CN206223867U - 一种相位检测装置 - Google Patents

一种相位检测装置 Download PDF

Info

Publication number
CN206223867U
CN206223867U CN201621267550.0U CN201621267550U CN206223867U CN 206223867 U CN206223867 U CN 206223867U CN 201621267550 U CN201621267550 U CN 201621267550U CN 206223867 U CN206223867 U CN 206223867U
Authority
CN
China
Prior art keywords
trigger
pulse width
signal
signal source
narrow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201621267550.0U
Other languages
English (en)
Inventor
陈新强
洪少林
吴忠良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Uni Trend Technology China Co Ltd
Original Assignee
Uni Trend Technology China Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uni Trend Technology China Co Ltd filed Critical Uni Trend Technology China Co Ltd
Priority to CN201621267550.0U priority Critical patent/CN206223867U/zh
Application granted granted Critical
Publication of CN206223867U publication Critical patent/CN206223867U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measurement Of Unknown Time Intervals (AREA)

Abstract

本实用新型公开了一种相位检测装置,其包括信号源A、信号源E、窄脉冲产生器B、窄脉冲宽度展宽电路C和脉冲宽度时间计数器D,该信号源A、信号源E、窄脉冲宽度展宽电路C分别与该窄脉冲产生器B连接,该窄脉冲宽度展宽电路C与该脉冲宽度时间计数器D连接,该窄脉冲产生器B、脉冲宽度时间计数器D分别与一复位信号端Rst连接。本实用新型结构简单,合理巧妙,把两个信号的相位差通过触发器转化为窄脉冲信号,然后将窄脉冲信号的脉冲宽度放大,再做计数测量,从而计算得出相位差。可以实时对每一个电子器件进行信号相位检测,可以用于实时相位校准、调整高速数字接口的时钟和数据时序,达到最佳的有效采集窗口。

Description

一种相位检测装置
技术领域
本实用新型涉及检测仪表,特别涉及一种相位检测装置。
背景技术
现有技术中,由于现在很多电子器件的数据和时钟接口速率比较高。对于上数百兆甚至上G的速率,如果要测量时钟到时钟、数据线到时钟的相位关系是比较困难的。
在一般的测试环境下,采用示波器测量相位差。但这种检测方式只是通过示波器对样板进行检测,但是对于量产和需要实时检测的情况就不太现实。
实用新型内容
本实用新型的目的在于,针对上述问题,提供一种相位检测装置。
本实用新型为实现上述目的所采用的技术方案为:
一种相位检测装置,其包括信号源A、信号源E、窄脉冲产生器B、窄脉冲宽度展宽电路C和脉冲宽度时间计数器D,该信号源A、信号源E、窄脉冲宽度展宽电路C分别与该窄脉冲产生器B连接,该窄脉冲宽度展宽电路C与该脉冲宽度时间计数器D连接,该窄脉冲产生器B、脉冲宽度时间计数器D分别与一复位信号端Rst连接。
所述信号源A、信号源E为ADC器件、逻辑器件、处理器芯片或时钟源。
所述窄脉冲宽度展宽电路C包括第一放大器、充电控制器、电容、放电控制器、电阻和第二放大器,该第一放大器、充电控制器、电阻、放电控制器和第二放大器依次连接,该电容的一端连接于该充电控制器与电阻之间,该电容的另一端接地。
所述窄脉冲产生器B包括触发器B0、触发器B1、触发器B2、与门和非门,该触发器B0的S端接地,该触发器B0与所述信号源A连接,该触发器B0的Q端与所述触发器B1的S端连接,该触发器B1的Q端与该触发器B2的S端连接,该触发器B1、触发器B2的R端与该复位信号端Rst连接,该触发器B2与所述信号源B连接,该触发器B1的S端与该与门连接,该与门、触发器B2与该非门连接,该非门与所述窄脉冲宽度展宽电路C连接。
所述脉冲宽度时间计数器D为逻辑器件或处理器芯片。
一种相位检测方法,其包括以下步骤:
(1)该信号源A、信号源E分别产生待测量的时钟信号CLK、信号S1,该信号S1为时钟信号或数据信号;
(2)信号S1作为触发器B0的时钟端锁存,触发器B0的Q端输出信号Q0后,该信号Q0接入触发器B1的S端,并把信号Q0与时钟信号CLK同步后输出;
触发器B1的Q端输出信号Q1,该信号Q1接入触发器B2的S端,用于控制输出的窄脉宽的宽度,设定Ta为我们需要计算的最终结果,窄脉冲产生器B输出给C模块的窄脉冲信号的时间宽度为To=(N-1)Tclk-Ta,N为触发器的个数,Tclk为一个时钟周期;
设定Delta为窄脉冲产生器B输出的窄脉冲经过窄脉冲宽度展宽电路C时间上放大后返回的脉冲,假设窄脉冲宽度展宽电路C的脉冲展宽时间放大倍数为M,返回的脉冲Delta的宽度为Tdelta,则Tdelta=To*M;
Tdelta是窄脉冲产生器B输出信号经过放大数百倍甚至数千倍所得,通过脉冲宽度时间计数器D用高速时钟对此信号的宽度计数,则得出Ta=(N)Tclk-(Tdelta/M);Φ=Ta/Tclk=(N)Tclk-(Tdelta/M)/Tclk
所述窄脉冲产生器B包括触发器B0、触发器B1、触发器B2、与门和非门,该触发器B0的S端接地,该触发器B0与所述信号源A连接,该触发器B0的Q端与所述触发器B1的S端连接,该触发器B1的Q端与该触发器B2的S端连接,该触发器B1、触发器B2的R端与该复位信号端Rst连接,该触发器B2与所述信号源B连接,该触发器B1的S端与该与门连接,该与门、触发器B2与该非门连接,该非门与所述窄脉冲宽度展宽电路C连接。
所述步骤(2)中,触发器B2的Q端输出信号Q2,利用时钟信号CLK同步并延时2个CLK周期,则经过非门输出窄脉冲信号。
所述窄脉冲宽度展宽电路C包括第一放大器、充电控制器、电容、放电控制器、电阻和第二放大器,该第一放大器、充电控制器、电阻、放电控制器和第二放大器依次连接,该电容的一端连接于该充电控制器与电阻之间,该电容的另一端接地。
所述信号源A、信号源E为ADC器件、逻辑器件、处理器芯片或时钟源。
所述脉冲宽度时间计数器D为逻辑器件或处理器芯片。
本实用新型的有益效果为:本实用新型结构简单,合理巧妙,把两个信号的相位差通过触发器转化为窄脉冲信号,然后将窄脉冲信号的脉冲宽度放大,再做计数测量,从而计算得出相位差。可以实时对每一个电子器件进行信号相位检测,可以用于实时相位校准、调整高速数字接口的时钟和数据时序,达到最佳的有效采集窗口。
下面结合附图与实施例,对本实用新型进一步说明。
附图说明
图1是本实用新型的结构框图;
图2是本实用新型中窄脉冲宽度展宽电路C的结构框图;
图3是本实用新型中窄脉冲产生器B的结构框图;
图4是本实用新型工作时的时序图。
具体实施方式
实施例:如图1至图4所示,本实用新型一种相位检测装置,其包括信号源A、信号源E、窄脉冲产生器B、窄脉冲宽度展宽电路C和脉冲宽度时间计数器D,该信号源A、信号源E、窄脉冲宽度展宽电路C分别与该窄脉冲产生器B连接,该窄脉冲宽度展宽电路C与该脉冲宽度时间计数器D连接,该窄脉冲产生器B、脉冲宽度时间计数器D分别与一复位信号端Rst连接。
所述信号源A、信号源E为ADC器件、逻辑器件、处理器芯片或时钟源。
所述窄脉冲宽度展宽电路C包括第一放大器11、充电控制器12、电容13、放电控制器14、电阻15和第二放大器16,该第一放大器11、充电控制器12、电阻15、放电控制器14和第二放大器16依次连接,该电容13的一端连接于该充电控制器12与电阻15之间,该电容13的另一端接地。
所述窄脉冲产生器B包括触发器B0、触发器B1、触发器B2、与门21和非门22,该触发器B0的S端接地,该触发器B0与所述信号源A连接,该触发器B0的Q端与所述触发器B1的S端连接,该触发器B1的Q端与该触发器B2的S端连接,该触发器B1、触发器B2的R端与该复位信号端Rst连接,该触发器B2与所述信号源B连接,该触发器B1的S端与该与门21连接,该与门21、触发器B2与该非门22连接,该非门22与所述窄脉冲宽度展宽电路C连接。
所述脉冲宽度时间计数器D为逻辑器件或处理器芯片。
一种通过前述相位检测装置实施的相位检测方法,其包括以下步骤:
(1)该信号源A、信号源E分别产生待测量的时钟信号CLK、信号S1,该信号S1为时钟信号或数据信号;
(2)信号S1作为触发器B0的时钟端锁存,触发器B0的Q端输出信号Q0后,该信号Q0接入触发器B1的S端,并把信号Q0与时钟信号CLK同步后输出;
触发器B1的Q端输出信号Q1,该信号Q1接入触发器B2的S端,用于控制输出的窄脉宽的宽度,设定Ta为我们需要计算的最终结果,窄脉冲产生器B输出给C模块的窄脉冲信号的时间宽度为To=(N-1)Tclk-Ta,N为触发器的个数,Tclk为一个时钟周期;
设定Delta为窄脉冲产生器B输出的窄脉冲经过窄脉冲宽度展宽电路C时间上放大后返回的脉冲,假设窄脉冲宽度展宽电路C的脉冲展宽时间放大倍数为M,返回的脉冲Delta的宽度为Tdelta,则Tdelta=To*M;
Tdelta是窄脉冲产生器B输出信号经过放大数百倍甚至数千倍所得,通过脉冲宽度时间计数器D用高速时钟对此信号的宽度计数,则得出Ta=(N)Tclk-(Tdelta/M);Φ=Ta/Tclk=(N)Tclk-(Tdelta/M)/Tclk
图4中,Q2是触发器B2输出的信号Q2,也是把信号S1锁存,然后利用信号CLK同步并延时2个CLK周期,Pulse输出就是给C模块的窄脉冲。
信号CLK是周期性的时钟信号,信号S1可以是时钟信号,也可以是数据信号。
复位信号端Rst发出复位信号,对窄脉冲产生器B、脉冲宽度时间计数器D进行复位。
窄脉冲产生器B根据信号S1和信号CLK的相位产生不同宽度的脉冲,该脉冲产生器B中的触发器数量可以根据窄脉冲宽度展宽电路C的要求来确定,由窄脉冲产生器B产生的信号可以是单端或差分信号,窄脉冲产生器B可以使用逻辑器件来实现。
如图3所示,信号S1作为触发器B0的时钟端锁存。触发器B0的Q端输出后,接到下一个触发器B1的S端输入。并以信号CLK把Q0信号和信号LCK同步后输出。触发器B1的Q端输出,可以再接N个触发器,用于控制输出的窄脉宽的最小宽度。
窄脉冲宽度展宽电路C实现脉冲信号的放大,放大倍数可以达数百倍到千倍的数量级,有利于后续脉冲宽度时间计数器D直接对脉冲时间进行准确测量。利用电容13充电电路和放电电流的不同,实现脉冲信号的宽度放大。
通过脉冲宽度时间计数器D来对脉冲宽度放大后返回的脉冲时间计数,
计数器D可以使用逻辑器件、处理器芯片来实现。
所述窄脉冲产生器B包括触发器B0、触发器B1、触发器B2、与门21和非门22,该触发器B0的S端接地,该触发器B0与所述信号源A连接,该触发器B0的Q端与所述触发器B1的S端连接,该触发器B1的Q端与该触发器B2的S端连接,该触发器B1、触发器B2的R端与该复位信号端Rst连接,该触发器B2与所述信号源B连接,该触发器B1的S端与该与门21连接,该与门21、触发器B2与该非门22连接,该非门22与所述窄脉冲宽度展宽电路C连接。
所述步骤(2)中,触发器B2的Q端输出信号Q2,利用时钟信号CLK同步并延时2个CLK周期,则经过非门22输出窄脉冲信号。
所述窄脉冲宽度展宽电路C包括第一放大器11、充电控制器12、电容13、放电控制器14、电阻15和第二放大器16,该第一放大器11、充电控制器12、电阻15、放电控制器14和第二放大器16依次连接,该电容13的一端连接于该充电控制器12与电阻15之间,该电容13的另一端接地。
所述信号源A、信号源E为ADC器件、逻辑器件、处理器芯片或时钟源。
所述脉冲宽度时间计数器D为逻辑器件或处理器芯片。
本实用新型结构简单,合理巧妙,把两个信号的相位差通过触发器转化为窄脉冲信号,然后将窄脉冲信号的脉冲宽度放大,再做计数测量,从而计算得出相位差。可以实时对每一个电子器件进行信号相位检测,可以用于实时相位校准、调整高速数字接口的时钟和数据时序,达到最佳的有效采集窗口。
以上所述,仅是本实用新型的较佳实施例而已,并非对本实用新型作任何形式上的限制。任何熟悉本领域的技术人员,在不脱离本实用新型技术方案范围情况下,都可利用上述揭示的方法和技术内容对本实用新型技术方案做出许多可能的变动和修饰,或修改为等同变化的等效实施例。故凡是未脱离本实用新型技术方案的内容,依据本实用新型之形状、构造及原理所作的等效变化,均应涵盖于本实用新型的保护范围内。

Claims (5)

1.一种相位检测装置,其特征在于,其包括信号源A、信号源E、窄脉冲产生器B、窄脉冲宽度展宽电路C和脉冲宽度时间计数器D,该信号源A、信号源E、窄脉冲宽度展宽电路C分别与该窄脉冲产生器B连接,该窄脉冲宽度展宽电路C与该脉冲宽度时间计数器D连接,该窄脉冲产生器B、脉冲宽度时间计数器D分别与一复位信号端Rst连接。
2.根据权利要求1所述相位检测装置,其特征在于,所述信号源A、信号源E为ADC器件、逻辑器件、处理器芯片或时钟源。
3.根据权利要求1所述相位检测装置,其特征在于,所述窄脉冲宽度展宽电路C包括第一放大器、充电控制器、电容、放电控制器、电阻和第二放大器,该第一放大器、充电控制器、电阻、放电控制器和第二放大器依次连接,该电容的一端连接于该充电控制器与电阻之间,该电容的另一端接地。
4.根据权利要求1所述相位检测装置,其特征在于,所述窄脉冲产生器B包括触发器B0、触发器B1、触发器B2、与门和非门,该触发器B0的S端接地,该触发器B0与所述信号源A连接,该触发器B0的Q端与所述触发器B1的S端连接,该触发器B1的Q端与该触发器B2的S端连接,该触发器B1、触发器B2的R端与该复位信号端Rst连接,该触发器B2与所述信号源B连接,该触发器B1的S端与该与门连接,该与门、触发器B2与该非门连接,该非门与所述窄脉冲宽度展宽电路C连接。
5.根据权利要求1所述相位检测装置,其特征在于,所述脉冲宽度时间计数器D为逻辑器件或处理器芯片。
CN201621267550.0U 2016-11-23 2016-11-23 一种相位检测装置 Active CN206223867U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201621267550.0U CN206223867U (zh) 2016-11-23 2016-11-23 一种相位检测装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201621267550.0U CN206223867U (zh) 2016-11-23 2016-11-23 一种相位检测装置

Publications (1)

Publication Number Publication Date
CN206223867U true CN206223867U (zh) 2017-06-06

Family

ID=58791552

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201621267550.0U Active CN206223867U (zh) 2016-11-23 2016-11-23 一种相位检测装置

Country Status (1)

Country Link
CN (1) CN206223867U (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106443184A (zh) * 2016-11-23 2017-02-22 优利德科技(中国)有限公司 一种相位检测装置及相位检测方法
CN108008189A (zh) * 2017-12-25 2018-05-08 黑龙江龙电电气有限公司 一种相位检测装置及方法
CN111413662A (zh) * 2020-05-13 2020-07-14 杭州万高科技股份有限公司 一种相位校正电路、方法以及电能计量装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106443184A (zh) * 2016-11-23 2017-02-22 优利德科技(中国)有限公司 一种相位检测装置及相位检测方法
CN106443184B (zh) * 2016-11-23 2023-07-14 优利德科技(中国)股份有限公司 一种相位检测装置及相位检测方法
CN108008189A (zh) * 2017-12-25 2018-05-08 黑龙江龙电电气有限公司 一种相位检测装置及方法
CN111413662A (zh) * 2020-05-13 2020-07-14 杭州万高科技股份有限公司 一种相位校正电路、方法以及电能计量装置
CN111413662B (zh) * 2020-05-13 2022-02-08 杭州万高科技股份有限公司 一种相位校正电路、方法以及电能计量装置

Similar Documents

Publication Publication Date Title
CN106443184A (zh) 一种相位检测装置及相位检测方法
CN102466748B (zh) 具有等效采样功能的数字示波器及用于数字示波器的等效采样方法
CN206223867U (zh) 一种相位检测装置
CN104502684B (zh) 一种全数字化峰值到达时刻鉴别方法
CN104535918B (zh) 一种跨时钟域同步器内部常数测试电路和方法
CN108170018B (zh) 一种门控环型时间数字转换器及时间数字转换方法
CN104483557B (zh) 一种减少计数损失的脉冲幅度测量电路及方法
CN205080373U (zh) 一种基于延迟线内插法的精密时间间隔测量电路
CN103580656B (zh) 一种随机取样过程中的触发抖动实时校正电路及方法
CN105301627B (zh) 一种能谱分析方法、能谱分析系统及伽马射线探测系统
CN102928677A (zh) 一种纳米级脉冲信号采集方法
CN113092858B (zh) 一种基于时频信息测量的高精度频标比对系统及比对方法
CN106645952B (zh) 一种信号相位差的检测方法及系统
CN103197145A (zh) 一种超高分辨率相位差测量的方法及系统
CN107728460A (zh) 一种高分辨率的时间间隔测量方法
CN107422193B (zh) 一种测量单粒子翻转瞬态脉冲长度的电路及方法
CN102175337B (zh) 温度传感器
Huang et al. An on-chip short-time interval measurement technique for testing high-speed communication links
CN103675383B (zh) 一种量测波形的电路
CN201947233U (zh) 基于高性能内插数字式补偿电路的高精度延时同步机
CN106153709A (zh) 时间间隔测量
CN114637182A (zh) 基于fpga进位链的tdc细时间测量系统及方法
CN107908097B (zh) 采用混合内插级联结构的时间间隔测量系统及测量方法
CN103809059B (zh) 一种信号检测方法与装置
CN203191708U (zh) 一种精密时间间隔测量仪

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant
CP01 Change in the name or title of a patent holder

Address after: 523808 No. 6 industrial North Road, Songshan Lake high tech Industrial Development Zone, Dongguan, Guangdong

Patentee after: Uno Technology (China) Limited by Share Ltd

Address before: 523808 No. 6 industrial North Road, Songshan Lake high tech Industrial Development Zone, Dongguan, Guangdong

Patentee before: Uni-Trend Technology (China) Co., Ltd.

CP01 Change in the name or title of a patent holder