某些物理现象,如交换型磁振子、反铁磁共振和超快自旋动力学等,其特征频率刚好处于太赫兹频段;这使得太赫兹与自旋电子学相结合,形成了太赫兹自旋电子学这一新兴交叉学科,基于自旋电子学现象和原理,研究人员发现和建立了若干新型的太赫兹波产生方法,主要有:a)自旋注入产生太赫兹波;b)基于反铁磁共振的太赫兹波产生;c)基于超快自旋动力学的太赫兹波产生。Spintronics refers to the discipline of controlling and manipulating electron spin, studying its transport properties and constructing new devices. Some physical phenomena of spintronics, such as exchange-type magnons, antiferromagnetic resonance and ultrafast spin dynamics, etc., have characteristic frequencies just in the terahertz frequency band; this makes the combination of terahertz and spintronics, Terahertz spintronics, an emerging interdisciplinary subject, has been formed. Based on the phenomena and principles of spintronics, researchers have discovered and established several new terahertz wave generation methods, mainly including: a) Spin injection to generate terahertz waves b) THz wave generation based on antiferromagnetic resonance; c) THz wave generation based on ultrafast spin dynamics.
目前,主要利用飞秒激光脉冲照射铁磁/非磁金属异质结构产生太赫兹波,铁磁层吸收光能量使电子从费米面下d带跃迁到费米面以上的能带,产生非平衡的电子分布;由于自旋向上和向下电子态密度明显不一样,结果产生从铁磁层到相邻非铁磁层(钨或铂金)的瞬时自旋极化传输,即瞬时的自旋流;由于逆自旋霍尔效应,自旋向上和向下电子被散射到相反方向,注入非磁层的瞬时自旋流转变成瞬时的电荷流,从而辐射出宽带太赫兹脉冲。然而,尽管许多研究表明,铁磁/非磁金属异质结构双层在飞秒激光辐照下能产生太赫兹辐射,然而由于钨或铂的自旋霍尔角较小,无法产生足够多的瞬时电荷流,最终太赫兹的辐射效果并不显著。At present, femtosecond laser pulses are mainly used to irradiate ferromagnetic/nonmagnetic metal heterostructures to generate terahertz waves. The ferromagnetic layer absorbs light energy to make electrons transition from the d-band below the Fermi surface to the energy band above the Fermi surface, resulting in non-equilibrium Electronic distribution; due to the obvious difference in the spin-up and down-spin electronic density of states, the result is an instantaneous spin-polarized transmission from the ferromagnetic layer to the adjacent non-ferromagnetic layer (tungsten or platinum), that is, an instantaneous spin current; Due to the inverse spin Hall effect, spin-up and down-spin electrons are scattered to opposite directions, and the instantaneous spin current injected into the nonmagnetic layer is transformed into a transient charge current, thereby radiating broadband THz pulses. However, although many studies have shown that ferromagnetic/nonmagnetic metal heterostructure bilayers can generate terahertz radiation under femtosecond laser irradiation, due to the small spin Hall angle of tungsten or platinum, they cannot generate enough terahertz radiation. The instantaneous charge flow, and finally the radiation effect of terahertz is not significant.
实用新型内容Utility model content
针对现有技术中存在的技术问题,本实用新型实施例提供一种自旋太赫兹发射器。Aiming at the technical problems existing in the prior art, the embodiment of the utility model provides a spin terahertz emitter.
本实用新型实施例提供一种自旋太赫兹发射器,至少包括飞秒激光器、拓扑结构薄膜和磁场发生器,所述飞秒激光器输出的泵浦光通过所述拓扑结构薄膜,产生基于所述磁场发生器产生磁场的方向的太赫兹波,所述拓扑结构薄膜包括拓扑绝缘体层、铁磁层和非铁磁层,并且所述拓扑绝缘体层、铁磁层和非铁磁层依次排列贴合且构成异质结构。An embodiment of the present invention provides a spin terahertz emitter, which at least includes a femtosecond laser, a topological thin film, and a magnetic field generator. The pump light output by the femtosecond laser passes through the topological thin film to generate The magnetic field generator generates terahertz waves in the direction of the magnetic field. The topological structure thin film includes a topological insulator layer, a ferromagnetic layer and a non-ferromagnetic layer, and the topological insulator layer, ferromagnetic layer and non-ferromagnetic layer are arranged and bonded in sequence And form a heterogeneous structure.
可选地,所述拓扑绝缘体层与所述铁磁性层构成双层异质结构。Optionally, the topological insulator layer and the ferromagnetic layer form a double-layer heterostructure.
可选地,所述拓扑绝缘体层与所述铁磁性层、所述非铁磁层构成三层异质结且使得所述太赫兹波相互增强。Optionally, the topological insulator layer forms a three-layer heterojunction with the ferromagnetic layer and the non-ferromagnetic layer and makes the terahertz waves mutually amplify.
可选地,所述拓扑绝缘体层为Ⅴ-Ⅵ族元素化合物,具体为Bi2Se3,Bi2Te3,BixSb1-x,Sb2Te3,(BixSb1-x)2Te3及其合金。Optionally, the topological insulator layer is a group V-VI element compound, specifically Bi 2 Se 3 , Bi 2 Te 3 , Bi x Sb 1-x , Sb 2 Te 3 , (Bi x Sb 1-x ) 2 Te 3 and its alloys.
可选地,所述铁磁层为过渡金属或相应铁磁性合金。Optionally, the ferromagnetic layer is a transition metal or a corresponding ferromagnetic alloy.
可选地,所述非铁磁层为强自旋轨道耦合材料,且与所述拓扑绝缘体的自旋霍尔角相反。Optionally, the non-ferromagnetic layer is a material with strong spin-orbit coupling, and the spin Hall angle of the topological insulator is opposite to that of the topological insulator.
可选地,所述飞秒激光器具体为飞秒激光振荡器、飞秒激光放大器或光纤飞秒激光器。Optionally, the femtosecond laser is specifically a femtosecond laser oscillator, a femtosecond laser amplifier, or a fiber femtosecond laser.
可选地,所述磁场发生器用于产生不同方向不同大小的磁场,以改变产生的太赫兹波的大小和极化状态。Optionally, the magnetic field generator is used to generate magnetic fields with different directions and different magnitudes, so as to change the magnitude and polarization state of the generated terahertz waves.
本实用新型实施例提供的自旋太赫兹发射器,至少包括飞秒激光器、拓扑结构薄膜和磁场发生器,所述飞秒激光器输出的泵浦光通过所述拓扑结构薄膜,产生基于所述磁场发生器产生磁场的方向的太赫兹波,所述拓扑结构薄膜包括拓扑绝缘体层、铁磁层和非铁磁层,并且所述拓扑绝缘体层、铁磁层和非铁磁层依次排列贴合且构成异质结构。本实用新型实施例提供的发射器结构简单、发射原理简单、发射频率高、脉冲宽度宽、成本低。The spin terahertz emitter provided by the embodiment of the present invention at least includes a femtosecond laser, a topological thin film and a magnetic field generator. The pump light output by the femtosecond laser passes through the topological thin film to generate The generator generates a terahertz wave in the direction of the magnetic field, the topological structure thin film includes a topological insulator layer, a ferromagnetic layer and a non-ferromagnetic layer, and the topological insulator layer, the ferromagnetic layer and the non-ferromagnetic layer are arranged in sequence and bonded together. form a heterogeneous structure. The transmitter provided by the embodiment of the utility model has the advantages of simple structure, simple transmitting principle, high transmitting frequency, wide pulse width and low cost.
附图说明Description of drawings
为了更清楚地说明本实用新型实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本实用新型的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present invention or the prior art, the following will briefly introduce the accompanying drawings that need to be used in the description of the embodiments or the prior art. Obviously, the appended drawings in the following description The drawings show some embodiments of the utility model, and those skilled in the art can also obtain other drawings according to these drawings without creative work.
图1为本实用新型实施例提供的自旋太赫兹发射器的拓扑结构薄膜的侧视图;Fig. 1 is a side view of the topological thin film of the spin terahertz emitter provided by the embodiment of the present invention;
图2为本实用新型实施例提供的在面内磁场中拓扑结构薄膜的俯视图;Fig. 2 is the top view of the topological structure film in the in-plane magnetic field provided by the embodiment of the utility model;
图3为本实用新型实施例提供的自旋太赫兹发射器磁铁使铁磁层磁化强度变化的曲线图。Fig. 3 is a graph showing the change of the magnetization intensity of the ferromagnetic layer caused by the spin terahertz emitter magnet provided by the embodiment of the present invention.
具体实施方式Detailed ways
为使本实用新型实施例的目的、技术方案和优点更加清楚,下面将结合本实用新型实施例中的附图,对本实用新型实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本实用新型一部分实施例,而不是全部的实施例。基于本实用新型中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本实用新型保护的范围。In order to make the purpose, technical solutions and advantages of the embodiments of the utility model more clear, the technical solutions in the embodiments of the utility model will be clearly and completely described below in conjunction with the accompanying drawings in the embodiments of the utility model. Obviously, the described The embodiments are some embodiments of the present utility model, but not all embodiments. Based on the embodiments of the present utility model, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the scope of protection of the present utility model.
本实用新型实施例提供一种自旋太赫兹发射器,至少包括飞秒激光器、拓扑结构薄膜和磁场发生器,所述飞秒激光器输出的泵浦光通过所述拓扑结构薄膜,产生基于所述磁场发生器产生磁场的方向的太赫兹波,所述拓扑结构薄膜包括拓扑绝缘体层、铁磁层和非铁磁层,并且所述拓扑绝缘体层、铁磁层和非铁磁层依次排列贴合且构成异质结构。An embodiment of the present invention provides a spin terahertz emitter, which at least includes a femtosecond laser, a topological thin film, and a magnetic field generator. The pump light output by the femtosecond laser passes through the topological thin film to generate The magnetic field generator generates terahertz waves in the direction of the magnetic field. The topological structure thin film includes a topological insulator layer, a ferromagnetic layer and a non-ferromagnetic layer, and the topological insulator layer, ferromagnetic layer and non-ferromagnetic layer are arranged and bonded in sequence And form a heterogeneous structure.
具体地,所述飞秒激光器输出的泵浦激光透过所述拓扑结构薄膜,产生基于磁场方向极化的太赫兹波。所述飞秒激光器输出的泵浦激光的脉冲宽度小于1ps。Specifically, the pump laser output by the femtosecond laser passes through the topological structure film to generate a terahertz wave polarized based on the direction of the magnetic field. The pulse width of the pump laser output by the femtosecond laser is less than 1 ps.
本实用新型实施例以磁场为面内场为例,将拓扑结构薄膜置于一个恒定的面内磁场H内,所述拓扑结构薄膜在磁场作用下产生太赫兹波,具体地,通过超快自旋发射的方式,基于反常自旋霍尔效应,利用外部磁化的方式,产生预设频谱宽度、预设辐射场强度的太赫兹脉冲辐射。In the embodiment of the present invention, taking the magnetic field as the in-plane field as an example, the topological structure thin film is placed in a constant in-plane magnetic field H, and the topological structure thin film generates terahertz waves under the action of the magnetic field. The way of spin emission is based on the anomalous spin Hall effect, using external magnetization to generate terahertz pulse radiation with preset spectral width and preset radiation field strength.
如图1所示,同样的假设磁场为恒定面内场,铁磁层的磁化方向M指向磁场方向。飞秒激光器输出的泵浦激光入射至拓扑结构薄膜的一个面上,铁磁层中会产生方向相反,大小相同的自旋流Js注入拓扑绝缘体层和非磁性层,由于逆自旋霍尔效应,会在两层材料中产生大小相同的电荷流Jc,且由于两种材料的自旋霍尔角相反,两种材料产生的电荷流方向相同,进而产生方向相同,相互增强的太赫兹波。As shown in FIG. 1 , it is also assumed that the magnetic field is a constant in-plane field, and the magnetization direction M of the ferromagnetic layer points to the direction of the magnetic field. The pump laser output by the femtosecond laser is incident on one surface of the topological structure film, and the spin current Js with the same direction and the same size will be injected into the topological insulator layer and the nonmagnetic layer in the ferromagnetic layer, due to the inverse spin Hall effect , will generate the same magnitude of charge flow Jc in the two layers of materials, and because the spin Hall angles of the two materials are opposite, the direction of the charge flow generated by the two materials is the same, and then generate terahertz waves with the same direction and mutual enhancement.
本实用新型实施例提供的高效新型拓扑保护自旋太赫兹发射器,太赫兹产生于拓扑结构薄膜即拓扑绝缘体层/铁磁层/非铁磁层三层纳米薄膜,拓扑绝缘体性质稳定易制备,不受传统太赫兹发射方法中晶体尺寸的限制,且由于其被拓扑保护的表面状态使这种材料具有较大的正自旋霍尔角,在与负自旋霍尔角的非铁磁层结合使用时,可以产生比普通铁磁层/非铁磁层两层结构更强的太赫兹波。通过材料的甄选以及样品结构优化,三层膜结构的太赫兹能量转换效率甚至优于基于激光振荡器在0.25mm的GaP(110),1mm的ZnTe(110)以及光电导天线中的太赫兹辐射。The high-efficiency new topology-protected spin terahertz transmitter provided by the embodiment of the utility model, terahertz is generated from a topological structure film, that is, a three-layer nano-film of topological insulator layer/ferromagnetic layer/non-ferromagnetic layer, and the topological insulator has stable properties and is easy to prepare. It is not limited by the crystal size in the traditional terahertz emission method, and due to its topologically protected surface state, this material has a large positive spin Hall angle, and in the nonferromagnetic layer with a negative spin Hall angle When used in combination, they can generate stronger terahertz waves than ordinary ferromagnetic layer/nonferromagnetic layer two-layer structure. Through material selection and sample structure optimization, the terahertz energy conversion efficiency of the three-layer film structure is even better than the terahertz radiation based on laser oscillators in 0.25mm GaP(110), 1mm ZnTe(110) and photoconductive antennas .
本实用新型实施例提供的高效新型拓扑保护自旋太赫兹波发射器基于反常自旋霍尔效应,通过外加一个弱磁场,在拓扑结构薄膜内获得超快自旋电流,从而产生太赫兹脉冲辐射。利用成熟的分子束外延系统即可制备拓扑结构薄膜。无需采用制备大孔径光电导天线的复杂的微纳加工技术,克服了传统的太赫兹脉冲辐射发射器对材料要求高,结构复杂的缺点。The high-efficiency new topology-protected spin terahertz wave transmitter provided by the embodiment of the utility model is based on the anomalous spin Hall effect. By applying a weak magnetic field, an ultra-fast spin current is obtained in the topological structure film, thereby generating terahertz pulse radiation. . Topological thin films can be prepared using a mature molecular beam epitaxy system. It does not need to adopt complex micro-nano processing technology for preparing large-aperture photoconductive antennas, and overcomes the shortcomings of traditional terahertz pulsed radiation transmitters that require high materials and complex structures.
相对于目前新兴的铁磁层/非铁磁层双层异质结构作为主要材料的太赫兹发射器件,加入拓扑绝缘体层作为互补,利用拓扑绝缘体表面态的拓扑保护特性,增强太赫兹的强度和发射效率。Compared with the current emerging terahertz emitting devices with a ferromagnetic layer/non-ferromagnetic layer double-layer heterostructure as the main material, a topological insulator layer is added as a complement, and the topological protection characteristics of the surface state of the topological insulator are used to enhance the terahertz intensity and emission efficiency.
由于无需外加偏置电压,从而降低了成本,降低了发射器的复杂程度。而且,采用的铁磁纳米薄膜生长技术简单,可大面积制备,与传统的非线性晶体和高导天线相比,极大地降低了发射器的成本。Since no external bias voltage is required, the cost and complexity of the transmitter are reduced. Moreover, the ferromagnetic nano-film growth technology adopted is simple and can be prepared in a large area. Compared with traditional nonlinear crystals and high-conductivity antennas, the cost of the transmitter is greatly reduced.
由于拓扑绝缘体层/铁磁层/非铁磁层三层结构薄膜内太赫兹发射机理不依赖于声子,使产生的太赫兹波的频谱宽度仅仅受限于飞秒激光器产生的泵浦激光的脉冲宽度,而与材料本身的声子振动频率和吸收等因素无关,因此可实现超宽带太赫兹脉冲辐射的发射。Since the terahertz emission mechanism in the topological insulator layer/ferromagnetic layer/non-ferromagnetic layer three-layer structure film does not depend on phonons, the spectral width of the generated terahertz wave is only limited by the pump laser generated by the femtosecond laser. The pulse width is independent of the phonon vibration frequency and absorption of the material itself, so the emission of ultra-broadband terahertz pulse radiation can be realized.
本实用新型实施例提供的自旋太赫兹发射器,至少包括飞秒激光器、拓扑结构薄膜和磁场发生器,所述飞秒激光器输出的泵浦光通过所述拓扑结构薄膜,产生基于所述磁场发生器产生磁场的方向的太赫兹波,所述拓扑结构薄膜包括拓扑绝缘体层、铁磁层和非铁磁层,并且所述拓扑绝缘体层、铁磁层和非铁磁层依次排列贴合且构成异质结构。本实用新型实施例提供的发射器结构简单、发射原理简单、发射频率高、脉冲宽度宽、成本低。The spin terahertz emitter provided by the embodiment of the present invention at least includes a femtosecond laser, a topological thin film and a magnetic field generator. The pump light output by the femtosecond laser passes through the topological thin film to generate The generator generates a terahertz wave in the direction of the magnetic field, the topological structure thin film includes a topological insulator layer, a ferromagnetic layer and a non-ferromagnetic layer, and the topological insulator layer, the ferromagnetic layer and the non-ferromagnetic layer are arranged in sequence and bonded together. form a heterogeneous structure. The transmitter provided by the embodiment of the utility model has the advantages of simple structure, simple transmitting principle, high transmitting frequency, wide pulse width and low cost.
可选地,所述拓扑绝缘体层与所述铁磁性层构成双层异质结构。Optionally, the topological insulator layer and the ferromagnetic layer form a double-layer heterostructure.
在上述实施例的基础上,由于拓扑绝缘体的特殊的能带结构,由于拓扑绝缘体中电子输运过程到其特殊表面态的拓扑保护,所以拓扑绝缘层的材料具有很大的自旋轨道耦合特性,单层拓扑绝缘材料与铁磁性材料组成双层异质结构薄膜时,也可以进行太赫兹波发射。On the basis of the above-mentioned embodiments, due to the special energy band structure of the topological insulator, due to the topological protection of the electron transport process in the topological insulator to its special surface state, the material of the topological insulating layer has great spin-orbit coupling characteristics , when a single-layer topological insulating material and a ferromagnetic material form a double-layer heterostructure thin film, terahertz wave emission can also be performed.
可选地,所述拓扑绝缘体层与所述铁磁性层、所述非铁磁层构成三层异质结且使得所述太赫兹波相互增强。Optionally, the topological insulator layer forms a three-layer heterojunction with the ferromagnetic layer and the non-ferromagnetic layer and makes the terahertz waves mutually amplify.
在上述实施例的基础上,由于拓扑绝缘体具有正自旋霍尔角,在与铁磁性材料、自旋霍尔角为负的非磁层材料构成三层异质结时,发射的太赫兹波会相互增强。On the basis of the above-mentioned embodiments, since the topological insulator has a positive spin Hall angle, when a three-layer heterojunction is formed with a ferromagnetic material and a non-magnetic layer material with a negative spin Hall angle, the emitted terahertz wave will reinforce each other.
具体地,通过飞秒激光器输出的脉冲泵浦激光透过拓扑绝缘体层/铁磁层/非铁磁层三层结构薄膜产生自旋流,自旋流通过上下两个具有相反的自旋霍尔角的非铁磁材料,产生方向相同的电荷流,进而产生相互增强的太赫兹波。Specifically, the pulsed pump laser output by the femtosecond laser passes through the topological insulator layer/ferromagnetic layer/non-ferromagnetic layer three-layer structure film to generate spin current, and the spin current passes through the upper and lower two Hall with opposite spin The non-ferromagnetic material of the angle generates the charge flow in the same direction, which in turn generates mutually reinforcing terahertz waves.
具体地,所述拓扑绝缘体层为Ⅴ-Ⅵ族元素化合物,具体为Bi2Se3,Bi2Te3,BixSb1-x,Sb2Te3,(BixSb1-x)2Te3及其合金。Specifically, the topological insulator layer is a group V-VI element compound, specifically Bi 2 Se 3 , Bi 2 Te 3 , Bi x Sb 1-x , Sb 2 Te 3 , (Bi x Sb 1-x ) 2 Te 3 and its alloys.
具体地,所述铁磁层为过渡金属或相应铁磁性合金,例如,铁磁层材料可以是钴铁硼合金(CoFeB)。Specifically, the ferromagnetic layer is a transition metal or a corresponding ferromagnetic alloy, for example, the material of the ferromagnetic layer may be cobalt-iron-boron alloy (CoFeB).
具体地,所述非铁磁层为强自旋轨道耦合材料,且与所述拓扑绝缘体的自旋霍尔角相反,例如,非铁磁层可选用具有大的负自旋霍尔角重金属材料,如钨(W)或钽(Ta)。Specifically, the non-ferromagnetic layer is a material with strong spin-orbit coupling, and is opposite to the spin Hall angle of the topological insulator. For example, the non-ferromagnetic layer can be a heavy metal material with a large negative spin Hall angle. , such as tungsten (W) or tantalum (Ta).
在本实用新型实施例中,对拓扑结构薄膜的具体形状不作具体限定,可以为圆形、椭圆形、正方形、长方形或其他不规则形状,只要能使泵浦激光的光斑可以完全照射在薄膜上即可。In the embodiment of the present invention, the specific shape of the topological thin film is not specifically limited, it can be circular, oval, square, rectangular or other irregular shapes, as long as the spot of the pump laser can be completely irradiated on the thin film That's it.
本实用新型实施例中仅以圆形三层结构薄膜为例进行说明。由于恒定磁场为沿着薄膜表面内均匀磁场,产生的太赫兹脉冲辐射的偏振态为线偏振态,且偏振方向垂直磁场方向,如图2所示。In the embodiment of the utility model, only a circular three-layer structure film is taken as an example for illustration. Since the constant magnetic field is a uniform magnetic field along the surface of the film, the polarization state of the generated terahertz pulse radiation is a linear polarization state, and the polarization direction is perpendicular to the direction of the magnetic field, as shown in Figure 2.
可选地,所述飞秒激光器具体为飞秒激光振荡器、飞秒激光放大器或光纤飞秒激光器。Optionally, the femtosecond laser is specifically a femtosecond laser oscillator, a femtosecond laser amplifier, or a fiber femtosecond laser.
具体地,所述磁场发生器用于产生不同方向不同大小的磁场,以改变产生的太赫兹波的大小和极化状态。Specifically, the magnetic field generator is used to generate magnetic fields with different directions and sizes, so as to change the size and polarization state of the generated terahertz waves.
在上述实施例的基础上,在所述拓扑结构薄膜所处的平面内,存在方向平行或垂直于薄膜的磁场,通过改变磁场的方向和大小可以改变产生太赫兹波的大小和极化状态。On the basis of the above-mentioned embodiments, in the plane where the topological thin film is located, there is a magnetic field whose direction is parallel or perpendicular to the thin film. By changing the direction and magnitude of the magnetic field, the size and polarization state of the generated terahertz wave can be changed.
在拓扑结构薄膜区域的磁场变化时,铁磁层磁化强度的变化,即随着磁场的变化,铁磁层磁化的方向与大小均会变化,进而影响注入拓扑绝缘体层和非铁磁层的自旋流,最终影响发射太赫兹波的强度和偏振态,如图3所示。When the magnetic field in the topological thin film region changes, the magnetization of the ferromagnetic layer changes, that is, with the change of the magnetic field, the direction and magnitude of the magnetization of the ferromagnetic layer will change, which in turn affects the injection of topological insulator layers and non-ferromagnetic layers. The swirling flow finally affects the intensity and polarization state of the emitted terahertz wave, as shown in Figure 3.
本实用新型实施例还提供一种太赫兹波的产生方法,采用上述的任一发射器来产生太赫兹波。The embodiment of the present utility model also provides a method for generating a terahertz wave, which uses any of the above transmitters to generate a terahertz wave.
本实用新型实施例提供的自旋太赫兹发射器及太赫兹波的产生方法,至少包括飞秒激光器、拓扑结构薄膜和磁场发生器,所述飞秒激光器输出的泵浦光通过所述拓扑结构薄膜,产生基于所述磁场发生器产生磁场的方向的太赫兹波,所述拓扑结构薄膜包括拓扑绝缘体层、铁磁层和非铁磁层,并且所述拓扑绝缘体层、铁磁层和非铁磁层依次排列贴合且构成异质结构。本实用新型实施例提供的发射器结构简单、发射原理简单、发射频率高、脉冲宽度宽、成本低。The spin terahertz emitter and the method for generating terahertz waves provided by the embodiments of the present invention at least include a femtosecond laser, a topological thin film and a magnetic field generator, and the pump light output by the femtosecond laser passes through the topological structure A film that generates a terahertz wave based on the direction of the magnetic field generated by the magnetic field generator, the topological structure film includes a topological insulator layer, a ferromagnetic layer and a non-ferromagnetic layer, and the topological insulator layer, the ferromagnetic layer and the non-ferromagnetic layer The magnetic layers are arranged and bonded in sequence to form a heterogeneous structure. The transmitter provided by the embodiment of the utility model has the advantages of simple structure, simple transmitting principle, high transmitting frequency, wide pulse width and low cost.
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。The device embodiments described above are only illustrative, and the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in One place, or it can be distributed to multiple network elements. Part or all of the modules can be selected according to actual needs to achieve the purpose of the solution of this embodiment. It can be understood and implemented by those skilled in the art without any creative efforts.
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到各实施方式可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件。基于这样的理解,上述技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行各个实施例或者实施例的某些部分所述的方法。Through the above description of the implementations, those skilled in the art can clearly understand that each implementation can be implemented by means of software plus a necessary general-purpose hardware platform, and of course also by hardware. Based on this understanding, the essence of the above technical solution or the part that contributes to the prior art can be embodied in the form of software products, and the computer software products can be stored in computer-readable storage media, such as ROM/RAM, magnetic discs, optical discs, etc., including several instructions to make a computer device (which may be a personal computer, server, or network device, etc.) execute the methods described in various embodiments or some parts of the embodiments.
最后应说明的是:以上实施例仅用以说明本实用新型的技术方案,而非对其限制;尽管参照前述实施例对本实用新型进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本实用新型各实施例技术方案的精神和范围。Finally, it should be noted that: the above embodiments are only used to illustrate the technical solutions of the present utility model, and are not intended to limit it; although the utility model has been described in detail with reference to the foregoing embodiments, those of ordinary skill in the art should understand that: It is still possible to modify the technical solutions recorded in the foregoing embodiments, or perform equivalent replacements for some of the technical features; and these modifications or replacements do not make the essence of the corresponding technical solutions deviate from the spirit of the technical solutions of the various embodiments of the present invention. and range.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201920006273.5U CN209658587U (en) | 2019-01-03 | 2019-01-03 | A kind of spin terahertz transmitter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201920006273.5U CN209658587U (en) | 2019-01-03 | 2019-01-03 | A kind of spin terahertz transmitter |
Publications (1)
Publication Number | Publication Date |
---|---|
CN209658587U true CN209658587U (en) | 2019-11-19 |
Family
ID=68520185
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201920006273.5U Active CN209658587U (en) | 2019-01-03 | 2019-01-03 | A kind of spin terahertz transmitter |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN209658587U (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109672071A (en) * | 2019-01-03 | 2019-04-23 | 北京航空航天大学 | A kind of production method of spin terahertz transmitter and THz wave |
CN115202076A (en) * | 2022-07-08 | 2022-10-18 | 北京航空航天大学杭州创新研究院 | A digitally programmable arrayed spin terahertz source device |
CN117665411A (en) * | 2024-01-31 | 2024-03-08 | 中国电子科技集团公司第十五研究所 | Magnetic field enhanced low-orbit satellite 6G signal detector |
-
2019
- 2019-01-03 CN CN201920006273.5U patent/CN209658587U/en active Active
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109672071A (en) * | 2019-01-03 | 2019-04-23 | 北京航空航天大学 | A kind of production method of spin terahertz transmitter and THz wave |
CN115202076A (en) * | 2022-07-08 | 2022-10-18 | 北京航空航天大学杭州创新研究院 | A digitally programmable arrayed spin terahertz source device |
CN117665411A (en) * | 2024-01-31 | 2024-03-08 | 中国电子科技集团公司第十五研究所 | Magnetic field enhanced low-orbit satellite 6G signal detector |
CN117665411B (en) * | 2024-01-31 | 2024-04-05 | 中国电子科技集团公司第十五研究所 | Magnetic field enhanced low-orbit satellite 6G signal detector |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109830874B (en) | Spintronic terahertz wave emitter based on voltage control magnetization | |
CN109672071A (en) | A kind of production method of spin terahertz transmitter and THz wave | |
Sulymenko et al. | Terahertz-frequency spin Hall auto-oscillator based on a canted antiferromagnet | |
Olbrich et al. | Giant photocurrents in a Dirac fermion system at cyclotron resonance | |
CN109300922B (en) | High-efficiency terahertz emission chip based on electron spin and manufacturing method thereof | |
CN110535003B (en) | A spin terahertz transmitter and method | |
CN209658587U (en) | A kind of spin terahertz transmitter | |
Lebrun et al. | Nonlinear behavior and mode coupling in spin-transfer nano-oscillators | |
Liu et al. | Inverse Altermagnetic Spin Splitting Effect‐Induced Terahertz Emission in RuO2 | |
Delfanazari et al. | Terahertz oscillating devices based upon the intrinsic Josephson junctions in a high temperature superconductor | |
CN110441929A (en) | Based on tunable THz wave transmitter of magneto-electronics array and preparation method thereof | |
Vetter et al. | Observation of carrier concentration dependent spintronic terahertz emission from n-GaN/NiFe heterostructures | |
Wang et al. | Temperature and excitation wavelength dependence of circular and linear photogalvanic effect in a three dimensional topological insulator Bi2Se3 | |
Gulyaev et al. | Spin-injection generators of terahertz waves based on metal magnetic structures | |
Rufangura et al. | Polarization angle insensitive dual‐band perfect metamaterial absorber for solar cell applications | |
US9132451B1 (en) | Using tunnel junction and bias for effective current injection into magnetic phonon-gain medium | |
CN209626634U (en) | A spintronic terahertz wave emitter based on voltage-controlled magnetization | |
Tian et al. | Ferromagnetism and the optical properties of Mn-doped CdSe with the wurtzite structure | |
Abirami et al. | Analysis of properties of metamaterial-based composite system | |
Chandrasekar et al. | Effect of barrier width on spin-dependent tunneling in asymmetrical double barrier semiconductor heterostructures | |
Ezawa | Bulk photovoltaic effects in altermagnets | |
Ferrolino et al. | Spintronic terahertz emission from Ni/Pt bilayer grown on MgO | |
Rongione et al. | Efficiency of THz spintronic emitters: from spin-Hall effect in 3d metals to surfaces states in topological insulators | |
CN117438874A (en) | A terahertz wave generator based on in-plane magnetic anisotropy | |
Chamanara et al. | Multiscale and multiphysics graphene sheet-magnetic nanowire gyrotropic metamaterial |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant |