CN209624815U - A kind of diffraction grating and AR imaging device in more rectangular configuration periods - Google Patents

A kind of diffraction grating and AR imaging device in more rectangular configuration periods Download PDF

Info

Publication number
CN209624815U
CN209624815U CN201920287369.3U CN201920287369U CN209624815U CN 209624815 U CN209624815 U CN 209624815U CN 201920287369 U CN201920287369 U CN 201920287369U CN 209624815 U CN209624815 U CN 209624815U
Authority
CN
China
Prior art keywords
grating
diffraction grating
diffraction
decoupling
imaging device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201920287369.3U
Other languages
Chinese (zh)
Inventor
宋强
王景
苏鹏华
马国斌
汪涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHENZHEN JIING FAIRY PHOTOELECTRIC TECHNOLOGY Co Ltd
Original Assignee
SHENZHEN JIING FAIRY PHOTOELECTRIC TECHNOLOGY Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHENZHEN JIING FAIRY PHOTOELECTRIC TECHNOLOGY Co Ltd filed Critical SHENZHEN JIING FAIRY PHOTOELECTRIC TECHNOLOGY Co Ltd
Priority to CN201920287369.3U priority Critical patent/CN209624815U/en
Application granted granted Critical
Publication of CN209624815U publication Critical patent/CN209624815U/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

The utility model discloses the diffraction grating and AR imaging device in a kind of more rectangular configuration periods, are related to Diffraction Grating Technology field, mainly solve the technical problem that current diffraction grating difficulty of processing is big, uniformity is not strong, diffraction efficiency is not high and freedom degree is not high.The diffraction grating in more rectangular configuration periods includes in each screen periods, multiple rectangles are etched on the substrate of diffraction grating, and the line width of each rectangle and the spacing of adjacent rectangle are different, have many advantages, such as compared with high-diffraction efficiency, compared with high uniformity, easy processing;The AR imaging device according to optical transmission direction successively includes image production part, collimation portion, is coupled into grating, waveguide piece, decoupling grating and image imaging section, and is coupled into grating and decoupling grating is the diffraction grating in more rectangular configuration periods.The diffraction grating in more rectangular configuration periods is applied in AR imaging device by the utility model, meets the demand towards the efficient display effect of AR high definition.

Description

A kind of diffraction grating and AR imaging device in more rectangular configuration periods
Technical field
The utility model relates to Diffraction Grating Technology field, in particular to the diffraction grating in a kind of more rectangular configuration periods and AR imaging device.
Background technique
With the development of science and technology, AR (Augmented Reality) augmented reality as it is a kind of it is very intelligent, Portable display technology just slowly move towards public, be mainly characterized by for virtual screen being superimposed upon on reality scene, can be with Realization allows people that can also watch reality scene while watching virtual screen.Also show that there is as above spy just because of AR Point, this technology has obtained extensive use increasingly in industries such as security protection, education, medical treatment, military project, industry, amusements at present.
Grating waveguide scheme is the current mainstream scheme realizing AR and showing, but existing diffraction grating designs at present Scheme has freedom degree is not high, diffraction efficiency is lower, diffraction uniformity is difficult to control, deisgn product difficulty of processing is big etc. many to lack Point.
Utility model content
The purpose of the utility model is to provide the diffraction grating and AR imaging device in a kind of more rectangular configuration periods, can solve The certainly above shortcomings have many advantages, such as compared with high-diffraction efficiency, compared with high uniformity, easy processing.
To achieve the above object, the utility model provides following scheme:
A kind of diffraction grating in more rectangular configuration periods, in each screen periods, on the substrate of the diffraction grating Multiple rectangles are etched with, and the line width of each rectangle and the spacing of the adjacent rectangle are different.
Optionally, in each screen periods, the number of the rectangle is all larger than or is equal to 2.
Optionally, in different screen periods, the structure etched on the substrate of the diffraction grating is all the same.
Optionally, the firing angle of the diffraction grating is 25 ° -55 °.
Optionally, TiO is coated on the diffraction grating2
Optionally, in each screen periods, the number of the rectangle, the line width of the rectangle and the adjacent rectangle Spacing be to be determined according to actual product requirement.
A kind of AR imaging device, including image production part, collimation portion, grating waveguide portion and image imaging section;The light Grid waveguide section includes waveguide piece, is coupled into grating and decoupling grating;It is described be coupled into grating, the decoupling grating is respectively distributed to institute State the both ends of waveguide piece;It is described to be coupled into grating and the decoupling grating is the diffraction grating in more rectangular configuration periods;
Described image generating unit issue light after the collimation portion, with parallel light emergence, and with set angle into Grating is coupled into described in entering;By it is described be coupled into optical grating diffraction after, into the waveguide piece, and to forward pass in the form of total reflection It is defeated, it exports using the decoupling grating, is finally imaged in described image imaging section.
Optionally, the grating waveguide portion includes three layers of waveguide piece altogether, to be transmitted to R, G, B three coloured light, and it is every The both ends of the layer waveguide piece are coupled into grating and the decoupling grating described in being distributed with respectively.
Optionally, the grating waveguide portion further includes extension grating;The extension grating and the decoupling grating are located at institute The same end of waveguide piece is stated, and in vertical direction, the extension grating is located on the decoupling grating;Wherein, the expansion Open up the diffraction grating that grating is more rectangular configuration periods.
Optionally, described image generating unit is the display screen for generating display picture;The collimating part is multiple optical lens Optical system composed by mirror.
According to specific embodiment provided by the utility model, the utility model discloses following technical effects:
The utility model provides the diffraction grating and AR imaging device in a kind of more rectangular configuration periods.The utility model is logical It crosses in each screen periods, multiple rectangles, and the line width of each rectangle and adjacent square will be etched on the substrate of diffraction grating The spacing of shape is different, so that diffraction grating provided by the utility model be made to have compared with high-diffraction efficiency, compared with high uniformity, Yi Jia The advantages that work;The diffraction grating in more rectangular configuration periods is applied in AR imaging device by the utility model, to meet towards AR The demand of the efficient display effect of high definition.
Detailed description of the invention
In order to illustrate the embodiment of the utility model or the technical proposal in the existing technology more clearly, below will be to embodiment Needed in attached drawing be briefly described, it should be apparent that, the accompanying drawings in the following description is only the utility model Some embodiments for those of ordinary skill in the art without any creative labor, can also basis These attached drawings obtain other attached drawings.
Fig. 1 is rectangular raster shape appearance figure common in the art;
Fig. 2 is oblique raster shape appearance figure common in the art;Fig. 2 (a) is a kind of oblique raster common in the art Shape appearance figure;Fig. 2 (b) is another oblique raster shape appearance figure common in the art;
Fig. 3 is the diffraction grating shape appearance figure in the utility model embodiment more rectangular configuration periods;
Graph of relation of the Fig. 4 between the utility model embodiment diffraction grating light incidence angle and diffraction efficiency;
Fig. 5 is the structural schematic diagram of the utility model embodiment AR imaging device;
Fig. 6 is the realistic simulation analogous diagram of the utility model embodiment AR imaging device;
Fig. 7 is the practical illumination figure of the utility model embodiment;
Fig. 8 is that the utility model embodiment extends grating in the top view of waveguide on piece.
Specific embodiment
The following will be combined with the drawings in the embodiments of the present invention, carries out the technical scheme in the embodiment of the utility model Clearly and completely describe, it is clear that the described embodiments are only a part of the embodiments of the utility model, rather than whole Embodiment.Based on the embodiments of the present invention, those of ordinary skill in the art are without making creative work Every other embodiment obtained, fall within the protection scope of the utility model.
To keep the above objects, features, and advantages of the utility model more obvious and easy to understand, with reference to the accompanying drawing and have Body embodiment is described in further detail the utility model.
Existing diffraction grating designs scheme is mainly that the exterior appearance design of diffraction grating is rectangular or tilts pattern. For traditional rectangular grating, though its difficulty of processing is lower, diffraction efficiency is relatively low, it is difficult to realize aloof from politics and material pursuits towards AR high Imitate the demand of display effect.For oblique raster, though high compared with traditional rectangular diffraction efficiency of grating, its difficulty of processing is suitable Greatly, the processing industry of only extremely minority can manufacture both at home and abroad at present, higher cost.
As shown in Figs. 1-2, T is a cycle of common grating.Since diffraction efficiency of grating is related with wavelength, incidence angle, Obviously the incidence angle of rectangular raster has been fixed, so there are significant limitations for the promotion of diffraction efficiency;Although and Oblique raster can make diffraction efficiency of grating reach design requirement by changing tilt angle, but tilt the grating processing of pattern Difficulty is larger, higher cost.
Based on this, the utility model proposes a kind of diffraction grating in more rectangular configuration periods, it is intended to solve difficulty of processing Diffraction efficiency of grating is improved while big.
Embodiment 1
The diffraction grating in more rectangular configuration periods provided in this embodiment, in each screen periods, the diffraction grating Multiple rectangles are etched on substrate, and the line width of each rectangle and the spacing of adjacent rectangle are different, but in different gratings In period, the structure etched on the substrate of the diffraction grating is all the same.Wherein, in each screen periods, the number of rectangle, square The line width of shape and the spacing of adjacent rectangle are determined according to actual product requirement.
Preferably, in each screen periods, the number of rectangle is more than or equal to 2.
Preferably, the firing angle of the diffraction grating is 25 ° -55 °.
Preferably, TiO is coated on the diffraction grating2
Embodiment 2
As shown in figure 3, T is a cycle of the diffraction grating in more rectangular configuration periods provided in this embodiment.This implementation The diffraction grating that example provides is mainly characterized in that in a screen periods T, going out N number of small rectangle in substrate etch, (N is more than or equal to 2), and the line width of N number of small rectangle and spacing are different, such as Z1, Z3, Z5's is of different size, and Z2 and Z4's is of different size, are allowed to Higher diffraction efficiency can also be possessed while easy to process.
The present embodiment design concept predominantly utilizes vector electromagnetic diffraction theory, is to comment with diffraction efficiency and angle uniformity Marked price mark makes up to design requirement to optimizing at the breakpoint of each small rectangle.So the line width of N number of small rectangle and Spacing is determined according to actual product requirement.
Fig. 4 is based on a kind of diffraction grating light incidence angle gone out designed by more rectangular configuration periods provided in this embodiment Relationship between diffraction efficiency, the diffraction grating is practical be one-dimensional Darman raster a kind of concrete form.Due to light incidence The difference of angle, grating diffration efficiency also can be different, and for the diffraction grating when firing angle is 25 ° -55 °, diffraction efficiency is reachable 77% or more, maximum diffraction efficiency is up to 81.5% or more.
Compared with existing diffraction grating, the rectangular raster pattern in conventional diffractive grating is simple rectangle, difficult processing Spend lower, but since its pattern is vertical with substrate, angle is fixed, and programmable variable is only the duty ratio in a cycle, Variable is very little, and the design space that diffraction efficiency and uniformity can be improved is too small;And for oblique raster, pattern is not solid It is fixed, it can be determined by designer, programmable variable removes outside the duty ratio in a space, and there are also between inclined side and substrate Angle, compared to rectangular raster, the design space for improving diffraction efficiency and uniformity is bigger, but also just because of bevel edge and base There are certain angles at bottom, so the difficulty of processing of oblique raster can be bigger;And more rectangular configurations week that the present embodiment is illustrated The diffraction grating of phase, microscopic appearance is vertical with substrate, and difficulty of processing is lower, at the same increase programmable variable (Z1, Z2, Z3,Z4,Z5).Therefore, diffraction grating provided in this embodiment is while reducing difficulty of processing, improves diffraction efficiency and uniformly Property.
Embodiment 3
As it can be seen in figures 5 and 6, a kind of AR imaging device provided in this embodiment, including image production part 1, collimation portion 2, light Grid waveguide section 3 and image imaging section 4;Grating waveguide portion 3 includes waveguide piece 31, is coupled into grating 32 and decoupling grating 33;Coupling Enter grating 32, decoupling grating 33 is respectively distributed to the both ends of waveguide piece 31, that is, be coupled into one end that grating 32 is distributed in waveguide piece 31, Decoupling grating 33 is distributed in the other end of waveguide piece 31;It is coupled into grating 32 and decoupling grating 33 is spreading out for more rectangular configuration periods Penetrate grating.
The light that image production part 1 issues is after collimation portion 2, with parallel light emergence, and is entered with set angle and is coupled into Grating 32;After being coupled into 32 diffraction of grating, into waveguide piece 31, and the onwards transmission in the form of total reflection, using coupling Grating 33 exports out, is finally imaged in image imaging section 4.
For the wavelength of different color light, diffraction grating has different diffraction efficiencies, in the present embodiment, it is preferred that light Grid waveguide section 3 includes altogether three layers of waveguide piece 31, to be transmitted to R, G, B three coloured light, and the both ends of every layer of waveguide piece 31 point It is not distributed with and is coupled into grating 32 and decoupling grating 33.When grating waveguide portion 3 includes altogether three layers of waveguide piece 31, directional light is with certain Angle can divide three colors to enter in R, G, B three pieces waveguide piece 31 into after being coupled into grating 32, the onwards transmission in the form of total reflection, then It is exported via decoupling grating 33.
Image production part is the display screen for generating display picture, such as Lcos, OLED, MicroOLED;The collimating part For optical system composed by multiple optical lenses.Wherein, lens can be the combination of glass material or resin material or both;Figure As imaging section 4 is Lcos.
Fig. 7 is the practical illuminance uniformity figure of display area in the embodiment.
Embodiment 4
The present embodiment is further limited on the basis of embodiment 3, other than the whole component of embodiment 3, the light Grid waveguide section 3 further includes extension grating 34;As shown in figure 8, extension grating 34 and decoupling grating 33 are located at same waveguide piece 31 The same end, and in vertical direction, extension grating 34 is located on decoupling grating 33;Wherein, extension grating 34 is also more rectangles The diffraction grating of structural cycle.
In the present embodiment, being coupled into grating 32 is a whole grating, for the light coupling for being issued image production part 1 It closes and enters in waveguide piece 31, the light being coupled into waveguide piece 31 follows catadioptric law in waveguide piece 31 to preceding propagation To extension grating 34, light is carried out emergent pupil extension process, makes to become larger by the light field angle of the grating, most by extension grating 34 Whole light enters decoupling grating 33 and is coupled out grating waveguide portion 3.
The area that extension grating 34 and decoupling grating 33 are gradually increased comprising five diffraction efficiencies, eventually passes through expansion to make Picture brightness uniformity after exhibition output is consistent.
In order to further enhance diffraction efficiency of grating, on the diffraction grating in more rectangular configuration periods in embodiment 2-4 The film layers with high reflectance such as layer plating TiO2, to improve the overall diffraction efficiency and uniformity of grating.
Each embodiment in this specification is described in a progressive manner, the highlights of each of the examples are with other The difference of embodiment, the same or similar parts in each embodiment may refer to each other.
Specific case used herein is expounded the principles of the present invention and embodiment, above embodiments Explanation be merely used to help understand the method and its core concept of the utility model;Meanwhile for the general technology of this field Personnel, based on the idea of the present invention, there will be changes in the specific implementation manner and application range.In conclusion The content of the present specification should not be construed as a limitation of the present invention.

Claims (10)

1. a kind of diffraction grating in more rectangular configuration periods, which is characterized in that in each screen periods, the diffraction grating Multiple rectangles are etched on substrate, and the line width of each rectangle and the spacing of the adjacent rectangle are different.
2. diffraction grating according to claim 1, which is characterized in that in each screen periods, the number of the rectangle It is all larger than or equal to 2.
3. diffraction grating according to claim 1, which is characterized in that in different screen periods, the diffraction grating The structure etched on substrate is all the same.
4. diffraction grating according to claim 1, which is characterized in that the firing angle of the diffraction grating is 25 ° -55 °.
5. diffraction grating according to claim 1, which is characterized in that be coated with TiO on the diffraction grating2
6. diffraction grating according to claim 1, which is characterized in that in each screen periods, the number of the rectangle, The line width of the rectangle and the spacing of the adjacent rectangle are determined according to actual product requirement.
7. a kind of AR imaging device, which is characterized in that the AR imaging device includes image production part, collimation portion, grating waveguide Portion and image imaging section;The grating waveguide portion includes waveguide piece, is coupled into grating and decoupling grating;It is described be coupled into grating, The decoupling grating is respectively distributed to the both ends of the waveguide piece;It is described to be coupled into grating and the decoupling grating is more rectangle knots The diffraction grating in structure period;
The light that described image generating unit issues with parallel light emergence, and enters institute after the collimation portion with set angle It states and is coupled into grating;By it is described be coupled into optical grating diffraction after, into the waveguide piece, and the onwards transmission in the form of total reflection, It exports using the decoupling grating, is finally imaged in described image imaging section.
8. AR imaging device according to claim 7, which is characterized in that the grating waveguide portion includes three layers of waveguide altogether Piece, to transmit to R, G, B three coloured light, and the both ends of every layer of waveguide piece are distributed with described are coupled into grating and institute respectively State decoupling grating.
9. AR imaging device according to claim 7, which is characterized in that the grating waveguide portion further includes extension grating; The extension grating and the decoupling grating are located at the same end of the waveguide piece, and in vertical direction, the extension grating On the decoupling grating;Wherein, the extension grating is the diffraction grating in more rectangular configuration periods.
10. AR imaging device according to claim 7, which is characterized in that described image generating unit is to generate display picture Display screen;The collimating part is optical system composed by multiple optical lenses.
CN201920287369.3U 2019-03-07 2019-03-07 A kind of diffraction grating and AR imaging device in more rectangular configuration periods Active CN209624815U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201920287369.3U CN209624815U (en) 2019-03-07 2019-03-07 A kind of diffraction grating and AR imaging device in more rectangular configuration periods

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201920287369.3U CN209624815U (en) 2019-03-07 2019-03-07 A kind of diffraction grating and AR imaging device in more rectangular configuration periods

Publications (1)

Publication Number Publication Date
CN209624815U true CN209624815U (en) 2019-11-12

Family

ID=68455999

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201920287369.3U Active CN209624815U (en) 2019-03-07 2019-03-07 A kind of diffraction grating and AR imaging device in more rectangular configuration periods

Country Status (1)

Country Link
CN (1) CN209624815U (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109696717A (en) * 2019-03-07 2019-04-30 深圳珑璟光电技术有限公司 A kind of diffraction grating and AR imaging device in more rectangular configuration periods
CN112987306A (en) * 2021-02-25 2021-06-18 福州京东方光电科技有限公司 Augmented reality display device, volume holographic optical waveguide structure and preparation method thereof
CN114815233A (en) * 2021-01-18 2022-07-29 宁波舜宇光电信息有限公司 Augmented reality display device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109696717A (en) * 2019-03-07 2019-04-30 深圳珑璟光电技术有限公司 A kind of diffraction grating and AR imaging device in more rectangular configuration periods
CN114815233A (en) * 2021-01-18 2022-07-29 宁波舜宇光电信息有限公司 Augmented reality display device
CN112987306A (en) * 2021-02-25 2021-06-18 福州京东方光电科技有限公司 Augmented reality display device, volume holographic optical waveguide structure and preparation method thereof

Similar Documents

Publication Publication Date Title
CN109696717A (en) A kind of diffraction grating and AR imaging device in more rectangular configuration periods
CN209624815U (en) A kind of diffraction grating and AR imaging device in more rectangular configuration periods
US10386712B1 (en) Array of individually angled mirrors reflecting disparate color sources toward one or more viewing positions to construct images and visual effects
CN203838464U (en) Linear DLP micro projector
CN109239842A (en) A kind of holographical wave guide eyeglass and preparation method thereof and three-dimensional display apparatus
CN104298063B (en) Transparent projection screens
CN102033413B (en) Three-dimensional display device based on random constructive interference principle
CN108873350A (en) A kind of waveguide display device
CN106338832A (en) Single holographic diffraction optical waveguide lens and 3D display device
KR20210088759A (en) Outcoupling grating for augmented reality system
CN102398466A (en) Stereograph and making method thereof
CN110456512B (en) Near-to-eye display system based on diffractive optical element pupil expansion
CN203587956U (en) Screen and projection display system
CN107741666A (en) A kind of display device
CN107690599A (en) Optical display
CN103809357A (en) Screen and projection display system
CN207502824U (en) Optical waveguide eyeglass and display device
CN110161613A (en) Backlight module and preparation method thereof, liquid crystal display device
CN210720886U (en) Apparatus and system for augmented reality display
CN208888533U (en) A kind of what comes into a driver's resolution element and display device
CN204199788U (en) A kind of single stage formula special effect transforming arenas
CN202319701U (en) Stereograph
TW201918784A (en) Long focal length anti ambient light curtain comprising an optical prism structure and optical coatings
CN1179217C (en) Optical colour-mixing prism
JPS5928001B2 (en) lighting equipment

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant