CN207963345U - 基于洁能内循环的农作物烘干装置 - Google Patents

基于洁能内循环的农作物烘干装置 Download PDF

Info

Publication number
CN207963345U
CN207963345U CN201820330203.0U CN201820330203U CN207963345U CN 207963345 U CN207963345 U CN 207963345U CN 201820330203 U CN201820330203 U CN 201820330203U CN 207963345 U CN207963345 U CN 207963345U
Authority
CN
China
Prior art keywords
heat
air
heating
control
energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201820330203.0U
Other languages
English (en)
Inventor
黄采伦
孙恺
唐东峰
王靖
田勇军
王安琪
朱俊玮
欧阳利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan University of Science and Technology
Original Assignee
Hunan University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan University of Science and Technology filed Critical Hunan University of Science and Technology
Priority to CN201820330203.0U priority Critical patent/CN207963345U/zh
Application granted granted Critical
Publication of CN207963345U publication Critical patent/CN207963345U/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Drying Of Solid Materials (AREA)

Abstract

本实用新型公开了一种基于洁能内循环的农作物烘干装置,包括供热子系统、除湿子系统、控制子系统、烘烤箱四个部分;供热子系统、除湿子系统与烘烤箱之间的空气管路两两相接,加热气流在三者内部循环流动没有排放,且三者内部的监测传感器、用电设备与控制子系统电连接,由监测传感器获得状态信号,通过控制子系统内微控制器的嵌入式算法程序和控制程序输出相应的控制信号,控制各个用电设备按照预先设定的烘烤工艺曲线进行协调工作、以实现洁能内循环烘烤。本实用新型的有益效果是:采用清洁能源供热,可减少对不可再生资源的消耗和污染物的排放,使用空气内循环的冷凝除湿方式,可减少热量的损失、营养成分的流失。

Description

基于洁能内循环的农作物烘干装置
技术领域
本实用新型属于农作物烘烤系统,尤其是一种使用清洁能源为热源且采用空气内循环的农作物烘干装置。
背景技术
进入21世纪以来,随着我国现代农业的快速发展,农作物生产的每个环节都在高 效运行。农作物生产中的减工、降本及增效是目前农作物生产迫切需求和主要任务。以烟草 生产为例,烟叶烘烤作为烤烟生产中决定品质和产量高低的最后环节和最重要的环节,虽 然在密集烤房和烘烤工艺的研制和推广上促进了我国在烟叶烘烤方面的取得了很大进步, 但是现实应用中仍存在不少问题:现有烤房在在供热源上,煤炭燃烧供热仍然占据了很 大的比例,虽然在此前很多学者在清洁能源供热上进行了大量的研究,但是受限于烘烤工 艺、技术发展现状、技术成本等,使得清洁能源在密集烤房供热上很难得到大面积的推广和 应用;在除湿方面,使用的强排湿的除湿方式,在除湿过程中不仅造成大量的能耗损失, 而且还降低了优等烟叶的比例和烟叶自身的香气;在控制方面,由于燃煤密集烤房烘烤 系统的整体结构和烘烤工艺的限制,现有控制系统只能实现半自动化和自动化,对人工需 求大,特别是对具有丰富经验的烟农。先进的烘烤系统和烘烤工艺可以将生长成熟的烟叶 优良性状充分显现出来,增产增收,实现其使用价值。目前,国内烟叶烘烤系统在供热上,燃 煤占据的比例很大,而且在烟叶烘烤过程中,每烘烤1kg干烟需要消耗煤量为约为1.5~ 2.0kg,而每排出 1kg水分所需要的理论耗热量约为2559.5~2580.3kJ,我国各地鲜烟叶的 含水量多在80~90%,以煤的低基位发热值20809kJ/kg计算,每1kg干烟叶的理论耗煤量仅为 0.423~0.952kg,因此烟叶烘烤过程中每排出1kg水分所需的实际耗煤量为理论值的2.778~ 4.505倍,烤房热效率仅在22.2%~36.0%之间,无效能耗很高。不但如此,由于化石燃料的燃 烧不充分和滞后性、升稳温不均匀而影响烤后烟叶的质量,无效能耗过高导致燃料浪费,排 放大量的SO2、CO2、NO2和颗粒物等污染物造成环境污染多种问题,因此国内研究人员已经开 始探索生物质能、太阳能、空气源热泵机组等在密集烤房供热方面的研究。
我国有着广阔的国土面积,拥有丰富的太阳能资源,约在3348~8371MJ/(m2·a)之间,全国平均约为5860MJ/(m2∙a)。自21世纪以来,太阳能中低温热利用技术已经取得了很大的进步,是目前应用最普遍、商业化程度最高的太阳能利用技术,而且我国在太阳能低温热利用技术上已经很成熟。目前,我国是世界上太阳能集热器产量和销售量最大的国家,所以在太阳能资源较丰富的烟区的密集型烤房中利用太阳能进行供热具有很好的应用基础。热泵是一种制冷系统,通过冷凝器内制冷剂冷凝释放热量供热,是一种高效节能装置,技术成熟,性能可靠,得到广泛应用,其中空气源热泵是热泵技术中最经济、方便的,而且农作物烘烤工作一般在夏季与秋初进行,此时外界温度较高,正处于热泵能效比最高的时候,所以利用热泵技术烘烤农作物非常适宜。相对于传统能源,使用高温热泵机组作为热源,在不增加其他辅助热源的情况下,所供热量和所需升温温度仍然能满足需求。高温热泵机组可采用变频技术并且使用微电脑控制,能够更加灵敏、准确提供热量和提升温度。
现有农作物烘干装置、烟叶烘烤密集烤房大都采用强排湿的除湿方式,在强排湿的过程中不仅排掉烘烤箱内的水蒸气,还将水蒸气所携带的热量也排出室外。据研究发现,在强排湿的过程中,损失掉的热量大约为总能耗的10%~20%,最高甚至达到25%,不仅如此,在农作物烘烤的排湿过程中还排掉了农作物散发出来的营养成分。在控制技术和烘烤工艺上,现有农作物烘干装置、烟叶烘烤密集烤房虽然已经基本实现半自动化和自动化,但是在烘烤过程稳温时长、升温速度、排湿时机、加煤时机、加煤量等仍然还依赖人工经验去控制,而且由于现有烘烤系统的整体结构以及烘烤工艺都是建立在燃煤供热、强排湿的除湿方式上,又因为燃煤升温的滞后性和不可控性使得研究人员对于控制方面的研究不足,比较有进展性的研究也仅在在自动加煤、自动排湿方面取得了一些成果,而在智能控制、智能烘烤、集群化烘烤方面仍然比较落后。因此发明一种使用清洁能源供热,内循环除湿,智能化烘烤的农作物烘干装置是十分必要的。
发明内容
为了克服以上所述的问题,本实用新型公开了一种基于洁能内循环的农作物烘干装置。
本实用新型的技术方案是:一种基于洁能内循环的农作物烘干装置,包括供热子系统、除湿子系统、控制子系统、烘烤箱四个部分;其特征是:供热子系统由太阳能集热、空气能、太阳能光伏、电网电能四种清洁能源提供能量,其一端与烘烤箱连接,为烘烤箱提供用于农作物烘烤的热量,另一端与除湿子系统相连回收除湿过后的干燥低热空气并将低热空气进行加热升温再回送烘烤箱;除湿子系统的一端与烘烤箱相连通过抽风机将烘烤箱内的湿热空气抽出进行除湿,除湿后干燥低热空气通过另一端连接至供热子系统;供热子系统、除湿子系统与烘烤箱之间的空气管路两两相接,加热气流在三者内部循环流动没有排放,且三者内部的监测传感器、用电设备与控制子系统电连接,由监测传感器获得状态信号,通过控制子系统内微控制器的嵌入式算法程序和控制程序输出相应的控制信号,控制各个用电设备按照预先设定的烘烤工艺曲线进行协调工作、以实现洁能内循环烘烤。
本实用新型中,所述的供热子系统在加热室内将蒸发器①、热交换器②、冷凝器③、电辅助加热器④、循环风机⑤集成为一体,加热室顶部设置有与除湿子系统连接的进风口、底部设置有与烘烤箱连接的出风口;太阳能集热供热模块包括集热管阵列、储热水箱、循环泵、热交换器②、电磁阀,太阳能集热管阵列放置于烘烤箱房顶用于吸收太阳辐射能并将其转化为热能,热能被储热水箱内的水吸收并储存下来,储热水箱、循环泵、热交换器②与电磁阀通过管道连接一体形成一个热水循环的供热单元,热交换器②放置于加热室内的蒸发器①之下;空气能热泵供热模块包括热泵压缩机、蒸发器①、冷凝器③、节流阀,热泵压缩机放置于加热室外用于将蒸发器①出来的高温低压工作液转换成高温高压工作液并连接到冷凝器③,蒸发器①放置于加热室内的顶层、冷凝器③放置于加热室内的热交换器②之下;电辅助加热器④放置于加热室内的冷凝器③之下,在充电管理控制单元的控制下自动选择太阳能光伏、电网电能为其供电,用于农作物烘烤各个阶段温度补充和高温热泵机组无法满足供热要求时的热量供给;来自除湿子系统的低温气流在循环风机⑤的负压作用下,依次与蒸发器①、热交换器②、冷凝器③、电辅助加热器④进行换热后经出风口为烘烤箱提供热源,控制子系统根据烘烤工艺曲线、按最优节能原则互补选择太阳能集热、空气能、太阳能光伏、电网电能四种清洁能源的投入。
本实用新型中,所述的除湿子系统将轴流风机、全热交换器、蒸发器⑥集成于除湿室内,轴流风机放置于除湿室与烘烤箱连接的进风口,电磁阀⑨及排水管放置于除湿室底部的排水口处,除湿室的出风口连接到供热子系统,冷凝除湿模块包括置于除湿室内部的蒸发器⑥和置于除湿室外部的除湿压缩机、冷凝器⑦、节流阀⑧、散热风机;烘烤箱排出的高温湿热空气和经过冷凝除湿后的低温干燥空气通过全热交换器进行换热后到达冷凝除湿模块的蒸发器⑥,经过冷凝除湿后的低温干燥空气和烘烤箱排出的高温湿热空气通过全热交换器进行换热后通过出风口输送到供热子系统,提高了送进加热室空气的基础温度、降低了经过蒸发器⑥的湿热空气的基础温度,并利用室外大气对冷凝除湿模块的冷凝器⑦进行散热,既充分回收了余热、同时也改善了除湿效果;需除湿时,除湿压缩机在控制子系统的控制下投入运行,控制子系统检测到除湿室水位达到一定高度即打开电磁阀排水、排水结束关闭电磁阀,不需除湿时,除湿压缩机、电磁阀停止工作,除湿室相当于高温湿热空气的通道。
本实用新型中,所述的控制子系统包括微控制器,用于根据太阳能光伏、蓄电池组工作状态自动切换系统电源的充电管理控制模块,用于从充电管理控制模块获取交流电源并为微控制器及其周边电路提供直流工作电源的AC-DC模块,用于控制热泵压缩机、除湿压缩机以调节加热量、除湿量并对压缩机工作状态进行检查保护的压缩机控制与保护模块,用于控制电辅加热器、电磁阀、电磁阀⑨、轴流风机、散热风机、循环泵的启动或停止以改变系统工作状态的继电器及其驱动模块,用于控制循环风机以改变烘烤箱通风量大小的变频控制模块,用于采集烘烤箱、除湿室、加热室、集热水箱内的温度、湿度、液位的温湿度与液位采集模块,用于与上位机完成远程通信的通信接口,用于存储系统运行程序、烘烤过程数据的程序与数据存储器,用于实现系统人机交互的LCD触摸显示屏;微控制器通过温湿度与液位采集模块实时采集系统工作状态参数,按照通过LCD触摸显示屏或上位机预先设定的烘烤工艺曲线,由内置嵌入式算法程序和控制程序得到控制量并输出控制信号以控制相应的设备或模块,使系统按最优节能原则互补选择太阳能集热、空气能、太阳能光伏、电网电能四种清洁能源投入以实现节能、洁能内循环烘烤。
本实用新型中,所述的烘烤箱分为气流上升和气流下降两种形式,均包括进风口、出风口、架杆、观察窗、门、均风器、集风器,烘烤箱内的6个面放置有用于减少热量散失的隔热材料;编排好的农作物放置于架杆上,烘烤热风由与供热子系统加热室连接的进风口引入,经均风器后使热量均匀地分布于烘烤箱内,由集风器均匀地收集烘烤箱内的湿热空气通过出风口连接到除湿子系统的除湿室;门是农作物的进出通道,观察窗用于烘烤过程中观察农作物颜色变化。
本实用新型的有益效果在于:使用太阳能集热、空气能、太阳能光伏、电网电能四种清洁能源作为供热源,以除湿压缩机为基础设备的热空气内循环冷凝的除湿方式,采用专家模糊控制的控制方法,可减少对石化燃料的燃烧、废气物和有害气体的排放、热量的损失、人工劳动强度和成本,可有效提高优等农作物的比例、农作物的营养成分,可缩短烘烤周期、优化烘烤工艺曲线。
附图说明
图1是本实用新型的整体系统框图;
图2是本实用新型的供热子系统实施例框图;
图3是本实用新型的除湿子系统实施例框图;
图4是本实用新型的控制子系统实施例框图;
图5是本实用新型的烘烤箱结构实施例一;
图6是本实用新型的烘烤箱结构实施例二。
具体实施方式
下面将结合本实用新型实施例中的附图,对本实用新型实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本实用新型一部分实施例,而不是全部的实施例。基于本实用新型中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本实用新型保护的范围。
参见附图,图1是本实用新型的整体系统框图。一种基于洁能内循环的农作物烘干装置,包括供热子系统、除湿子系统、控制子系统、烘烤箱四个部分。供热子系统由太阳能集热、空气能、太阳能光伏、电网电能四种清洁能源提供能量,其一端与烘烤箱连接,为烘烤箱提供用于农作物烘烤的热量,另一端与除湿子系统相连回收除湿过后的干燥低热空气并将低热空气进行加热升温再回送烘烤箱;除湿子系统的一端与烘烤箱相连通过抽风机将烘烤箱内的湿热空气抽出进行除湿,除湿后干燥低热空气通过另一端连接至供热子系统。供热子系统、除湿子系统与烘烤箱之间的空气管路两两相接,加热气流在三者内部循环流动没有排放,且三者内部的监测传感器、用电设备与控制子系统电连接,由监测传感器获得状态信号,通过控制子系统内微控制器的嵌入式算法程序和控制程序输出相应的控制信号,控制各个用电设备按照预先设定的烘烤工艺曲线进行协调工作、以实现洁能内循环烘烤。供热子系统的加热室有一个进风口一个出风口,出风口与烘烤箱的进风口通过热风管道相连通,由供热子系统产生热风通过热风管道送进烘烤箱用于农作物烘烤,加热室的进风口与除湿子系统除湿室的出风口通过热风管道相连通,将已除湿且经过全热交换器进行热交换的干燥空气由抽风机抽进供热系统的加热室进行加热升温,除湿子系统的除湿室有一个进风口和一个出风口,出风口与供热子系统加热室的进风口相连通,进风口与烘烤箱的出风口相连,将农作物烘烤过程中析出的水分形成的水蒸气和空气通过热风管道排出到除湿子系统的除湿室中进行除湿,烘烤箱进风口与供热子系统加热室出风口相连接,出风口与除湿子系统除湿室的进风口相连接,三者两两相接,空气在三者内部循环流动没有任何空气的排出,控制子系统通过放置于供热子系统、除湿子系统、烘烤箱内的传感器设备采集信号并且将信号传输给微控制器,微控制器将采集的信号作为专家模糊制方法的输入,在微控制器内经过数据处理和计算得出输出信号,微控制器再将输出信号转化为控制指令和驱动指令输送给继电器模块和变频电路模块以及显示模块,再通过与继电器模块相连的电机、与变频电路模块相连的电机使供热子系统和除湿子系统按照设计烘烤工艺曲线进行供热和除湿,并且通过与显示模块相连的显示屏显示出烘烤曲线。
附图2是本实用新型的供热子系统实施例框图。供热子系统在加热室内将蒸发器①、热交换器②、冷凝器③、电辅助加热器④、循环风机⑤集成为一体,加热室顶部设置有与除湿子系统连接的进风口、底部设置有与烘烤箱连接的出风口;太阳能集热供热模块包括集热管阵列、储热水箱、循环泵、热交换器②、电磁阀,太阳能集热管阵列放置于烘烤箱房顶用于吸收太阳辐射能并将其转化为热能,热能被储热水箱内的水吸收并储存下来,储热水箱、循环泵、热交换器②与电磁阀通过管道连接一体形成一个热水循环的供热单元,热交换器②放置于加热室内的蒸发器①之下;空气能热泵供热模块包括热泵压缩机、蒸发器①、冷凝器③、节流阀,热泵压缩机放置于加热室外用于将蒸发器①出来的高温低压工作液转换成高温高压工作液并连接到冷凝器③,蒸发器①放置于加热室内的顶层、冷凝器③放置于加热室内的热交换器②之下;电辅助加热器④放置于加热室内的冷凝器③之下,在充电管理控制单元的控制下自动选择太阳能光伏、电网电能为其供电,用于农作物烘烤各个阶段温度补充和高温热泵机组无法满足供热要求时的热量供给;来自除湿子系统的低温气流在循环风机⑤的负压作用下,依次与蒸发器①、热交换器②、冷凝器③、电辅助加热器④进行换热后经出风口为烘烤箱提供热源,控制子系统根据烘烤工艺曲线、按最优节能原则互补选择太阳能集热、空气能、太阳能光伏、电网电能四种清洁能源的投入。供热子系统包括太阳能供热模块、空气能供热模块、电能供热模块、加热室;所述的太阳能供热模块包括集热管阵列、储热水箱、循环水泵、热交换器,太阳能集热管阵列放置于烘烤箱楼顶用于吸收太阳辐射能并将其转化为热能,然后将转化的热能与集热管中的冷水进行热交换,并且将热水存入储热水箱,储热水箱一端与循环水泵相连另一端与热交换器相连用于储存热水,储存的热水主要用于夜间农作物烘烤的热量供应,循环水泵放置于加热室外侧墙壁,一端与储热水箱相连一端与热交换器相连用于促进水流流动,所使用的循环水泵的可选用具有变频调速功能,使用继电器模块启动循环水泵,使用变频模块调节水流速度,当太阳辐射能充足时,可加快水流流动,当太阳辐射能不足时,可降低水流速度,可使热交换器换热效率最大化,热交换器放置于加热室内的第2层(从上往下),一端与循环水泵相连一端与储热水箱相连用于将流过热交换器铜管内的热水和吹过铜管外的空气进行热交换,所述的太阳能供热模块主要用于农作物烘烤的黄片黄筋1/3阶段或者烘烤箱温度在45℃以前的热量供应;所述的空气能供热模块包括热泵压缩机、冷凝器、蒸发器、节流阀,热泵压缩机放置于加热室外,一端与加热室内冷凝器通过铜管相连,一端与加热室内蒸发器通过铜管相连,用于将高温低压的工作液转化为高温高压,冷凝器放置于加热室的第3层(从上往下),一端与热泵压缩机相连一端与节流阀相连,用于将冷凝器内的工作液和吹过冷凝器铜管和散热片的空气进行换热,提升吹过冷凝器空气的温度,蒸发器放置于加热室1层(从上往下),一端与压缩机相连一端与节流阀相连,用于蒸发器内的工作液和吹过蒸发器的空气进行热交换,一方面可以对吹过蒸发器的空气进行降温除湿,另一方面还可用于提高冷凝器的基础换热温度,使吹过冷凝器的空气温度提升更高,所述的空气能供热模块主要用于农作物烘烤的黄片黄筋1/3阶段或者烘烤箱温度在45℃以后以及出现连续阴雨天气导致太阳能供热模块不能供热或者供热不能满足当前农作物烘烤温度需求时;所述的电能供热模块采用PTC电辅助加热器,放置于加热室第4层(从上往下),所使用的PTC电辅助加热器可具有多个功率档,且与继电器电路通过导线相连,由微控制器控制开关,用于农作物烘烤稳温期间的短暂升温和高温热泵机组无法满足烘烤箱内温度需求时的供热;所述的加热室包括5个架子、一个进风口、一个出风口,5个架子分为5层(从上往下)第1层用于放置蒸发器,第2层用于放置热交换器,第3层用于放置冷凝器,第4层用于放置电辅助加热器,第5层用于放置循环风机,出风口与烘烤箱进风口通过热风管道相连用于吹出热风到烘烤箱,进风口与除湿子系统出风口通过热风管道相连用于引进除湿过的干燥空气,干燥空气通过加热室内的加热装置后再提供给烘烤箱进行农作物烘烤,三个供热模块的工作时期和工作时长由控制子系统进行控制。
附图3是本实用新型的除湿子系统实施例框图。除湿子系统将轴流风机、全热交换器、蒸发器⑥集成于除湿室内,轴流风机放置于除湿室与烘烤箱连接的进风口,电磁阀⑨及排水管放置于除湿室底部的排水口处,除湿室的出风口连接到供热子系统,冷凝除湿模块包括置于除湿室内部的蒸发器⑥和置于除湿室外部的除湿压缩机、冷凝器⑦、节流阀⑧、散热风机;烘烤箱排出的高温湿热空气和经过冷凝除湿后的低温干燥空气通过全热交换器进行换热后到达冷凝除湿模块的蒸发器⑥,经过冷凝除湿后的低温干燥空气和烘烤箱排出的高温湿热空气通过全热交换器进行换热后通过出风口输送到供热子系统,提高了送进加热室空气的基础温度、降低了经过蒸发器⑥的湿热空气的基础温度,并利用室外大气对冷凝除湿模块的冷凝器⑦进行散热,既充分回收了余热、同时也改善了除湿效果;需除湿时,除湿压缩机在控制子系统的控制下投入运行,控制子系统检测到除湿室水位达到一定高度即打开电磁阀排水、排水结束关闭电磁阀,不需除湿时,除湿压缩机、电磁阀停止工作,除湿室相当于高温湿热空气的通道。除湿子系统包括降温除湿模块、全热回收器、除湿室、电磁阀、排水管轴流风机;所述的降温除湿模块包括除湿压缩机、冷凝器、蒸发器、节流阀、循环风机,除湿压缩机放置于除湿室外,与除湿室内的蒸发器和除湿室外的冷凝器相连用于工作液的工作状态转换,冷凝器放置于除湿室外与除湿室内的节流阀和除湿室外的压缩机相连,用于将冷凝器内的工作液和吹过冷凝器的室外空气进行热交换,降低工作液的温度,提升蒸发器除湿效率,并且还可用于降低蒸发器的基础换热温度,蒸发器放置于除湿室内和除湿室外的冷凝器和除湿室内的节流阀相连,用于对流过蒸发器外部的湿热空气进行降温除湿,循环风机和冷凝器安装在一起用于加快冷凝器与室外空气的换热速度,提高除湿效率;所述的全热回收器放置于除湿箱内,用于将烘烤箱排出的高温湿热空气和经过冷凝除湿的低温干燥空气进行热交换,一方面提高流进加热室空气的基础温度,另一方面降低了流过蒸发器的湿热空气的基础温度,提高了除湿效率;所述的除湿室包括一个进风口、一个出风口、一个排水口,进风口与烘烤箱出风口通过热风管道相连用于引进烘烤箱的湿热空气,出风口与加热室进风口通过热风管道相连,用于排出干燥空气,排水口与排水管相连用于排放降温除湿过程中形成的水;所述的排水管一端连接电磁阀,另一端用于排放冷凝水到室外,排水口与排水管之间用电磁阀相连,所述的电磁阀通过导线与控制子系统相连用于控制电磁阀的开、关,进而控制冷凝水的排水。
附图4是本实用新型的控制子系统实施例框图。控制子系统包括微控制器,用于根据太阳能光伏、蓄电池组工作状态自动切换系统电源的充电管理控制模块,用于从充电管理控制模块获取交流电源并为微控制器及其周边电路提供直流工作电源的AC-DC模块,用于控制热泵压缩机、除湿压缩机以调节加热量、除湿量并对压缩机工作状态进行检查保护的压缩机控制与保护模块,用于控制电辅加热器、电磁阀、电磁阀⑨、轴流风机、散热风机、循环泵的启动或停止以改变系统工作状态的继电器及其驱动模块,用于控制循环风机以改变烘烤箱通风量大小的变频控制模块,用于采集烘烤箱、除湿室、加热室、集热水箱内的温度、湿度、液位的温湿度与液位采集模块,用于与上位机完成远程通信的通信接口,用于存储系统运行程序、烘烤过程数据的程序与数据存储器,用于实现系统人机交互的LCD触摸显示屏;微控制器通过温湿度与液位采集模块实时采集系统工作状态参数,按照通过LCD触摸显示屏或上位机预先设定的烘烤工艺曲线,由内置嵌入式算法程序和控制程序得到控制量并输出控制信号以控制相应的设备或模块,使系统按最优节能原则互补选择太阳能集热、空气能、太阳能光伏、电网电能四种清洁能源投入以实现节能、洁能内循环烘烤。所述的充电管理控制模块包括380V供电部分、220V供电部分,380V供电部分通过继电器分别与热泵压缩机和除湿压缩机相连接,作为压缩机的电源,供电电源开/断通过微控制器发送控制指令给电机驱动模块和继电器模块,然后通过继电器来控制电源的开/断,220V供电部分一方面用于风机工作用电,风机通过导线与继电器及其驱动模块相连接,继电器及其驱动模块则由微控制器发送指令给驱动电路,再由驱动电路传输电平信号给继电器,由继电器控制风机供电电源的开/断,另一方面用于作为AC-DC模块的输入电源。所述的微控制器用于将温湿度与液位采集模块、压缩机控制与保护模块采集的信号进行处理,将已经处理过的信号作为控制方法的输入,经过控制方法的相关运算后再发送出控制指令,控制指令经过微控制器传输到相应的模块,各个模块根据相应的控制指令采取相应的动作。所述的温湿度与液位采集模块用于采集烘烤箱内的温湿度信号,通过放置在烘烤箱内的各个位置的温湿度一体传感器采集温湿度信号,然后通过信号线传输给控制器进行的信号分析与处理,经过分析处理后送给微控制器;该模块还用于除湿室、太阳能供热部分的水温、液位监控,通过放置在除湿室、太阳能储热水箱内的温度传感器、液位传感器采集热水温度,然后通过信号线传输给微控制器进行的信号分析与处理,经过分析处理后发出控制信号到相应的模块。所述的压缩机控制与保护模块用于保护压缩机处于额定工作范围之内,通过放置在压缩机上的温度和压力传感器采集信号,然后通过信号线传输给微控制器进行的信号分析与处理,经过分析处理后发出控制信号到压缩机控制与保护模块,在微控制器内与预先设定的额定值进行比较,当超过额定值时,微控制器发送控制指令给压缩机保护电路,启动保护电路,如果没有超过额定值,则可进行烘烤工艺所需的操作。所述的变频控制模块用于变频电机的转速控制,一端与微控制相连一端与变频电机相连,由微控制器发送指令给变频控制模块,再由变频控制模块控制电机转速,然后又通过变频模块采集调整后的风机转速,经过信号处理后反馈给微控制器,以实现烘烤箱循环风量大小的控制与调节。所述的AC-DC模块将变换后的电压作为其它模块的输入电压,用于其它电路的供电;所述的继电器及其驱动模块用于控制电机的和电辅的开/关,一端与电器设备相连一端与驱动模块相连,通过驱动模块传送的电平信号使继电器工作;改模块还用于启动电机,一端与微控制器相连一端与继电器相连,通过接受来自微控制器传输的控制指令,经过处理后,以电平信号传送给继电器模块。所述的LCD触摸显示屏包括显示屏驱动部分、控制部分,驱动部分用于启动显示屏,控制部分用于控制和显示,显示屏模块通过信号传输线与微控制器相连,显示屏可以进行人机交互,操作人员可在触摸屏上进行参数设定和配置。
附图5是本实用新型的烘烤箱结构实施例一;附图6是本实用新型的烘烤箱结构实施例二。烘烤箱分为气流上升(如图5所示)和气流下降(如图6所示)两种形式,均包括进风口、出风口、架杆、观察窗、门、均风器、集风器,烘烤箱内的6个面放置有用于减少热量散失的隔热材料;编排好的农作物放置于架杆上,烘烤热风由与供热子系统加热室连接的进风口引入,经均风器后使热量均匀地分布于烘烤箱内,由集风器均匀地收集烘烤箱内的湿热空气通过出风口连接到除湿子系统的除湿室;门是农作物的进出通道,观察窗用于烘烤过程中观察农作物颜色变化。图5是本系统采用气流上升式的烘烤箱结构图,图6是本系统采用气流下降式的烘烤箱结构图,隔热板放置于烘烤箱6个墙面,采用环保材料,用于隔绝墙壁散热。所述的进风口与加热室的出风口相连,用于引进热风,所述的出风口与除湿室的进风口相连,用于排出烘烤箱内的湿热空气;所述的架杆放置烘烤箱内部,分三层放置,且层与层的间隔距离相等,用于放置编制好的农作物;所述的观察窗采用透明玻璃,放置于烘烤箱侧面,观察窗高度需可观察到上中下三层农作物,用于观察农作物颜色变化;所述的门用于烘烤农作物和烟农进出;所述的均风器和集风器用于均匀烘烤箱内的热量和风速,对于气流上升式的烘烤方式,出风口与集风器在烘烤箱上部,进风口与均风器在烘烤箱下部,对于气流下降式,出风口与集风器在烘烤箱下部,进风口与均风器在烘烤箱上部。
本实用新型的有益效果在于:采用太阳能集热、空气能、太阳能光伏、电网电能四种清洁能源作为供热源,可减少对不可再生资源的消耗和污染物的排放,可有利于生态环境保护、能源节约;使用空气内循环的冷凝除湿方式,可减少热量的损失、营养成分的流失,可提高农作物的香气;以烘烤工艺曲线为基础,专家模糊作为控制方法的控制模块,可提高烘烤箱内温湿度的控制精度、热量供应控制灵敏度、能量利用率、优质农作物比例,可缩短农作物烘烤时间。
以上所述仅为本实用新型的较佳实施例而己,并不用以限制本实用新型,凡在本实用新型的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本实用新型的保护范围之内。

Claims (5)

1.一种基于洁能内循环的农作物烘干装置,包括供热子系统、除湿子系统、控制子系统、烘烤箱四个部分;其特征是:供热子系统由太阳能集热、空气能、太阳能光伏、电网电能四种清洁能源提供能量,其一端与烘烤箱连接,为烘烤箱提供用于农作物烘烤的热量,另一端与除湿子系统相连回收除湿过后的干燥低热空气并将低热空气进行加热升温再回送烘烤箱;除湿子系统的一端与烘烤箱相连通过抽风机将烘烤箱内的湿热空气抽出进行除湿,除湿后干燥低热空气通过另一端连接至供热子系统;供热子系统、除湿子系统与烘烤箱之间的空气管路两两相接,加热气流在三者内部循环流动没有排放,且三者内部的监测传感器、用电设备与控制子系统电连接,由监测传感器获得状态信号,通过控制子系统内微控制器的嵌入式算法程序和控制程序输出相应的控制信号,控制各个用电设备按照预先设定的烘烤工艺曲线进行协调工作、以实现洁能内循环烘烤。
2.根据权利要求1所述的基于洁能内循环的农作物烘干装置,其特征是:所述的供热子系统在加热室内将蒸发器①、热交换器②、冷凝器③、电辅助加热器④、循环风机⑤集成为一体,加热室顶部设置有与除湿子系统连接的进风口、底部设置有与烘烤箱连接的出风口;太阳能集热供热模块包括集热管阵列、储热水箱、循环泵、热交换器②、电磁阀,太阳能集热管阵列放置于烘烤箱房顶用于吸收太阳辐射能并将其转化为热能,热能被储热水箱内的水吸收并储存下来,储热水箱、循环泵、热交换器②与电磁阀通过管道连接一体形成一个热水循环的供热单元,热交换器②放置于加热室内的蒸发器①之下;空气能热泵供热模块包括热泵压缩机、蒸发器①、冷凝器③、节流阀,热泵压缩机放置于加热室外用于将蒸发器①出来的高温低压工作液转换成高温高压工作液并连接到冷凝器③,蒸发器①放置于加热室内的顶层、冷凝器③放置于加热室内的热交换器②之下;电辅助加热器④放置于加热室内的冷凝器③之下,在充电管理控制单元的控制下自动选择太阳能光伏、电网电能为其供电,用于农作物烘烤各个阶段温度补充和高温热泵机组无法满足供热要求时的热量供给;来自除湿子系统的低温气流在循环风机⑤的负压作用下,依次与蒸发器①、热交换器②、冷凝器③、电辅助加热器④进行换热后经出风口为烘烤箱提供热源,控制子系统根据烘烤工艺曲线、按最优节能原则互补选择太阳能集热、空气能、太阳能光伏、电网电能四种清洁能源的投入。
3.根据权利要求1所述的基于洁能内循环的农作物烘干装置,其特征是:所述的除湿子系统将轴流风机、全热交换器、蒸发器⑥集成于除湿室内,轴流风机放置于除湿室与烘烤箱连接的进风口,电磁阀⑨及排水管放置于除湿室底部的排水口处,除湿室的出风口连接到供热子系统,冷凝除湿模块包括置于除湿室内部的蒸发器⑥和置于除湿室外部的除湿压缩机、冷凝器⑦、节流阀⑧、散热风机;烘烤箱排出的高温湿热空气和经过冷凝除湿后的低温干燥空气通过全热交换器进行换热后到达冷凝除湿模块的蒸发器⑥,经过冷凝除湿后的低温干燥空气和烘烤箱排出的高温湿热空气通过全热交换器进行换热后通过出风口输送到供热子系统,提高了送进加热室空气的基础温度、降低了经过蒸发器⑥的湿热空气的基础温度,并利用室外大气对冷凝除湿模块的冷凝器⑦进行散热,既充分回收了余热、同时也改善了除湿效果;需除湿时,除湿压缩机在控制子系统的控制下投入运行,控制子系统检测到除湿室水位达到一定高度即打开电磁阀排水、排水结束关闭电磁阀,不需除湿时,除湿压缩机、电磁阀停止工作,除湿室相当于高温湿热空气的通道。
4.根据权利要求1所述的基于洁能内循环的农作物烘干装置,其特征是:所述的控制子系统包括微控制器,用于根据太阳能光伏、蓄电池组工作状态自动切换系统电源的充电管理控制模块,用于从充电管理控制模块获取交流电源并为微控制器及其周边电路提供直流工作电源的AC-DC模块,用于控制热泵压缩机、除湿压缩机以调节加热量、除湿量并对压缩机工作状态进行检查保护的压缩机控制与保护模块,用于控制电辅加热器、电磁阀、电磁阀⑨、轴流风机、散热风机、循环泵的启动或停止以改变系统工作状态的继电器及其驱动模块,用于控制循环风机以改变烘烤箱通风量大小的变频控制模块,用于采集烘烤箱、除湿室、加热室、集热水箱内的温度、湿度、液位的温湿度与液位采集模块,用于与上位机完成远程通信的通信接口,用于存储系统运行程序、烘烤过程数据的程序与数据存储器,用于实现系统人机交互的LCD触摸显示屏;微控制器通过温湿度与液位采集模块实时采集系统工作状态参数,按照通过LCD触摸显示屏或上位机预先设定的烘烤工艺曲线,由内置嵌入式算法程序和控制程序得到控制量并输出控制信号以控制相应的设备或模块,使系统按最优节能原则互补选择太阳能集热、空气能、太阳能光伏、电网电能四种清洁能源投入以实现节能、洁能内循环烘烤。
5.根据权利要求1所述的基于洁能内循环的农作物烘干装置,其特征是:所述的烘烤箱分为气流上升和气流下降两种形式,均包括进风口、出风口、架杆、观察窗、门、均风器、集风器,烘烤箱内的6个面放置有用于减少热量散失的隔热材料;编排好的农作物放置于架杆上,烘烤热风由与供热子系统加热室连接的进风口引入,经均风器后使热量均匀地分布于烘烤箱内,由集风器均匀地收集烘烤箱内的湿热空气通过出风口连接到除湿子系统的除湿室;门是农作物的进出通道,观察窗用于烘烤过程中观察农作物颜色变化。
CN201820330203.0U 2018-03-12 2018-03-12 基于洁能内循环的农作物烘干装置 Expired - Fee Related CN207963345U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201820330203.0U CN207963345U (zh) 2018-03-12 2018-03-12 基于洁能内循环的农作物烘干装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201820330203.0U CN207963345U (zh) 2018-03-12 2018-03-12 基于洁能内循环的农作物烘干装置

Publications (1)

Publication Number Publication Date
CN207963345U true CN207963345U (zh) 2018-10-12

Family

ID=63742055

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201820330203.0U Expired - Fee Related CN207963345U (zh) 2018-03-12 2018-03-12 基于洁能内循环的农作物烘干装置

Country Status (1)

Country Link
CN (1) CN207963345U (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109798760A (zh) * 2019-01-10 2019-05-24 河南普绿环保科技有限公司 一种空气能热泵烘干系统
CN110793299A (zh) * 2019-12-04 2020-02-14 湖北光辉节能科技有限公司 一种消失模模样微波烘干房及微波烘干方法
CN110986561A (zh) * 2019-10-30 2020-04-10 浙江中广电器股份有限公司 热回收式高温烘干专用热泵机组及其操作方法
CN111700486A (zh) * 2020-05-26 2020-09-25 青岛海尔智慧厨房电器有限公司 一种蒸箱及其控制方法
CN112138964A (zh) * 2020-10-24 2020-12-29 苏州兆和空调技术工程有限公司 用于电池电极涂布烘箱中的供风系统
CN113108591A (zh) * 2021-04-30 2021-07-13 浙江工业大学 一种适用于垃圾干燥的搅拌设备及其干燥方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109798760A (zh) * 2019-01-10 2019-05-24 河南普绿环保科技有限公司 一种空气能热泵烘干系统
CN110986561A (zh) * 2019-10-30 2020-04-10 浙江中广电器股份有限公司 热回收式高温烘干专用热泵机组及其操作方法
CN110793299A (zh) * 2019-12-04 2020-02-14 湖北光辉节能科技有限公司 一种消失模模样微波烘干房及微波烘干方法
CN111700486A (zh) * 2020-05-26 2020-09-25 青岛海尔智慧厨房电器有限公司 一种蒸箱及其控制方法
CN112138964A (zh) * 2020-10-24 2020-12-29 苏州兆和空调技术工程有限公司 用于电池电极涂布烘箱中的供风系统
CN113108591A (zh) * 2021-04-30 2021-07-13 浙江工业大学 一种适用于垃圾干燥的搅拌设备及其干燥方法

Similar Documents

Publication Publication Date Title
CN207963345U (zh) 基于洁能内循环的农作物烘干装置
CN108477659B (zh) 多能源互补的内循环密集烤房
CN108185500A (zh) 洁能内循环密集烤房烘烤系统
CN108185501B (zh) 洁能互补的密集烤房供热除湿装置
CN103099302B (zh) 用于烤烟的智能节能除湿一体式烤房
CN110477433A (zh) 气流循环式密集烤房空气能加热除湿系统
CN105115258B (zh) 太阳能双循环农产品干燥设备及其在干燥农产品中的应用
CN202254660U (zh) 空气源高温热泵除湿烘烤设备
CN101940358B (zh) 一种以空气源热泵为热源的烟草烤房
CN205843311U (zh) 一种新型多能热泵干燥一体机
CN201523654U (zh) 一种以空气源热泵为热源的烟草烤房
CN106524741B (zh) 一种热泵式双循环热风烘干系统及其控制方法
CN204154091U (zh) 太阳能光电和热泵联合能源供热干燥系统
CN110506972A (zh) 基于气流循环控制的密集烤房加热除湿装置
CN201860730U (zh) 智能烘烤系统
CN102945008A (zh) 一种花椒烘烤控制系统
CN104677065B (zh) 一种全自动空气能烘茧机
CN206724656U (zh) 热回收腊肠干燥热泵系统以及热泵腊肠干燥机
CN202476421U (zh) 应用于烟叶烘烤的双热源干燥装置
CN101731732B (zh) 太阳能光电热一体化智能密集式烤房
CN208398507U (zh) 热风循环烘烤用洁能供热除湿设备
CN206176960U (zh) 一种多能互补烘干装置
CN203181988U (zh) 利用太阳能与空气能降低烟叶烘烤煤耗的组合式节能装置
CN105559128B (zh) 烤烟用太阳能组合式供热系统
CN204027214U (zh) 多热源带进风冷凝除湿及独立除湿装置的烤房系统

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20181012

Termination date: 20210312

CF01 Termination of patent right due to non-payment of annual fee