CN208222909U - 海水源热泵三联供机组及系统 - Google Patents

海水源热泵三联供机组及系统 Download PDF

Info

Publication number
CN208222909U
CN208222909U CN201820468319.0U CN201820468319U CN208222909U CN 208222909 U CN208222909 U CN 208222909U CN 201820468319 U CN201820468319 U CN 201820468319U CN 208222909 U CN208222909 U CN 208222909U
Authority
CN
China
Prior art keywords
water
heat
exchange
heat exchanger
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201820468319.0U
Other languages
English (en)
Inventor
赵冬辰
赵克
任其勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201820468319.0U priority Critical patent/CN208222909U/zh
Application granted granted Critical
Publication of CN208222909U publication Critical patent/CN208222909U/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Steam Or Hot-Water Central Heating Systems (AREA)

Abstract

本实用新型涉及一种海水源热泵三联供机组及系统。包括:压缩机,串联油气分离器和毛细管,并且其制冷剂回流口与热交换式储液器的第二输出端连接;热水侧板式换热器,其交换侧输入端和输出端通过第一电磁阀串接并与油气分离器的输出端连接,其供给侧连接热水侧进水口及热水侧出水口;四通换向阀,热源侧板式换热器,空调侧板式换热器。其中,所述四通换向阀的输入端连接高压表、高压控制器、高压截止阀。其中,所述热交换式储液器的第二输出端连接低压表、低压控制器、低压截止阀。本实用新型以海水作为冷热源,大大提高了制冷、供暖、供热水效率,降低运行费用;制冷同时冷凝热回收产热水,所产热水免费,同时也提高了制冷效率。

Description

海水源热泵三联供机组及系统
技术领域
本实用新型涉及一种三联供机组及系统,属于热交换技术领域,具体是涉及一种海水源热泵三联供机组及系统。
背景技术
海水源热泵系统是水源热泵技术中的一种,它是利用海水中吸收的太阳能和地热能而形成的低温水、低位热能资源,并采用热泵原理,通过少量的高位电能输入,实现低位热能向高位热能转移的一种技术。即利用海洋所蕴藏的能量作为热源或冷源,冬季通过热泵机组将海水中热能传递转移到需供暖的建筑物内,夏季通过热泵机组将建筑物内的热量散失转移到海水中,从而实现冬季供暖、夏季制冷。此外,由于海水源热泵的冷热源均采用清洁无污染的海水,还能减少因燃煤和燃油污染,缓解温室效应和酸雨现象,因此,海水源热泵系统有利于节能环保。
实用新型内容
实用新型所要解决的技术问题
现有技术中的海水源热泵系统结构复杂,工作模式单一,能量转换效率低下。
本实用新型是鉴于上述问题而完成的,其目的在于提供一种海水源热泵三联供机组及系统,能够根据需求的不同灵活调节五种不同的工作模式,从而能够一机多用,合理充分利用热量,节能高效。
解决技术问题所采用的技术方案
本实用新型的上述技术问题主要是通过下述技术方案得以解决的:
一种海水源热泵三联供机组,包括:
压缩机,串联油气分离器和毛细管,并且其制冷剂回流口与热交换式储液器的第二输出端连接;
热水侧板式换热器,其交换侧输入端和输出端通过第一电磁阀串接并与油气分离器的输出端连接,其供给侧连接热水侧进水口及热水侧出水口;
四通换向阀,其输入端连接第一电磁阀,其A端口连接热源侧板式换热器的交换侧输入端,其B端口连接热交换式储液器的第一输入端口,其C端口连接空调侧板式换热器的交换侧输入端;
热源侧板式换热器,其交换侧输出端连接热交换式储液器的第二输入端口,其供给侧连接热源侧进水口和热源侧出水口;
空调侧板式换热器,其交换侧输出端分别通过两组包括过滤器、膨胀阀、单向阀组成的通路连接热交换式储液器的第二输入端及第一输出端;其供给侧连接空调侧进水口及空调侧出水口。
其中,所述四通换向阀的输入端连接高压表、高压控制器、高压截止阀。
其中,所述热交换式储液器的第二输出端连接低压表、低压控制器、低压截止阀。
一种海水源热泵三联供机组系统,包括:
海水源热泵三联供机组,其热源侧出水管及热源侧进水管连接海水池;其空调侧进水口及空调侧出水口连接室内风管机盘;其热水侧出水管及进水管连接热水保温水箱;所述海水池上设置有海水进排水管。
其中,所述海水源热泵三联供机组具体包括:
压缩机,串联油气分离器和毛细管,并且其制冷剂回流口与热交换式储液器的第二输出端连接;
热水侧板式换热器,其交换侧输入端和输出端通过第一电磁阀串接并与油气分离器的输出端连接,其供给侧连接热水侧进水口及热水侧出水口;
四通换向阀,其输入端连接第一电磁阀,其A端口连接热源侧板式换热器的交换侧输入端,其B端口连接热交换式储液器的第一输入端口,其C端口连接空调侧板式换热器的交换侧输入端;
热源侧板式换热器,其交换侧输出端连接热交换式储液器的第二输入端口,其供给侧连接热源侧进水口和热源侧出水口;
空调侧板式换热器,其交换侧输出端分别通过两组包括过滤器、膨胀阀、单向阀组成的通路连接热交换式储液器的第二输入端及第一输出端;其供给侧连接空调侧进水口及空调侧出水口。
其中,热源侧进水口和热源侧出水口通过热水侧出水管及进水管与海水池相连。
其中,所述海水源热泵三联供机组的工作模式包括:单独制冷模式、制冷及产热水模式、单独供暖模式、供暖及产热水模式、单独产热水模式。
实用新型效果
根据本实用新型上述方案可知,本实用新型能够一机多用,能实现制冷、供暖、供热水的需求,减少多台设备的投入成本和占地面积。
本实用新型以海水作为冷热源,大大提高了制冷、供暖、供热水效率,降低运行费用;制冷同时冷凝热回收产热水,所产热水免费,同时也提高了制冷效率;
本实用新型仅采用电能驱动,减少常规能源的的使用,对环境不会造成任何污染。
附图说明
附图1是本实用新型实施例的海水源热泵三联供机组原理图;
附图2是本实用新型实施例的海水源热泵三联供机组安装使用示意图。
图1中,1:压缩机;2:油气分离器;3:热水侧板式换热器;4:四通换向阀;5:热源侧板式换热器;6:热交换式储液器;7:过滤器1;8:膨胀阀1;9:单向阀1;10:空调侧板式换热器;11:过滤器2;12:膨胀阀2;13:单向阀2;14:毛细管;15:第一电磁阀;16:电磁阀2;17:高压表;18:高压控制器;19:高压截止阀;20:低压表;21:低压控制器;22:低压截止阀;23:热水侧进水口;24:热水侧出水口;25:空调侧进水口;26:空调侧出水口;27:热源侧进水口;28:热源侧出水口;29:铜管;30:制冷剂;31:机组外壳;32:控制系统。
图2中,2-1:海水源热泵三联供机组;2-2:海水池;2-3:热源侧出水管;2-4:热源侧循环泵;2-5:热源侧进水管;2-6:风机盘管;2-7:空调侧循环泵;2-8:空调侧出水管;2-9:空调侧进水管;2-10:热水侧出水管;2-11:热水侧循环泵;2-12:热水侧进水管;2-13:热水保温水箱;2-14:冷水补水管;2-15:热水供水管;2-16:海水进水管;2-17:海水排水管。
具体实施方式
下面通过实施例,并结合附图,对本实用新型的技术方案作进一步具体的说明。
实施例:
本实用新型实施例的方案分为两部分进行介绍,一部分是如图1所示的主设备部分,即海水源热泵三联供机组部分,另一部分是如图2所示的辅助海水源热泵三联供机组进行安装的部分。
下面结合附图1详细介绍本实施例的海水源热泵三联供机组原理。
该机组由以下几部分组成:
根据用户的使用要求,该机组能实现以下五种运行模式:1、单独制冷,2、制冷+产热水,3、单独供暖,4、供暖+产热水,5、单独产热水。
A:单独制冷
该模式下制冷剂流向如下:
1:压缩机→2:油气分离器→15:第一电磁阀→4:四通换向阀→5:热源侧板式换热器→6:热交换式储液器→7:过滤器1→8:膨胀阀1→9:单向阀1→10:空调侧板式换热器→4:四通换向阀→6:热交换式储液器→1:压缩机
原理说明如下:
通过控制系统32,将机组转换到单独制冷模式下运行,压缩机1通电工作,将充注于整个系统铜管29中的制冷剂30变成高温高压下的气体推动向前,制冷剂通过油气分离器2,将压缩机油分离,压缩机油通过毛细管14回到压缩机。制冷剂出油气分离器2后再通过第一电磁阀15进入四通换向阀4,四通换向阀4起到改变制冷剂30流向的作用。在该模式下,制冷剂通过四通换向阀4的A端口出进入热源侧板式换热器5中,此时该换热器作为冷凝器,与从热源侧进水口27流进热源侧板式换热器5的水进行热量交换,制冷剂30冷凝释放热量到水中,制冷剂30的温度和压力降低,同时水的温度升高后通过热源侧出水口28出机组。制冷剂在热源侧板式换热器5冷凝释放热量后温度降低,再从热交换式储液器6的E端口进入,从F端口出进入过滤器17进行过滤,到膨胀阀18进行制冷剂节流后,制冷剂30瞬间变成低温低压状,再通过单向阀19,进入空调侧板式换热器10,此时制冷剂在空调侧板式换热器10中开始大量蒸发吸热,使得从空调侧进水口25进入空调侧板式换热器10的水的温度降低,产生低温水从空调侧出水口26流出,该低温水作为空调制冷系统冷冻水到末端系统中循环起到室内制冷的作用。制冷剂30在空调侧板式换热器10中蒸发吸收热量后再回到四通换向阀4的C端口,之后从B端口出进入热交换式储液器6的D端口,从G端口出热交换式储液器6后回到压缩机,完成制冷剂在系统铜管29中的一个循环。
B:制冷+产热水模式:
该模式下制冷剂流向如下:
1:压缩机→2:油气分离器→3:热水侧板式换热器→4:四通换向阀→5:热源侧板式换热器→6:热交换式储液器→7:过滤器1→8:膨胀阀1→9:单向阀1→10:空调侧板式换热器→4:四通换向阀→6:热交换式储液器→1:压缩机
原理说明如下:
通过控制系统32,将机组转换到制冷+产热水模式下运行,压缩机1通电工作,将充注于整个系统铜管29中的制冷剂30变成高温高压下的气体推动向前,制冷剂通过油气分离器2,将压缩机油分离,压缩机油通过毛细管14回到压缩机。制冷剂出油气分离器2后,因第一电磁阀15断电关闭,制冷剂通过热水侧板式换热器3,此时将热量释放到从热水侧进水口23流经热水侧板式换热3的水中,产生热水,热水从热水侧出水口24出热水侧板式换热器3,所产热水作为生活用热水。制冷剂出热水侧板式换热器3后进入四通换向阀4,四通换向阀4起到改变制冷剂30流向的作用。在该模式下,制冷剂通过四通换向阀4的A端口出进入热源侧板式换热器5中,此时该换热器作为冷凝器,与从热源侧进水口27流进热源侧板式换热器5的水进行热量交换,制冷剂30冷凝释放热量到水中,制冷剂30的温度和压力降低,同时水的温度升高后通过热源侧出水口28出机组。制冷剂在热源侧板式换热器5冷凝释放热量后温度降低,再从热交换式储液器6的E端口进入,从F端口出进入过滤器17进行过滤,到膨胀阀18进行制冷剂节流后,制冷剂30瞬间变成低温低压状,再通过单向阀19,进入空调侧板式换热器10,此时制冷剂在空调侧板式换热器10中开始大量蒸发吸热,使得从空调侧进水口25进入空调侧板式换热器10的水的温度降低,产生低温水从空调侧出水口26流出,该低温水作为空调制冷系统冷冻水到末端系统中循环起到室内制冷的作用。制冷剂30在空调侧板式换热器10中蒸发吸收热量后再回到四通换向阀4的C端口,之后从B端口出进入热交换式储液器6的D端口,从G端口出热交换式储液器6后回到压缩机,完成制冷剂在系统铜管29中的一个循环。此过程实现制冷同时回收热量产热水,所产热水达到需求后,控制系统自动转换到单独制冷模式。
C:单独供暖
该模式下制冷剂流向如下:
1:压缩机→2:油气分离器→15:第一电磁阀→4:四通换向阀→10:空调侧板式换热器→11:过滤器2→12:膨胀阀2→13:单向阀2→5:热源侧板式换热器→4:四通换向阀→6:热交换式储液器→1:压缩机
原理说明如下:
通过控制系统32,将机组转换到单独供暖模式下运行,压缩机1通电工作,将充注于整个系统铜管29中的制冷剂30变成高温高压下的气体推动向前,制冷剂通过油气分离器2,将压缩机油分离,压缩机油通过毛细管14回到压缩机。制冷剂出油气分离器2后再通过第一电磁阀15进入四通换向阀4,四通换向阀4通电改变制冷剂的流向。在该模式下,制冷剂通过四通换向阀4的C端口出进入空调侧板式换热器10中,此时该换热器作为冷凝器,与从空调侧进水口25流进空调侧板式换热器10的水进行热量交换,制冷剂30冷凝释放热量到水中,将水的温度提高,所产生的热水从空调侧出水口26流出空调侧板式换热器10,所产热水作为供暖循环水,将热量带到室内实现室内供暖。制冷剂30通过冷凝后温度和压力降低,再从空调侧板式换热器(10)出进入滤器211过滤,再经过膨胀阀212节流,制冷剂温度和压力迅速降低,变成低温低压状态,经过单向阀213后进入热源侧板式换热器5,制冷剂在热源侧板式换热器5中蒸发,吸收经过热源侧进水口27流经换热器的水中,被吸收热量的水通过热源侧出水口28流出热源侧板式换热器5。吸收热量的制冷剂30从热源侧板式换热器5中出后进入四通换向阀4的A端口,再从B端口出进入热交换式储液器6的D端口,从热交换式储液器6的G端口出后回到压缩机1,完成制冷剂的一次吸热放热的循环过程,实现了对水的吸热放热,已达到产生循环热水实现供暖的目的。
D:供暖+产热水
该模式下制冷剂流向如下:
1:压缩机→2:油气分离器→3:热水侧板式换热器→4:四通换向阀→10:空调侧板式换热器→11:过滤器2→12:膨胀阀2→13:单向阀2→5:热源侧板式换热器→4:四通换向阀→6:热交换式储液器→1:压缩机
原理说明如下:
通过控制系统32,将机组转换到供暖+产热水模式下运行,压缩机1通电工作,将充注于整个系统铜管29中的制冷剂30变成高温高压下的气体推动向前,制冷剂通过油气分离器2,将压缩机油分离,压缩机油通过毛细管14回到压缩机。制冷剂出油气分离器2后,因第一电磁阀15断电关闭,制冷剂进入热水侧板式换热器3中冷凝释放热量,将热量释放给从热水侧进水口23流经热水侧板式换热3的水中,将水的温度提高,所产热水再通过热水侧出水管24出热水侧板式换热器3。制冷剂冷凝释放热量后,进入四通换向阀4,四通换向阀4通电改变制冷剂的流向。在该模式下,制冷剂通过四通换向阀4的C端口出进入空调侧板式换热器10中,此时该换热器作为冷凝器,制冷剂另一部分热量与从空调侧进水口25流进空调侧板式换热器10的水进行热量交换,制冷剂30冷凝释放热量到水中,将水的温度提高,所产生的热水从空调侧出水口26流出空调侧板式换热器10,所产热水作为供暖循环水,将热量带到室内实现室内供暖。制冷剂30通过冷凝后温度和压力降低,再从空调侧板式换热器(10)出进入滤器211过滤,再经过膨胀阀212节流,制冷剂温度和压力迅速降低,变成低温低压状态,经过单向阀213后进入热源侧板式换热器5,制冷剂在热源侧板式换热器5中蒸发,吸收经过热源侧进水口27流经换热器的水中,被吸收热量的水通过热源侧出水口28流出热源侧板式换热器5。吸收热量的制冷剂30从热源侧板式换热器5中出后进入四通换向阀4的A端口,再从B端口出进入热交换式储液器6的D端口,从热交换式储液器6的G端口出后回到压缩机1,完成制冷剂的一次吸热放热的循环过程,实现了对水的吸热放热,已达到供暖同时产热水的目的。
E:单独产热水
该模式下制冷剂流向如下:
1:压缩机→2:油气分离器→3:热水侧板式换热器→4:四通换向阀→16:电磁阀2→11:过滤器2→12:膨胀阀2→13:单向阀2→5:热源侧板式换热器→4:四通换向阀→6:热交换式储液器→1:压缩机
原理说明如下:
通过控制系统32,将机组转换到供暖+产热水模式下运行,压缩机1通电工作,将充注于整个系统铜管29中的制冷剂30变成高温高压下的气体推动向前,制冷剂通过油气分离器2,将压缩机油分离,压缩机油通过毛细管14回到压缩机。制冷剂出油气分离器2后,因第一电磁阀15断电关闭,制冷剂进入热水侧板式换热器3中冷凝释放热量,将热量释放给从热水侧进水口23流经热水侧板式换热3的水中,将水的温度提高,所产热水再通过热水侧出水管24出热水侧板式换热器3。制冷剂冷凝释放热量后,进入四通换向阀4,四通换向阀4通电改变制冷剂的流向。在该模式下,制冷剂通过四通换向阀4的C端口出流经电磁阀216,再依次进入滤器211过滤,再经过膨胀阀212节流,制冷剂温度和压力迅速降低,变成低温低压状态,经过单向阀213后进入热源侧板式换热器5,制冷剂在热源侧板式换热器5中蒸发,吸收经过热源侧进水口27流经换热器的水中,被吸收热量的水通过热源侧出水口28流出热源侧板式换热器5。吸收热量的制冷剂30从热源侧板式换热器5中出后进入四通换向阀4的A端口,再从B端口出进入热交换式储液器6的D端口,从热交换式储液器6的G端口出后回到压缩机1,完成制冷剂的一次吸热放热的循环过程,实现了对水的吸热放热,已达到单独产热水的目的。
下面结合附图2对海水源热泵三联供机组安装使用进行详细说明。
工作说明:结合海水源热泵三联供机组“单独制冷”、“制冷+产热水”、“单独供暖”、“供暖+产热水”、“单独产热水”的五种工作模式,其整个安装配套系统也有不同的模式。
A、单独制冷:海水源热泵三联供机组在单独制冷模式下运行,机组内部热源侧产生热水,从热源侧出水管2-3出,将热量释放到海水池2-2的海水中。海水池中的冷水再通过热源侧循环泵2-4的作用从热源侧进水管2-5进入海水源热泵三联供机组2-1将冷凝热量带到海水中。该模式下的使用侧为空调制冷侧。空调系统的冷冻循环水在空调侧循环泵2-7的作用下,进入室内末端风机盘管2-6,冷冻水从室内吸收热量,降低室内温度以达到室内制冷的目的。该模式下热水侧没有启动运行,最后相当于通过海水源热泵三联供机组2-1将室内的热量搬运释放到海水中,以达到室内制冷的目的。
B、制冷+产热水:海水源热泵三联供机组在制冷+产热水模式下运行,机组内部热源侧产生热水,从热源侧出水管2-3出,将热量释放到海水池2-2的海水中。海水池中的冷水再通过热源侧循环泵2-4的作用从热源侧进水管2-5进入海水源热泵三联供机组2-1将冷凝热量带到海水中。该模式下的使用侧为空调制冷侧。空调系统的冷冻循环水在空调侧循环泵2-7的作用下,进入室内末端风机盘管2-6,冷冻水从室内吸收热量,降低室内温度以达到室内制冷的目的。同时,热水保温水箱2-13内的生活水通过热水侧循环泵2-11的作用进入机组,通过机组内部热水侧板式换热器吸取热量后从热水侧出水管2-10出机组进入热水保温水箱,所产的生活热水存储于热水保温水箱内。通过热水供水管将热水输送到需要使用热水的场所,通过冷水补水管补充冷水。该模式下通过海水源热泵三联供机组2-1将室内的热量转移到热水中产生生活热水,在满足热水需求的情况下将多余的热量释放到海水中,最终达到室内制冷同时回收热量产热水的目的。
C、单独供暖:海水源热泵三联供机组2-1在单独供暖模式下运行,在热源侧循环泵2-4的作用下,海水从热源侧进水管2-5进入机组,机组从海水中吸收热量后,海水通过热源侧出水管2-3回到海水池中。在空调侧,机组将从海水中吸收的热量释放到空调侧中,空调系统循环水在空调侧循环泵2-7的作用下,进入室内末端风机盘管2-6,将空调循环热水中的热量释放到室内以达到室内供暖的目的,循环水再通过空调侧进水管2-9回到机组继续吸热,完成水系统的循环。
D、供暖+产热水:海水源热泵三联供机组在供暖+产热水模式下运行,在热源侧循环泵2-4的作用下,机组从热源侧进水管2-5进入机组的水中吸取热量,被吸取热量的海水通过热源侧出水管2-3回到海水池2-2中。在空调侧,一部分从海水中吸收的热量被空调侧循环水吸收,通过空调侧循环泵2-7的作用,将热量释放到末端室内风机盘管2-6,以达到室内供暖的目的,释放热量后的空调循环水再通过空调侧进水管2-9回到机组内部继续吸热。与此同时,从海水中吸收的另一部分热量被热水侧的循环水吸收,所产热水在热水循环泵2-11的作用下进入热水保温水箱2-13存储,需要使用热水时,通过热水供水管2-15将热水输送到相应场所,通过冷水补水管2-14补充冷水。此模式从海水中吸收热量,满足供暖同时供热水的需求。
E、单独产热水:海水源热泵三联供机组在单独产热水模式下运行,在热源侧循环泵2-4的作用下,机组从热源侧进水管2-5进入机组的水中吸取热量,被吸取热量的海水通过热源侧出水管2-3回到海水池2-2中。从海水中吸收的热量被热水侧的循环水吸收,所产热水在热水循环泵2-11的作用下进入热水保温水箱2-13存储,需要使用热水时,通过热水供水管2-15将热水输送到相应场所,通过冷水补水管2-14补充冷水。此模式从海水中吸收热量,满足供暖同时供热水的需求。
本文中所描述的具体实施例仅仅是对本实用新型精神作举例说明。本实用新型所属技术领域的技术人员可以对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,但并不会偏离本实用新型的精神或者超越所附权利要求书所定义的范围。

Claims (5)

1.一种海水源热泵三联供机组,其特征在于,包括:
压缩机(1),串联油气分离器(2)和毛细管(14),并且其制冷剂回流口与热交换式储液器(6)的第二输出端连接;
热水侧板式换热器(3),其交换侧输入端和输出端通过第一电磁阀(15)串接并与油气分离器(2)的输出端连接,其供给侧连接热水侧进水口(23)及热水侧出水口(24);
四通换向阀(4),其输入端连接第一电磁阀(15),其A端口连接热源侧板式换热器(5)的交换侧输入端,其B端口连接热交换式储液器(6)的第一输入端口,其C端口连接空调侧板式换热器(10)的交换侧输入端;
热源侧板式换热器(5),其交换侧输出端连接热交换式储液器(6)的第二输入端口,其供给侧连接热源侧进水口(27)和热源侧出水口(28);
空调侧板式换热器(10),其交换侧输出端分别通过两组包括过滤器、膨胀阀、单向阀组成的通路连接热交换式储液器(6)的第二输入端及第一输出端;其供给侧连接空调侧进水口(25)及空调侧出水口(26)。
2.根据权利要求1所述的一种海水源热泵三联供机组,其特征在于,所述四通换向阀(4)的输入端连接高压表(17)、高压控制器(18)、高压截止阀(19)。
3.根据权利要求1所述的一种海水源热泵三联供机组,其特征在于,所述热交换式储液器(6)的第二输出端连接低压表(20)、低压控制器(21)、低压截止阀(22)。
4.一种海水源热泵三联供机组系统,其特征在于,包括:
海水源热泵三联供机组,其热源侧出水管及热源侧进水管连接海水池(2-2);其空调侧进水口及空调侧出水口连接室内风管机盘(2-6);其热水侧出水管及进水管连接热水保温水箱(2-13);所述海水池(2-2)上设置有海水进排水管。
5.根据权利要求4所述的一种海水源热泵三联供机组系统,其特征在于,所述海水源热泵三联供机组具体包括:
压缩机(1),串联油气分离器(2)和毛细管(14),并且其制冷剂回流口与热交换式储液器(6)的第二输出端连接;
热水侧板式换热器(3),其交换侧输入端和输出端通过第一电磁阀(15)串接并与油气分离器(2)的输出端连接,其供给侧连接热水侧进水口(23)及热水侧出水口(24);
四通换向阀(4),其输入端连接第一电磁阀(15),其A端口连接热源侧板式换热器(5)的交换侧输入端,其B端口连接热交换式储液器(6)的第一输入端口,其C端口连接空调侧板式换热器(10)的交换侧输入端;
热源侧板式换热器(5),其交换侧输出端连接热交换式储液器(6)的第二输入端口,其供给侧连接热源侧进水口(27)和热源侧出水口(28);
空调侧板式换热器(10),其交换侧输出端分别通过两组包括过滤器、膨胀阀、单向阀组成的通路连接热交换式储液器(6)的第二输入端及第一输出端;其供给侧连接空调侧进水口(25)及空调侧出水口(26);
其中,热源侧进水口(27)和热源侧出水口(28)通过热水侧出水管及进水管与海水池相连。
CN201820468319.0U 2018-04-04 2018-04-04 海水源热泵三联供机组及系统 Expired - Fee Related CN208222909U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201820468319.0U CN208222909U (zh) 2018-04-04 2018-04-04 海水源热泵三联供机组及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201820468319.0U CN208222909U (zh) 2018-04-04 2018-04-04 海水源热泵三联供机组及系统

Publications (1)

Publication Number Publication Date
CN208222909U true CN208222909U (zh) 2018-12-11

Family

ID=64504292

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201820468319.0U Expired - Fee Related CN208222909U (zh) 2018-04-04 2018-04-04 海水源热泵三联供机组及系统

Country Status (1)

Country Link
CN (1) CN208222909U (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108592438A (zh) * 2018-04-04 2018-09-28 赵冬辰 海水源热泵三联供机组及系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108592438A (zh) * 2018-04-04 2018-09-28 赵冬辰 海水源热泵三联供机组及系统

Similar Documents

Publication Publication Date Title
CN101498518B (zh) 多功能蓄冰空调系统及该系统的控制方法
CN101655281B (zh) 热泵热水空调机组及其工作方法
CN106642789B (zh) 实现太阳能综合利用与土壤跨季节储能的热源塔热泵系统
CN101140122B (zh) 使用组合节流装置的热泵机组
CN101571330B (zh) 一种无霜型多功能太阳能辅助热泵系统
CN103175324A (zh) 带热回收的平行流蒸发式冷凝制冷机组
CN202254480U (zh) 多功能热水空调系统
CN202757346U (zh) 中央空调和热水一体机
CN102297512A (zh) 复叠式热泵系统
CN203148105U (zh) 燃气发动机驱动螺杆式空气源热泵冷热水机组
CN102563947A (zh) 一种热管热泵组合型制冷装置
CN101936614B (zh) 一种蒸发式冷凝液泵供液循环冷热水机组
CN103423815A (zh) 一种溶液辅助储能型家用空调器
CN201318799Y (zh) 一种空气热源热水器
CN102721229B (zh) 一种废水源热泵三联供机组
CN208222909U (zh) 海水源热泵三联供机组及系统
CN202675732U (zh) 自适应匹配的太阳能辅助空气源热泵装置
CN2849548Y (zh) 一种压缩机补气系统
CN102734981A (zh) 空气源模块式三合一空调热水系统
CN101487643A (zh) 超低温热泵空调系统
CN110966696A (zh) 带太阳能喷射的冷媒辐射墙一体化空调系统和空调器
CN110701819A (zh) 一种三工况系统
CN105716324A (zh) 基于压缩-喷射复合的双热源高效空调系统及应用
CN201803520U (zh) 冰热水热泵
CN102865693A (zh) 一种空气源和废水源双源热泵三联供机组

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20181211

Termination date: 20200404

CF01 Termination of patent right due to non-payment of annual fee