CN206441868U - Restructural multilayer holographic antenna - Google Patents
Restructural multilayer holographic antenna Download PDFInfo
- Publication number
- CN206441868U CN206441868U CN201621390032.8U CN201621390032U CN206441868U CN 206441868 U CN206441868 U CN 206441868U CN 201621390032 U CN201621390032 U CN 201621390032U CN 206441868 U CN206441868 U CN 206441868U
- Authority
- CN
- China
- Prior art keywords
- antenna
- spin diode
- bias line
- spin
- holographic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000004065 semiconductor Substances 0.000 claims abstract description 34
- 239000000758 substrate Substances 0.000 claims abstract description 27
- 238000005516 engineering process Methods 0.000 claims abstract description 9
- 238000000034 method Methods 0.000 claims abstract description 6
- 230000008569 process Effects 0.000 claims abstract description 5
- 229910052751 metal Inorganic materials 0.000 claims description 25
- 239000002184 metal Substances 0.000 claims description 25
- 239000004020 conductor Substances 0.000 claims description 6
- 230000005855 radiation Effects 0.000 abstract description 6
- 238000010586 diagram Methods 0.000 description 15
- 230000008901 benefit Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000005388 cross polarization Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 210000002381 plasma Anatomy 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920005591 polysilicon Polymers 0.000 description 1
Landscapes
- Variable-Direction Aerials And Aerial Arrays (AREA)
Abstract
本实用新型公开一种可重构多层全息天线。该天线包括半导体基片(11)天线模块(13)、第一全息圆环(15)及第二全息圆环(17);天线模块(13)、第一全息圆环(15)及第二全息圆环(17)均采用半导体工艺制作于半导体基片(11)上;其中,天线模块(13)、第一全息圆环(15)及第二全息圆环(17)均包括依次串接的SPiN二极管串。本实用新型通过在半导体基片上制作SPiN二极管,利用SPiN二极管构成源天线和全息结构,体积小、结构简单、易于加工;天线采用同轴电缆作为馈源,无复杂馈源结构;通过直流偏置线上的外加电压即可控制SPiN二极管串的导通或断开,以实现天线的隐身及频率的快速跳变;通过结构可实现目标天线的辐射特性。
The utility model discloses a reconfigurable multi-layer holographic antenna. This antenna comprises semiconductor substrate (11) antenna module (13), the first holographic ring (15) and the second holographic ring (17); Antenna module (13), the first holographic ring (15) and the second The holographic ring (17) is all fabricated on the semiconductor substrate (11) by semiconductor technology; wherein, the antenna module (13), the first holographic ring (15) and the second holographic ring (17) all include sequentially connected string of SPiN diodes. The utility model manufactures SPiN diodes on semiconductor substrates, uses SPiN diodes to form source antennas and holographic structures, has small volume, simple structure, and is easy to process; the antenna uses coaxial cables as feed sources without complicated feed source structures; through DC bias The external voltage on the line can control the conduction or disconnection of the SPiN diode string, so as to realize the stealth of the antenna and the rapid frequency jump; the radiation characteristics of the target antenna can be realized through the structure.
Description
技术领域technical field
本实用新型属于天线技术领域,尤其涉及一种可重构多层全息天线。The utility model belongs to the technical field of antennas, in particular to a reconfigurable multi-layer holographic antenna.
背景技术Background technique
各类无线电通讯设备,如雷达、广播、电视等,都要通过天线来传递信号,要求天线具有较高的性能指标。全息天线是一类特殊的天线形式,其设计思想独特,某些指标优于其他形式的天线,其设计理论和工程应用具有较高的研究和实用价值。具体地,全息天线是利用全息结构改变馈源辐射特性,以获得所需辐射的一种口径天线。全息天线的馈源不需要复杂的馈电网络,避免了微带天线阵列馈电网络的高损耗。而且,全息天线可以通过印刷电路板技术加工,馈源和全息板又放置在同一平面上,实现了低剖面,这是相对于反射面天线的一大优点。全息天线在实现高增益的同时,还具有低交叉极化的优良特性。All kinds of radio communication equipment, such as radar, radio, television, etc., must transmit signals through antennas, which require antennas to have high performance indicators. Holographic antenna is a special type of antenna, its design idea is unique, some indicators are better than other antennas, its design theory and engineering application have high research and practical value. Specifically, the holographic antenna is a kind of aperture antenna that uses a holographic structure to change the radiation characteristics of the feed source to obtain the required radiation. The feeding source of the holographic antenna does not need a complicated feeding network, which avoids the high loss of the feeding network of the microstrip antenna array. Moreover, the holographic antenna can be processed by printed circuit board technology, and the feed source and the holographic plate are placed on the same plane to achieve a low profile, which is a great advantage over reflector antennas. The holographic antenna has the excellent characteristic of low cross-polarization while achieving high gain.
然后,为突破传统天线固定不变的工作性能难以满足多样的系统需求和复杂多变的应用环境,可重构天线的概念得到重视并获得发展。可重构天线按功能可分为频率可重构天线(包括实现宽频带和实现多频带)、方向图可重构天线、极化可重构天线和多电磁参数可重构天线。通过改变可重构天线的结构可以使天线的频率、波瓣图、极化方式等多种参数中的一种或几种实现重构。因其具有体积小、功能多、易于实现分集应用的优点,已经成为研究热点。Then, in order to break through the fixed performance of traditional antennas that are difficult to meet diverse system requirements and complex and changeable application environments, the concept of reconfigurable antennas has been valued and developed. Reconfigurable antennas can be divided into frequency reconfigurable antennas (including realizing broadband and multi-band), pattern reconfigurable antennas, polarization reconfigurable antennas and multi-electromagnetic parameter reconfigurable antennas according to their functions. By changing the structure of the reconfigurable antenna, one or several of the antenna's frequency, lobe pattern, polarization mode and other parameters can be reconfigured. Because of its advantages of small size, multiple functions, and easy implementation of diversity applications, it has become a research hotspot.
因此,如何制作一种可重构的全息天线就变得极其重要。Therefore, how to make a reconfigurable holographic antenna becomes extremely important.
实用新型内容Utility model content
为了解决上述的漏电流问题,本实用新型实施例提出了一种可重构多层全息天线。In order to solve the above leakage current problem, the embodiment of the utility model proposes a reconfigurable multi-layer holographic antenna.
本实用新型的实施例提供了一种可重构多层全息天线,包括:The embodiment of the utility model provides a reconfigurable multi-layer holographic antenna, including:
半导体基片11天线模块13、第一全息圆环15及第二全息圆环17;所述天线模块13、所述第一全息圆环15及所述第二全息圆环17均采用半导体工艺制作于所述半导体基片11上;Semiconductor substrate 11 antenna module 13, the first holographic ring 15 and the second holographic ring 17; the antenna module 13, the first holographic ring 15 and the second holographic ring 17 are all manufactured by semiconductor technology on the semiconductor substrate 11;
其中,所述天线模块13、所述第一全息圆环15及所述第二全息圆环17均包括依次串接的SPiN二极管串。Wherein, the antenna module 13 , the first holographic ring 15 and the second holographic ring 17 all include SPiN diode strings serially connected in sequence.
在本实用新型的一个实施例中,所述天线模块13包括第一SPiN二极管天线臂1301、第二SPiN二极管天线臂1302、同轴馈线1303、第一直流偏置线1304、第五直流偏置线1308、第三直流偏置线1306、第四直流偏置线1307、第五直流偏置线1308、第六直流偏置线1309、第七直流偏置线1310、第八直流偏置线1311;In one embodiment of the present utility model, the antenna module 13 includes a first SPiN diode antenna arm 1301, a second SPiN diode antenna arm 1302, a coaxial feeder 1303, a first DC bias line 1304, a fifth DC bias Setting line 1308, third DC bias line 1306, fourth DC bias line 1307, fifth DC bias line 1308, sixth DC bias line 1309, seventh DC bias line 1310, eighth DC bias line 1311;
其中,所述同轴馈线1303的内芯线和外导体分别焊接于所述第一直流偏置线1304和所述第二直流偏置线1305;Wherein, the inner core wire and the outer conductor of the coaxial feeder 1303 are respectively welded to the first DC bias line 1304 and the second DC bias line 1305;
所述第一直流偏置线1304、所述第二直流偏置线1305、所述第三直流偏置线1306及所述第四直流偏置线1307沿所述第一SPiN二极管天线臂1301的长度方向分别电连接至所述第一SPiN二极管天线臂1301;The first DC bias line 1304, the second DC bias line 1305, the third DC bias line 1306 and the fourth DC bias line 1307 are along the first SPiN diode antenna arm 1301 The length direction of each is electrically connected to the first SPiN diode antenna arm 1301;
所述第二直流偏置线1305、所述第六直流偏置线1309、所述第七直流偏置线1310及所述第八直流偏置线1311沿所述第二SPiN二极管天线臂1302的长度方向分别电连接至所述第二SPiN二极管天线臂1302。The second DC bias line 1305, the sixth DC bias line 1309, the seventh DC bias line 1310, and the eighth DC bias line 1311 are along the second SPiN diode antenna arm 1302. The length directions are respectively electrically connected to the second SPiN diode antenna arms 1302 .
在本实用新型的一个实施例中,所述第一SPiN二极管天线臂1301包括依次串接的第一SPiN二极管串w1、第二SPiN二极管串w2及所述第三SPiN二极管串w3,所述第二SPiN二极管天线臂1302包括依次串接的第四SPiN二极管串w4、第五SPiN二极管串w5及所述第六SPiN二极管串w6且所述第一SPiN二极管串w1与所述第六SPiN二极管串w6、所述第二SPiN二极管串w2与所述第五SPiN二极管串w5、所述第三SPiN二极管串w3与所述第四SPiN二极管串w4分别包括同等数量的SPiN二极管。In one embodiment of the present utility model, the first SPiN diode antenna arm 1301 includes the first SPiN diode string w1, the second SPiN diode string w2 and the third SPiN diode string w3 which are serially connected sequentially. The two SPiN diode antenna arm 1302 includes the fourth SPiN diode string w4, the fifth SPiN diode string w5 and the sixth SPiN diode string w6 connected in series, and the first SPiN diode string w1 and the sixth SPiN diode string w6, the second SPiN diode string w2 and the fifth SPiN diode string w5, the third SPiN diode string w3 and the fourth SPiN diode string w4 respectively include the same number of SPiN diodes.
在本实用新型的一个实施例中,所述第二全息圆环(17)包括多个呈环状均匀排列的多个第二环形单元(1701),且所述第一环形单元1501包括第九直流偏置线15011及第七SPiN二极管串w7,所述第九直流偏置线15011电连接至所述第七SPiN二极管串w7的两端。In one embodiment of the present utility model, the second holographic ring (17) includes a plurality of second annular units (1701) uniformly arranged in a ring shape, and the first annular unit 1501 includes a ninth A DC bias line 15011 and a seventh SPiN diode string w7, the ninth DC bias line 15011 is electrically connected to both ends of the seventh SPiN diode string w7.
在本实用新型的一个实施例中,所述第二全息圆环17包括多个呈环状均匀排列的多个第二环形单元1701,且所述第二环形单元1701包括第十直流偏置线17011及所述第八SPiN二极管串w8,所述第十直流偏置线17011电连接至所述第八SPiN二极管串w8的两端。In one embodiment of the present utility model, the second holographic ring 17 includes a plurality of second ring units 1701 uniformly arranged in a ring shape, and the second ring unit 1701 includes a tenth DC bias line 17011 and the eighth SPiN diode string w8, the tenth DC bias line 17011 is electrically connected to both ends of the eighth SPiN diode string w8.
在本实用新型的一个实施例中,所述半导体基片11为SOI基片。In one embodiment of the present invention, the semiconductor substrate 11 is an SOI substrate.
在本实用新型的一个实施例中,所述SPiN二极管串包括多个SPiN二极管,所述SPiN二极管包括P+区27、N+区26和本征区22,且还包括第一金属接触区23和第二金属接触区24;其中,In one embodiment of the present invention, the SPiN diode string includes a plurality of SPiN diodes, and the SPiN diode includes a P+ region 27, an N+ region 26 and an intrinsic region 22, and also includes a first metal contact region 23 and a second metal contact region. Two metal contact regions 24; wherein,
所述第一金属接触区23一端电连接所述P+区27且另一端电连接至直流偏置线1304、1305、1306、1307、1308、1309、1310、1311、15011、17011或者相邻的所述SPiN二极管的所述第二金属接触区24,所述第二金属接触区24一端电连接所述N+区26且另一端电连接至所述直流偏置线1304、1305、1306、1307、1308、1309、1310、1311、15011、17011或者相邻的所述SPiN二极管的所述第一金属接触区23。One end of the first metal contact region 23 is electrically connected to the P+ region 27 and the other end is electrically connected to the DC bias lines 1304, 1305, 1306, 1307, 1308, 1309, 1310, 1311, 15011, 17011 or all adjacent The second metal contact region 24 of the SPiN diode, one end of the second metal contact region 24 is electrically connected to the N+ region 26 and the other end is electrically connected to the DC bias lines 1304, 1305, 1306, 1307, 1308 , 1309, 1310, 1311, 15011, 17011 or the first metal contact region 23 of the adjacent SPiN diode.
在本实用新型的一个实施例中,还包括至少一个第三全息圆环19,设置于所述第二全息圆环17的外侧且采用半导体工艺制作于所述半导体基片11上。In one embodiment of the present invention, at least one third holographic ring 19 is further included, which is arranged outside the second holographic ring 17 and fabricated on the semiconductor substrate 11 by semiconductor technology.
与现有技术相比,本实用新型的有益效果为:Compared with the prior art, the beneficial effects of the utility model are:
第一、体积小、剖面低,结构简单、易于加工;First, small size, low profile, simple structure and easy processing;
第二、采用同轴电缆作为馈源,无复杂馈源结构;Second, coaxial cable is used as the feed source, without complicated feed source structure;
第三、采用SPiN二极管作为天线的基本组成单元,只需通过控制其导通或断开,即可实现频率的可重构;Third, the SPiN diode is used as the basic unit of the antenna, and the reconfigurable frequency can be realized only by controlling its conduction or disconnection;
第四、采用SPiN二极管作为全息结构的基本组成单元,可以灵活地定义全息结构图形,并提高了全息天线的增益和隐蔽性;Fourth, the SPiN diode is used as the basic unit of the holographic structure, which can flexibly define the holographic structure pattern and improve the gain and concealment of the holographic antenna;
第五、所有组成部分均在半导体基片一侧,易于制版加工。Fifth, all components are on the side of the semiconductor substrate, which is easy for plate making and processing.
附图说明Description of drawings
为了清楚说明本实用新型实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单的介绍。下面描述中的附图是本实用新型的一些实施例,对于本领域普通技术人员,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。In order to clearly illustrate the embodiments of the utility model or the technical solutions in the prior art, the following will briefly introduce the drawings used in the description of the embodiments or the prior art. The drawings in the following description are some embodiments of the present utility model, and those skilled in the art can also obtain other drawings according to these drawings without creative work.
图1为本实用新型实施例提供的一种可重构多层全息天线的结构示意图;Figure 1 is a schematic structural diagram of a reconfigurable multi-layer holographic antenna provided by an embodiment of the present invention;
图2为本实用新型实施例提供的一种天线模块的结构示意图;Fig. 2 is a schematic structural diagram of an antenna module provided by an embodiment of the present invention;
图3为本实用新型实施例提供的一种第一环形单元的结构示意图;Fig. 3 is a schematic structural diagram of a first annular unit provided by an embodiment of the present invention;
图4为本实用新型实施例提供的一种第二环形单元的结构示意图;Fig. 4 is a schematic structural diagram of a second annular unit provided by an embodiment of the present invention;
图5为本实用新型实施例提供的一种SPiN二极管的结构示意图;FIG. 5 is a schematic structural diagram of a SPiN diode provided by an embodiment of the present invention;
图6为本实用新型实施例提供的一种SPiN二极管串的结构示意图;Fig. 6 is a schematic structural diagram of a SPiN diode string provided by an embodiment of the present invention;
图7为本实用新型实施例提供的另一种可重构多层全息天线的结构示意图。Fig. 7 is a schematic structural diagram of another reconfigurable multi-layer holographic antenna provided by an embodiment of the present invention.
具体实施方式detailed description
为使本领域技术人员更好地理解本实用新型的技术方案,下面结合附图和具体实施方案对本实用新型一种可重构多层全息天线作进一步详细描述。实例仅代表可能的变化。除非明确要求,否则单独的部件和功能是可选的,并且操作的顺序可以变化。一些实施方案的部分和特征可以被包括在或替换其他实施方案的额部分和特征。本实用新型的实施方案的范围包括权利要求书的整个范围,以及权利要求书的所有可获得的等同物。In order to enable those skilled in the art to better understand the technical solution of the present invention, a reconfigurable multi-layer holographic antenna of the present invention will be further described in detail below in conjunction with the accompanying drawings and specific embodiments. Examples represent possible variations only. Individual components and functions are optional unless explicitly required, and the order of operations may vary. Portions and features of some embodiments may be included in or substituted for those of other embodiments. The scope of embodiments of the present invention includes the full scope of the claims, and all available equivalents of the claims.
下面结合附图对本实用新型做进一步详细说明。Below in conjunction with accompanying drawing, the utility model is described in further detail.
实施例一Embodiment one
请参见图1,图1为本实用新型实施例提供的一种可重构多层全息天线的结构示意图,其中,该天线包括:Please refer to Fig. 1. Fig. 1 is a schematic structural diagram of a reconfigurable multi-layer holographic antenna provided by an embodiment of the present invention, wherein the antenna includes:
半导体基片11天线模块13、第一全息圆环15及第二全息圆环17;所述天线模块13、所述第一全息圆环15及所述第二全息圆环17均采用半导体工艺制作于所述半导体基片11上;Semiconductor substrate 11 antenna module 13, the first holographic ring 15 and the second holographic ring 17; the antenna module 13, the first holographic ring 15 and the second holographic ring 17 are all manufactured by semiconductor technology on the semiconductor substrate 11;
请一并参见图2,图2为本实用新型实施例提供的一种天线模块的结构示意图,所述天线模块13、所述第一全息圆环15及所述第二全息圆环17均包括依次串接的SPiN二极管串。Please refer to FIG. 2 together. FIG. 2 is a schematic structural diagram of an antenna module provided by an embodiment of the present invention. The antenna module 13, the first holographic ring 15 and the second holographic ring 17 all include A string of SPiN diodes connected in series.
其中,所述天线模块13包括第一SPiN二极管天线臂1301、第二SPiN二极管天线臂1302、同轴馈线1303、第一直流偏置线1304、第二直流偏置线1305、第三直流偏置线1306、第四直流偏置线1307、第五直流偏置线1308、第六直流偏置线1309、第七直流偏置线1310、第八直流偏置线1311;Wherein, the antenna module 13 includes a first SPiN diode antenna arm 1301, a second SPiN diode antenna arm 1302, a coaxial feeder 1303, a first DC bias line 1304, a second DC bias line 1305, a third DC bias line Setting line 1306, fourth DC bias line 1307, fifth DC bias line 1308, sixth DC bias line 1309, seventh DC bias line 1310, eighth DC bias line 1311;
其中,所述同轴馈线1303的内芯线和外导体分别焊接于所述第一直流偏置线1304和所述第二直流偏置线1305;Wherein, the inner core wire and the outer conductor of the coaxial feeder 1303 are respectively welded to the first DC bias line 1304 and the second DC bias line 1305;
所述第一直流偏置线1304、第五直流偏置线1308、所述第三直流偏置线1306及所述第四直流偏置线1307沿所述第一SPiN二极管天线臂1301的长度方向分别电连接至所述第一SPiN二极管天线臂1301;The first DC bias line 1304, the fifth DC bias line 1308, the third DC bias line 1306 and the fourth DC bias line 1307 are along the length of the first SPiN diode antenna arm 1301 The directions are respectively electrically connected to the first SPiN diode antenna arm 1301;
所述第二直流偏置线1305、所述第六直流偏置线1309、所述第七直流偏置线1310及所述第八直流偏置线1311沿所述第二SPiN二极管天线臂1302的长度方向分别电连接至所述第二SPiN二极管天线臂1302。The second DC bias line 1305, the sixth DC bias line 1309, the seventh DC bias line 1310, and the eighth DC bias line 1311 are along the second SPiN diode antenna arm 1302. The length directions are respectively electrically connected to the second SPiN diode antenna arms 1302 .
可选地,所述第一SPiN二极管天线臂1301包括依次串接的第一SPiN二极管串w1、第二SPiN二极管串w2及所述第三SPiN二极管串w3,所述第二SPiN二极管天线臂1302包括依次串接的第四SPiN二极管串w4、第五SPiN二极管串w5及所述第六SPiN二极管串w6且所述第一SPiN二极管串w1与所述第六SPiN二极管串w6、所述第二SPiN二极管串w2与所述第五SPiN二极管串w5、所述第三SPiN二极管串w3与所述第四SPiN二极管串w4分别包括同等数量的SPiN二极管。Optionally, the first SPiN diode antenna arm 1301 includes a first SPiN diode string w1, a second SPiN diode string w2, and a third SPiN diode string w3 connected in series, and the second SPiN diode antenna arm 1302 Including the fourth SPiN diode string w4, the fifth SPiN diode string w5 and the sixth SPiN diode string w6 connected in series, and the first SPiN diode string w1 and the sixth SPiN diode string w6, the second The SPiN diode string w2 and the fifth SPiN diode string w5 , the third SPiN diode string w3 and the fourth SPiN diode string w4 respectively include the same number of SPiN diodes.
请一并参见图3,图3为本实用新型实施例提供的一种第一环形单元的结构示意图,所述第一全息圆环15包括多个呈环状均匀排列的多个第一环形单元1501,且所述第一环形单元1501包括第九直流偏置线15011及第七SPiN二极管串w7,所述第九直流偏置线15011电连接至所述第七SPiN二极管串w7的两端。Please refer to FIG. 3 together. FIG. 3 is a schematic structural diagram of a first ring unit provided by an embodiment of the present invention. The first holographic ring 15 includes a plurality of first ring units uniformly arranged in a ring shape 1501, and the first circular unit 1501 includes a ninth DC bias line 15011 and a seventh SPiN diode string w7, and the ninth DC bias line 15011 is electrically connected to both ends of the seventh SPiN diode string w7.
请一并参见图4,图4为本实用新型实施例提供的一种第二环形单元的结构示意图,所述第二全息圆环17包括多个呈环状均匀排列的多个第二环形单元1701,且所述第二环形单元1701包括第十直流偏置线17011及所述第八SPiN二极管串w8,所述第十直流偏置线17011电连接至所述第八SPiN二极管串w8的两端。Please refer to FIG. 4 together. FIG. 4 is a schematic structural diagram of a second ring unit provided by an embodiment of the present invention. The second holographic ring 17 includes a plurality of second ring units uniformly arranged in a ring shape 1701, and the second ring unit 1701 includes a tenth DC bias line 17011 and the eighth SPiN diode string w8, and the tenth DC bias line 17011 is electrically connected to two of the eighth SPiN diode string w8 end.
上述实施例中,所述半导体基片11为SOI基片。In the above embodiments, the semiconductor substrate 11 is an SOI substrate.
上述实施例中,所述SPiN二极管串包括多个SPiN二极管,请一并参见图5及图6,图5为本实用新型实施例提供的一种SPiN二极管的结构示意图,图6为本实用新型实施例提供的一种SPiN二极管串的结构示意图。每个SPiN二极管串中包括多个SPiN二极管,且这些SPiN二极管串行连接。所述SPiN二极管包括P+区27、N+区26和本征区22,且还包括第一金属接触区23和第二金属接触区24;其中,In the above embodiment, the SPiN diode string includes a plurality of SPiN diodes, please refer to Figure 5 and Figure 6 together, Figure 5 is a schematic structural diagram of a SPiN diode provided by the embodiment of the present invention, and Figure 6 is a schematic diagram of the structure of the present invention A schematic structural diagram of an SPiN diode string provided in the embodiment. Each SPiN diode string includes a plurality of SPiN diodes, and these SPiN diodes are connected in series. The SPiN diode includes a P+ region 27, an N+ region 26 and an intrinsic region 22, and also includes a first metal contact region 23 and a second metal contact region 24; wherein,
所述第一金属接触区23一端电连接所述P+区27且另一端电连接至直流偏置线1304、1305、1306、1307、1308、1309、1310、1311、15011、17011或者相邻的所述SPiN二极管的所述第二金属接触区24,所述第二金属接触区24一端电连接所述N+区26且另一端电连接至所述直流偏置线1304、1305、1306、1307、1308、1309、1310、1311、15011、17011或者相邻的所述SPiN二极管的所述第一金属接触区23。即处于SPiN二极管串的一端的SPiN二极管的金属接触区23连接至直流偏置的正极,处于SPiN二极管串的另一端的SPiN二极管的金属接触区24连接至直流偏置的负极,通过施加直流电压可使整个SPiN二极管串中所有SPiN二极管处于正向导通状态。One end of the first metal contact region 23 is electrically connected to the P+ region 27 and the other end is electrically connected to the DC bias lines 1304, 1305, 1306, 1307, 1308, 1309, 1310, 1311, 15011, 17011 or all adjacent The second metal contact region 24 of the SPiN diode, one end of the second metal contact region 24 is electrically connected to the N+ region 26 and the other end is electrically connected to the DC bias lines 1304, 1305, 1306, 1307, 1308 , 1309, 1310, 1311, 15011, 17011 or the first metal contact region 23 of the adjacent SPiN diode. That is, the metal contact region 23 of the SPiN diode at one end of the SPiN diode string is connected to the positive pole of the DC bias, and the metal contact region 24 of the SPiN diode at the other end of the SPiN diode string is connected to the negative pole of the DC bias, by applying a DC voltage All the SPiN diodes in the entire SPiN diode string can be in the forward conduction state.
进一步地,请参见图7,图7为本实用新型实施例提供的另一种可重构多层全息天线的结构示意图,该天线还可以包括至少一个第三全息圆环19,设置于所述第二全息圆环17的外侧且采用半导体工艺制作于所述半导体基片11上。Further, please refer to FIG. 7. FIG. 7 is a structural schematic diagram of another reconfigurable multi-layer holographic antenna provided by an embodiment of the present invention. The antenna may also include at least one third holographic ring 19, which is arranged on the The outer side of the second holographic ring 17 is fabricated on the semiconductor substrate 11 using semiconductor technology.
本实施例,通过在半导体基片上制作SPiN二极管,利用SPiN二极管构成源天线和全息结构,体积小、结构简单、易于加工;天线采用同轴电缆作为馈源,无复杂馈源结构;通过直流偏置线上的外加电压即可控制SPiN二极管串的导通或断开,以实现天线的隐身及频率的快速跳变;通过结构可实现目标天线的辐射特性。In this embodiment, by making SPiN diodes on the semiconductor substrate, the source antenna and holographic structure are formed by using SPiN diodes, which are small in size, simple in structure, and easy to process; the antenna uses a coaxial cable as the feed source without complicated feed source structure; The applied voltage on the line can control the conduction or disconnection of the SPiN diode string, so as to realize the stealth of the antenna and the rapid frequency jump; the radiation characteristics of the target antenna can be realized through the structure.
实施例二Embodiment two
请再次参见图1-图5,本实施例在上述实施例的基础上,以双层全息天线为例进行详细说明。具体地,该天线可以包括:半导体基片,SPiN二极管天线臂,双层SPiN二极管全息圆环,同轴馈线和直流偏置线,其中SPiN二极管天线臂,双层SPiN二极管全息圆环和直流偏置线采用半导体工艺制作于半导体基片,同轴馈线的内芯线和外导体(屏蔽层)分别焊接于SPiN二极管天线臂的金属触片上且两处焊接点分别接有直流偏置线作为公共负极;SPiN二极管依次首尾相连构成SPiN二极管串,SPiN二极管天线臂由三段SPiN二极管串组成,每一个SPiN二极管串都有直流偏置线外接电压正极;天线臂长度为波长的四分之一。内层全息圆环由八段完全相同的SPiN二极管串近似代替,每段SPiN二极管串的长度近似等于天线的长度,圆环半径由全息结构的公式确定,本实用新型中圆环半径约为四分之一波长的三倍。其中,全息结构公式为:Please refer to FIG. 1-FIG. 5 again. Based on the above-mentioned embodiments, this embodiment will be described in detail by taking a double-layer holographic antenna as an example. Specifically, the antenna may include: a semiconductor substrate, an SPiN diode antenna arm, a double-layer SPiN diode holographic ring, a coaxial feeder line and a DC bias line, wherein the SPiN diode antenna arm, a double-layer SPiN diode holographic ring and a DC bias The wiring is made on the semiconductor substrate by semiconductor technology. The inner core wire and the outer conductor (shielding layer) of the coaxial feeder are respectively welded on the metal contacts of the SPiN diode antenna arm, and the two welding points are respectively connected with a DC bias line as a common Negative electrode; SPiN diodes are connected end to end in turn to form an SPiN diode string. The SPiN diode antenna arm is composed of three sections of SPiN diode strings. Each SPiN diode string has a DC bias line externally connected to the positive voltage; the length of the antenna arm is 1/4 of the wavelength. The inner holographic ring is approximately replaced by eight identical SPiN diode strings. The length of each SPiN diode string is approximately equal to the length of the antenna. The ring radius is determined by the formula of the holographic structure. The radius of the ring in the utility model is about four three times one-third of a wavelength. Among them, the holographic structure formula is:
其中,r为最内层圆环的半径,为垂直入射平面波与源天线辐射场初始相位差,为电场在方向分量,k为波矢。 Among them, r is the radius of the innermost ring, is the initial phase difference between the vertically incident plane wave and the radiation field of the source antenna, for the electric field in direction component, k is the wave vector.
由公式可知所述全息结构为一组原点在圆心的同心圆,本实用新型中半径r可以取四分之三倍的波长。It can be known from the formula that the holographic structure is a group of concentric circles whose origin is at the center of the circle. In the present invention, the radius r can be three quarters of the wavelength.
外层全息圆环由十八段完全相同的SPiN二极管串近似代替,每段SPiN二极管串的长度近似等于天线的长度,内外两层环之间的距离由全息结构的公式确定,本实用新型中两层环之间距离为一个波长。The outer holographic ring is approximately replaced by eighteen identical SPiN diode strings, the length of each SPiN diode string is approximately equal to the length of the antenna, and the distance between the inner and outer rings is determined by the formula of the holographic structure. The distance between the two rings is one wavelength.
半导体基片为Si基SOI半导体片。The semiconductor substrate is a Si-based SOI semiconductor chip.
SPiN二极管天线臂由三段SPiN二极管串组成,每一个SPiN二极管串都有直流偏置线外接电压正极。可以理解的是,本实用新型中的天线臂可以由任意数量的SPiN二极管串组成,当然,二极管串包括的SPiN二极管的个数也可以根据实际使用及工艺条件确定,此处不做任何限制。The SPiN diode antenna arm consists of three sections of SPiN diode strings, and each SPiN diode string has a DC bias line externally connected to the positive voltage. It can be understood that the antenna arm in the present invention can be composed of any number of SPiN diode strings. Of course, the number of SPiN diodes included in the diode string can also be determined according to actual use and process conditions, and there is no limitation here.
同轴馈线采用低损耗同轴线缆,同轴馈线的内芯线和外导体(屏蔽层)分别焊接于SPiN二极管天线臂的金属触片上且两处焊接点分别接有直流偏置线作为公共负极。The coaxial feeder adopts a low-loss coaxial cable, and the inner core wire and outer conductor (shielding layer) of the coaxial feeder are respectively welded to the metal contacts of the SPiN diode antenna arm, and the two welding points are respectively connected with a DC bias line as a common negative electrode.
双层全息圆环由若干段完全相同的SPiN二极管串近似代替,每段SPiN二极管串在天线工作时均处于正向导通状态,从而实现天线辐射特性的定向改变和增益的提高。The double-layer holographic ring is approximately replaced by several sections of identical SPiN diode strings, and each section of SPiN diode strings is in a forward conduction state when the antenna is working, so as to realize the directional change of the antenna radiation characteristics and the improvement of the gain.
直流偏置线可采用化学气相淀积的方法制作于半导体基片上,所用材料如铜、铝等,也可采用高掺杂的多晶硅实现,直流偏置线用于对SPiN二极管串施加直流偏置。The DC bias line can be fabricated on the semiconductor substrate by chemical vapor deposition. The materials used, such as copper, aluminum, etc., can also be realized by highly doped polysilicon. The DC bias line is used to apply DC bias to the SPiN diode string. .
请一并参见图1及图2,该天线由半导体基片11、SPiN二极管天线臂1301和1302、同轴馈线1303、直流偏置线(1306、1307、1308、1304、1305、1309、1310、1311)、内层SPiN二极管全息圆环15、外层SPiN二极管全息圆环17组成,其中SPiN二极管天线臂1301、1302,内层SPiN二极管全息圆环15,外层SPiN二极管全息圆环17和直流偏置线(1306、1307、1308、1304、1305、1309、1310、1311)采用半导体工艺制作于半导体基片,同轴馈线1303的内芯线和外导体(屏蔽层)分别焊接于直流偏置线1304和1305上。Please refer to Fig. 1 and Fig. 2 together, this antenna consists of semiconductor substrate 11, SPiN diode antenna arms 1301 and 1302, coaxial feeder 1303, DC bias line (1306, 1307, 1308, 1304, 1305, 1309, 1310, 1311), inner layer SPiN diode holographic ring 15, outer layer SPiN diode holographic ring 17, wherein SPiN diode antenna arms 1301, 1302, inner layer SPiN diode holographic ring 15, outer layer SPiN diode holographic ring 17 and DC The bias wires (1306, 1307, 1308, 1304, 1305, 1309, 1310, 1311) are fabricated on the semiconductor substrate using semiconductor technology, and the inner core wire and outer conductor (shielding layer) of the coaxial feeder 1303 are respectively welded to the DC bias on lines 1304 and 1305.
SPiN二极管天线臂1301、1302由SPiN二极管串w1、w2、w3、w4、w5、w6组成,其中w1和w6的长度相等、w2和w5的长度相等、w3和w4的长度相等。SPiN diode antenna arms 1301, 1302 are composed of SPiN diode strings w1, w2, w3, w4, w5, w6, wherein w1 and w6 have equal lengths, w2 and w5 have equal lengths, and w3 and w4 have equal lengths.
直流偏置线1304和1305分别接至电压负极,直流偏置线组(1308、1309)、直流偏置线组(1307、1310)和直流偏置线组(1306、1311)分别接至电压正极,且任何工作时刻只能有一组直流偏置线接至电压正极,通过控制直流偏置线组的电压即可选择性使SPiN二极管串处于导通状态,导通的SPiN二极管在本征区将产生固态等离子体,其具有类金属特性,可用作天线的辐射结构。当不同的SPiN二极管串工作时,会改变天线的电尺寸长度,从而实现天线工作频率的可重构。The DC bias lines 1304 and 1305 are respectively connected to the negative pole of the voltage, and the DC bias line group (1308, 1309), the DC bias line group (1307, 1310) and the DC bias line group (1306, 1311) are respectively connected to the positive voltage pole , and at any working moment, only one set of DC bias lines can be connected to the positive voltage. By controlling the voltage of the DC bias line set, the SPiN diode string can be selectively turned on. The conductive SPiN diode will be in the intrinsic region Generates solid-state plasmas with metal-like properties that can be used as radiating structures for antennas. When different SPiN diode strings work, the electrical dimension and length of the antenna will be changed, thereby realizing the reconfigurability of the operating frequency of the antenna.
请参见图3,内层SPiN二极管全息圆环15由八段SPiN二极管串w7组成,当天线处于工作状态时,这8段SPiN二极管串均处于正向导通状态。Please refer to FIG. 3 , the inner SPiN diode holographic ring 15 is composed of eight sections of SPiN diode strings w7 , and when the antenna is in working state, the eight sections of SPiN diode strings are all in the forward conduction state.
请参见图4,外层SPiN二极管全息圆环17由十八段SPiN二极管串w8组成,当天线处于工作状态时,这18段SPiN二极管串均处于正向导通状态。Please refer to FIG. 4 , the outer SPiN diode holographic ring 17 is composed of 18 segments of SPiN diode strings w8 , and when the antenna is in working state, the 18 segments of SPiN diode strings are all in the forward conduction state.
直流偏置线15011位于8段SPiN二极管串两端,为二极管串提供直流偏置;直流偏置线17011位于18段SPiN二极管串两端,为二极管串提供直流偏置。The DC bias line 15011 is located at both ends of the 8-segment SPiN diode string to provide a DC bias for the diode string; the DC bias line 17011 is located at both ends of the 18-segment SPiN diode string to provide a DC bias for the diode string.
请参见图5,SPiN二极管由P+区27、N+区26和本征区22组成,金属接触区23位于P+区27处,连接至直流偏置的正极,金属接触区24位于N+区26处,连接至直流偏置的负极,通过施加直流电压可使整个SPiN二极管串中所有SPiN二极管处于正向导通状态。Please refer to FIG. 5, the SPiN diode is composed of a P+ region 27, an N+ region 26 and an intrinsic region 22. The metal contact region 23 is located at the P+ region 27 and connected to the anode of the DC bias. The metal contact region 24 is located at the N+ region 26. Connected to the negative electrode of the DC bias, all the SPiN diodes in the entire SPiN diode string can be in the forward conduction state by applying a DC voltage.
本实施例,率可重构全息天线体积小、结构简单、易于加工、无复杂馈源结构、频率可快速跳变、提高天线的增益,且天线关闭时将处于电磁波隐身状态,可用于各种跳频电台或设备;由于其所有组成部分均在半导体基片一侧,为平面结构,易于组阵,可用作相控阵天线的基本组成单元。In this embodiment, the rate reconfigurable holographic antenna is small in size, simple in structure, easy to process, has no complicated feed source structure, can jump in frequency quickly, improves the gain of the antenna, and will be in an electromagnetic stealth state when the antenna is turned off, and can be used in various Frequency hopping radio or equipment; because all its components are on the side of the semiconductor substrate, it is a planar structure, easy to form an array, and can be used as the basic component of a phased array antenna.
以上内容是结合具体的优选实施方式对本实用新型所作的进一步详细说明,不能认定本实用新型的具体实施只局限于这些说明。对于本实用新型所属技术领域的普通技术人员来说,在不脱离本实用新型构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本实用新型的保护范围。The above content is a further detailed description of the utility model in combination with specific preferred embodiments, and it cannot be assumed that the specific implementation of the utility model is only limited to these descriptions. For those of ordinary skill in the technical field to which the utility model belongs, on the premise of not departing from the concept of the utility model, some simple deduction or replacement can also be made, which should be regarded as belonging to the protection scope of the utility model.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201621390032.8U CN206441868U (en) | 2016-12-16 | 2016-12-16 | Restructural multilayer holographic antenna |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201621390032.8U CN206441868U (en) | 2016-12-16 | 2016-12-16 | Restructural multilayer holographic antenna |
Publications (1)
Publication Number | Publication Date |
---|---|
CN206441868U true CN206441868U (en) | 2017-08-25 |
Family
ID=59647257
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201621390032.8U Expired - Fee Related CN206441868U (en) | 2016-12-16 | 2016-12-16 | Restructural multilayer holographic antenna |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN206441868U (en) |
-
2016
- 2016-12-16 CN CN201621390032.8U patent/CN206441868U/en not_active Expired - Fee Related
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107978861B (en) | A low-profile omnidirectional left-right circularly polarized reconfigurable antenna | |
CN108448244B (en) | Compact omni-directional circular polarization reconfigurable antenna working at BDS-1S | |
US20200036104A1 (en) | Antenna Element | |
CN106410416A (en) | Frequency and polarization reconfigurable microstrip antenna based on varactor diodes | |
CN103367890B (en) | Dual-frequency microstrip directional-diagram reconfigurable antenna | |
CN102723601A (en) | Ultra-wide-band dual-notch paster antenna adopting wide-attenuation-band electromagnetic band gap structure | |
CN105190998A (en) | Array antenna | |
CN207602782U (en) | A kind of horizontal omnidirectional antenna | |
CN107516763A (en) | Patch antenna element and array | |
CN104505578A (en) | Omnidirectional dual circularly polarized antenna | |
CN106356618B (en) | A microwave high-frequency dual-polarization small base station panel antenna | |
CN112838374A (en) | A flexible active frequency selective surface and its control method | |
CN208240873U (en) | A kind of compact Circular polarized omni-directional reconfigurable antenna working in BDS-1 S | |
CN207753162U (en) | A kind of low section omnidirectional left-right-hand circular polarization reconfigurable antenna | |
JP4985963B2 (en) | Circularly polarized planar functional antenna | |
CN105703084B (en) | A kind of room divided antenna | |
CN103414017A (en) | Double-dipole directional antenna based on in-phase power divider feed | |
CN108539409B (en) | Full-wave vibrator horizontal polarization omnidirectional antenna | |
US8564496B2 (en) | Broadband antenna | |
KR101833037B1 (en) | Multi Polarized Antenna | |
Ha et al. | Reconfigurable beam‐steering antenna using dipole and loop combined structure for wearable applications | |
CN206441868U (en) | Restructural multilayer holographic antenna | |
CN106785430A (en) | Restructural multilayer holographic antenna | |
CN107968249A (en) | A kind of restructural four-arm spiral antenna of circular polarisation | |
Ho et al. | Antenna array integrated on multilayer organic package for millimeter-wave applications |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20170825 Termination date: 20171216 |