CN205921458U - 无线充电发射系统和无线充电接收系统 - Google Patents

无线充电发射系统和无线充电接收系统 Download PDF

Info

Publication number
CN205921458U
CN205921458U CN201620647893.3U CN201620647893U CN205921458U CN 205921458 U CN205921458 U CN 205921458U CN 201620647893 U CN201620647893 U CN 201620647893U CN 205921458 U CN205921458 U CN 205921458U
Authority
CN
China
Prior art keywords
circuit
inductance
wireless charging
capacitor
controlling switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201620647893.3U
Other languages
English (en)
Inventor
梁立科
吴坤
张永辉
曹生辉
金亮亮
罗勇
刘俊强
赵勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ZTE NEW ENERGY AUTOMOBILE Co Ltd
ZTE Corp
Original Assignee
ZTE NEW ENERGY AUTOMOBILE Co Ltd
ZTE Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ZTE NEW ENERGY AUTOMOBILE Co Ltd, ZTE Corp filed Critical ZTE NEW ENERGY AUTOMOBILE Co Ltd
Priority to CN201620647893.3U priority Critical patent/CN205921458U/zh
Application granted granted Critical
Publication of CN205921458U publication Critical patent/CN205921458U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本实用新型公开一种无线充电发射系统和无线充电接收系统;其中,无线充电发射系统包括依次连接交流电源的PFC电路、逆变电路、发射线圈,以及串联于逆变电路和发射线圈之间的电感补偿电路及与发射线圈并联的第一电容补偿电路,电感补偿电路具有用以调整其电感值大小的电感调节装置,第一电容补偿电路具有用以调整其电容值大小的第一电容调节装置。本实用新型技术方案能够调节无线充电系统的输出功率。

Description

无线充电发射系统和无线充电接收系统
技术领域
本实用新型涉及无线充电技术领域,特别涉及一种无线充电发射系统和无线充电接收系统。
背景技术
无线充电,就是以磁场为媒介实现电能非接触传输,具有广阔的应用前景。
在使用无线充电系统进行电能传输的过程中,在电能接收装置的工作状态发生变化或者更换电能接收装置时,可能出现无线充电系统输出功率与电能接收装置额定功率不匹配的情况。因此,亟需输出功率可调的无线充电系统。
实用新型内容
本实用新型的主要目的是提供一种无线充电发射系统,旨在达到包括该无线充电发射系统的无线充电系统输出功率可调的目的。
为实现上述目的,本实用新型提出的无线充电发射系统包括依次连接交流电源的PFC电路、逆变电路、发射线圈,及串联于所述逆变电路和所述发射线圈之间的电感补偿电路及与所述发射线圈并联的第一电容补偿电路,所述电感补偿电路具有用以调整其电感值大小的电感调节装置,所述第一电容补偿电路具有用以调整其电容值大小的第一电容调节装置。
优选地,所述电感补偿电路包括至少一个电感,所述电感调节装置为控制接入所述逆变电路和所述发射线圈之间的电感值的第一控制开关。
优选地,所述第一电容补偿电路包括至少一个电容,所述第一电容调节装置为控制接入所述逆变电路和所述发射线圈之间的电感值的第二控制开关。
优选地,所述无线充电发射系统还包括串联于所述电感补偿电路和所述发射线圈之间的第二电容补偿电路,所述第二电容补偿电路具有用以调节其电容值大小的第二电容调节装置。
优选地,所述第二电容补偿电路包括至少一个电容,所述第二电容调节装置为控制接入所述逆变电路和所述发射线圈之间的电容值的第三控制开关。
本实用新型还提出一种无线充电接收系统,包括用于与无线充电发射系统中发射线圈耦合的接收线圈及与所述接收线圈连接的整流滤波电路,及与所述接收线圈并联的第一副边电容补偿电路及串联于所述接收线圈和所述整流滤波电路之间的副边电感补偿电路,所述第一副边电容补偿电路具有用以调节其电容值大小的第一副边电容调节装置,所述副边电感补偿电路具有用以调整电感值大小的副边电感调节装置。
优选地,所述副边电感补偿电路包括至少一个电感,所述副边电感调节装置为控制接入所述接收线圈和所述整流滤波电路之间的电感值的第一副边控制开关。
优选地,所述第一副边电容补偿电路包括至少一个电容,所述第一副边电容调节装置为控制接入所述接收线圈和所述整流滤波电路之间的电容值的第二副边控制开关。
优选地,所述无线充电接收系统还包括串联于所述接收线圈和所述副边电感补偿电路之间的第二副边电容补偿电路,所述第二副边电容补偿电路具有用以调节其电容值大小的第二副边电容调节装置。
优选地,所述第二副边电容补偿电路包括至少一个电容,所述第二副边电容调节装置为控制接入所述接收线圈和所述整流滤波电路之间的电容值的第三副边控制开关。
本实用新型技术方案通过采用在无线充电发射系统中设置电感补偿电路和第一电容补偿电路,使得电感补偿电路、第一电容补偿电路及发射线圈产生谐振。并且电感补偿电路具有用以调整其电感值大小的电感调节装置,第一电容补偿电路具有用以调节其电容值大小的第一电容调节装置。这样,在包括该无线充电发射系统的无线充电系统工作过程中,可以通过电感调节装置调整电感补偿电路的电感值,及通过第一电容调节装置调节第一电容补偿电路的电容值,从而改变电感补偿电路、第一电容补偿电路及发射线圈的谐振频率。由于在电感补偿电路、第一电容补偿电路及发射线圈的谐振频率变化时,其输出功率会发生变化。因此,本实用新型技术方案能够达到包括该无线充电发射系统的无线充电系统输出功率可调的目的。
附图说明
为了更清楚地说明本实用新型实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本实用新型的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为无线充电系统一实施例的功能模块示意图;
图2为本实用新型无线充电发射系统一实施例的功能模块示意图;
图3为本实用新型无线充电发射系统另一实施例的功能模块示意图;
图4为本实用新型无线充电接收系统一实施例的功能模块示意图;
图5为本实用新型无线充电接收系统另一实施例的功能模块示意图;
图6为无线充电系统另一实施例的电路结构示意图。
附图标号说明:
本实用新型目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
下面将结合本实用新型实施例中的附图,对本实用新型实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本实用新型的一部分实施例,而不是全部的实施例。基于本实用新型中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本实用新型保护的范围。
需要说明,本实用新型实施例中所有方向性指示(诸如上、下、左、右、前、后……)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
另外,在本实用新型中涉及“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本实用新型要求的保护范围之内。
本实用新型提出一种无线充电发射系统。
如图2和图3所示所示,在一实施例中,无线充电发射系统包括依次连接交流电源的PFC电路10、逆变电路20、发射线圈60,及串联于逆变电路20和发射线圈60之间的电感补偿电路30及与发射线圈60并联的第一电容补偿电路40,电感补偿电路30具有用以调整其电感值大小的电感调节装置300,第一电容补偿电路40具有用以调整其电容值大小的第一电容调节装置400。
需要说明的是,本实施例中,PFC电路10用于将交流电源转换为直流电源;逆变电路20用于将直流转化为高频交流;电感补偿电路30、第一电容补偿电路40用于与发射线圈60产生谐振。
值得一提的是,无线充电系统包括开关频率和谐振频率;其中,开关频率由系统中的控制芯片(图未示出)控制,谐振频率由无线充电系统中发射线圈60的电感值及其它参与谐振的器件的参数共同决定。当开关频率和谐振频率发生变化时,其输出功率会发生变化。
当有交流电源输入至PFC电路10时,依次经PFC电路10、逆变电路20、电感补偿电路30和第一电容补偿电路40进行相应处理后输出,当需要调整无线充电系统的输出功率时,通过电感调节装置300调整电感补偿电路30的电感值,或者通过第一电容调节装置400调整第一电容补偿电路40的电容值,或者同时通过电感调节装置300调整电感补偿电路30的电感值和第一电容调节装置400调整第一电容补偿电路40的电容值,以改变电感补偿电路30、第一电容补偿电路40及发射线圈60的谐振频率,从而改变无线充电发射系统谐振频率,达到调节其输出功率的目的。
在一较佳实施例中,上述电感补偿电路30包括至少一个电感,电感调节装置300为控制接入逆变电路20和发射线圈60之间的电感值的第一控制开关K1。其中,多个电感可以是串联的,也可以是并联的,还可以是混联的,此处不做限制。电感补偿电路30可以包括一个第一控制开关K1,也可以包括多个第一控制开关K1。
当电感补偿电路30包括一个第一控制开关K1时,可以使该第一控制开关K1与电感补偿电路30中的一个电感串联连接,若第一控制开关K1闭合,则与该第一控制开关K1串联连接的电感接入逆变电路20和发射线圈60之间;若第一控制开关K1断开,则与第一控制开关K1串联连接的电感不接入逆变电路20和发射线圈60之间。这样,就可以通过第一控制开关K1控制与之串联连接的电感是否接入逆变电路20和发射线圈60之间,来改变电感补偿电路30的电感值。
当电感补偿电路30包括多个第一控制开关K1时,可以使每一第一控制开关K1与电感补偿电路中的一个电感串联连接,若其中的若干个第一控制开关K1闭合,而其余的第一控制开关K1断开,则与闭合的第一控制开关K1串联连接的若干电感接入逆变电路20和发射线圈60之间。这样,就可以通过第一控制开关K1控制接入逆变电路20和发射线圈60的电感数量来改变电感补偿电路30的电感值。
可以理解的是,还可以使每一第一控制开关K1与多个电感串联连接,或者,使每一第一控制开关K1与一个或者多个电感并联连接,等等。此处采用一个第一控制开关K1与一个电感串联连接的方式,仅用于解释本实用新型技术方案,并不对本实用新型技术方案进行限制。
具体地,参照图6,在一较佳实施例中,上述电感补偿电路30包括并联连接的第一电感L1及第二电感L2,每一电感均串联一第一控制开关K1。容易理解,通过改变两个第一控制开关K1的开关状态,可以达到对电感补偿电路30的电感值进行调节的目的。
需要说明的是,在一实施例中,上述电感补偿电路30包括至少一个可调电感(图未示出),可调电感包括电感磁芯(图未示出)与电感线圈(图未示出)。这样,通过电感调节装置300调节电感磁芯与电感线圈的相对位置关系就可以改变电感补偿电路30的电感值。当然,电感补偿电路30的结构包括但不限于以上列举出的实施例,其它调节电感补偿电路30的电感值的实施方式也在本专利保护范围内,此处不再一一赘述。
在一较佳实施例中,上述第一电容补偿电路40包括至少一个电容,第一电容调节装置400为控制接入逆变电路20和发射线圈60之间的电容值的第二控制开关K2。其中,多个电容可以是串联的,也可以是并联的,还可以是混联的,此处不做限制。第一电容补偿电路40可以包括一个第二控制开关K2,也可以包括多个第二控制开关K2。
当第一电容补偿电路40包括一个第二控制开关K2时,可以使该第二控制开关K2与第一电容补偿电路40中的一个电容串联连接,若第二控制开关K2闭合,则与该第二控制开关K2串联连接的电容接入逆变电路20和发射线圈40之间;若第二制开关K2断开,则与第二控制开关K2串联连接的电容不接入逆变电路20和发射线圈60之间。这样,就可以通过第二控制开关K2控制与之串联连接的电容是否接入逆变电路20和发射线圈60之间,来改变第一电容补偿电路40的电容值。
当第一电容补偿电路40包括多个第二控制开关K2时,可以使每一第二控制开关K2与第一电容补偿电路40中的一个电容串联连接,若其中的若干个第二控制开关K2闭合,而其余的第二控制开关K2断开,则与闭合的第二控制开关K2串联连接的若干电容接入逆变电路20和发射线圈之间60。这样,就可以通过第二控制开关K2控制接入逆变电路20和发射线圈60的电容数量来改变第一电容补偿电路40的电容值。
可以理解的是,还可以使每一第二控制开关K2与多个电容串联连接,或者,使每一第二控制开关K2与一个或者多个电容并联连接,等等。此处采用一个第二控制开关K2与一个电容串联连接的方式,仅用于解释本实用新型技术方案,并不对本实用新型技术方案进行限制。
具体地,参照图6,在一较佳实施例中,上述第一电容补偿电路40包括并联连接的第一电容C1及第二电容C2,每一电容均串联一第二控制开关K2。容易理解,通过改变两个第二控制开关K2的开关状态,可以达到对第一电容补偿电路40的电容值进行调节的目的。
需要说明的是,在一实施例中,上述第一电容补偿电路40包括至少一个可调电容(图未示出),可调电容包括上极板(图未示出)和下极板(图未示出)。这样,通过第一电容调节装置400调节上极板和下极板的正对面积就可以改变第一电容补偿电路40的电容值。当然,第一电容补偿电路40的结构包括但不限于以上列举出的实施例,其它调节第一电容补偿电路的电容值的实施方式也在本专利保护范围内,此处不再一一赘述。
进一步地,无线充电发射系统还包括串联于电感补偿电路30和发射线圈60之间的第二电容补偿电路50,第二电容补偿电路50具有用以调节其电容值大小的第二电容调节装置500。
值得一提的是,本实施例中,第二电容补偿电路50用于与电感补偿电路30、第一电容补偿电路40及发射线圈60产生谐振。其中,电感补偿电路30、第一电容补偿电路40及第二电容补偿50电路构成LCC补偿网络,无线充电系统的输出功率会受到发射线圈60的电感值及电感补偿电路30的电感值的影响。
当有交流电源输入至PFC电路10时,依次经PFC电路10,逆变电路20、电感补偿电路30、第一电容补偿电路40和第二电容50进行相应处理后输出。当需要调整无线充电系统的输出功率时,可以通过任意一个或者多个调节装置调整对应的补偿电路的电感值和/或电容值。比如,通过电感调节装置300调整电感补偿电路30的电感值,或者通过第一电容调节装置400调整第一电容补偿电路40的电容值,或者同时通过电感调节装置300调整电感补偿电路30的电感值和第一电容调节装置400调整第一电容补偿电路40的电容值,从而改变无线充电系统的输出功率。
需要说明的是,理论上,当谐振频率与开关频率一致时,无线充电系统具有最高的能量传输效率。本实施例中,在调整电感补偿电路30的电感值以调整无线充电系统的输出功率时,可以同时调节第一电容补偿电路40和/或第二电容补偿电路50的电容值,保持无线充电发射系统的谐振频率不变,使系统保持谐振状态。这样,就可以达到在保证无线充电系统具有较高能量传输效率的条件下,对无线充电系统的输出功率进行调节的目的。
在一较佳实施例中,上述第二电容补偿电路50包括至少一个电容,第二电容调节装置500为控制接入逆变电路20和发射线圈60之间的电容值的第三控制开关K3。其中,多个电容可以是串联的,也可以是并联的,还可以是混联的,此处不做限制。第二电容补偿电路50可以包括一个第三控制开关K3,也可以包括多个第三控制开关K3。
当第二电容补偿电路50包括一个第三控制开关K3时,可以使该第三控制开关K3与第二电容补偿电路50中的一个电容串联连接,若第三控制开关K3闭合,则与该第三控制开关K3串联连接的电容接入逆变电路20和发射线圈60之间;若第三控制开关K3断开,则与第三控制开关K3串联连接的电容不接入逆变电路20和发射线圈60之间。这样,就可以通过第三控制开关K3控制与之串联的电容是否接入逆变电路20和发射线圈60之间,来改变第二电容补偿电路50的电容值。
当第二电容补偿电路50包括多个第三控制开关K3时,可以使每一第三控制开关K3与第二电容补偿电路50中的一个电容串联连接,若其中的若干个第三控制开关K3闭合,而其余的第三控制开关K3断开,则与闭合的第三控制开关K3串联连接的若干电容接入逆变电路20和发射线圈60之间。这样,就可以通过第三控制开关K3控制接入逆变电路20和发射线圈60的电容数量来改变第二电容补偿电路50的电容值。
可以理解的是,还可以使每一第三控制开关K3与多个电容串联连接,或者,使每一第三控制开关K3与一个或者多个电容并联连接,等等。此处采用一个第三控制开关K3与一个电容串联连接,仅用于解释本实用新型技术方案,并不对本实用新型技术方案进行限制。
具体地,参照图6,在一较佳实施例中,上述第二电容补偿电路50包括并联连接的第三电容C3及第四电容C4,每一电容均串联一第三控制开关K3。容易理解,通过改变两个第三控制开关K3的开关状态,可以达到对第二电容补偿电路50的电容值进行调节的目的。
需要说明的是,在一实施例中,上述第二电容补偿电路50包括至少一个可调电容(图未示出),可调电容包括上极板(图未示出)和下极板(图未示出)。这样,通过第二电容调节装置500调节上极板和下极板的正对面积就可以改变第二电容补偿电路50的电容值。当然,第二电容补偿电路50的结构包括但不限于以上列举出的实施例,其它调节第二电容补偿电路50的电容值的实施方式也在本专利保护范围内,此处不再一一赘述。
对应地,本实用新型还提出一种无线充电接收系统,在一实施例中,无线充电接收系统包括与无线充电发射系统中发射线圈60耦合的接收线圈70、与接收线圈70连接的整流滤波电路100,及与接收线圈70并联的第一副边电容补偿电路85及串联于接收线圈70和整流滤波电路100之间的副边电感补偿电路80,第一副边电容补偿电路85具有用以调节其电容值大小的第一副边电容调节装置(图未示出),副边电感补偿电路80具有用以调整电感值大小的副边电感调节装置(图未示出)。
需要说明的是,本实施例中,接收线圈70用于接收发射线圈60输出的磁能,并把磁能转化为电能进行输出,整流滤波电路100用于将接收线圈70接收的电能进行整流滤波处理;副边电感补偿电路80、第一副边电容补偿电路85用于与接收线圈70产生谐振。
值得一提的是,无线充电系统包括开关频率和谐振频率;其中,开关频率由系统中的控制芯片控制,谐振频率由无线充电系统中接收线圈70的电感值及其它参与谐振的器件的参数共同决定。当开关频率和谐振频率发生变化时,其输出功率会发生变化。
接收线圈接收的能量分别经副边电感补偿电路80、第一副边电容补偿电路85及整流滤波电路100进行相应处理后输出,当需要调整无线充电系统的输出功率时,通过副边电感调节装置调整副边电感补偿电路80的电感值,或者通过第一副边电容调节装置调整第一副边电容补偿电路85的电容值,或者同时通过副边电感调节装置调整副边电感补偿电路80的电感值和通过第一副边电容调节装置调整第一副边电容补偿电路85的电容值,以改变副边电感补偿电路80、第一副边电容补偿85及接收线圈70的谐振频率,从而改变无线充电接收系统谐振频率,达到调节其输出功率的目的。
在一较佳实施例中,上述副边电感补偿电路80包括至少一个电感,电感调节装置为控制接入接收线圈70和整流滤波电路100之间的电感值的第一副边控制开关(图未示出)。其中,多个电感可以是串联的,也可以是并联的,还可以是混联的,此处不做限制。副边电感补偿电路80可以包括一个第一副边控制开关,也可以包括多个第一副边控制开关。
当副边电感补偿电路80包括一个第一副边控制开关时,可以使该第一副边控制开关与副边电感补偿电路80中的一个电感串联连接,若第一副边控制开关闭合,则与该第一副边控制开关串联连接的电感接入接收线圈70和整流滤波电路100之间;若第一副边控制开关断开,则与第一副边控制开关串联连接的电感不接入接收线圈70和整流滤波电路100之间。这样,就可以通过第一副边控制开关控制与之串联连接的电感是否接入接收线圈70和整流滤波电路100之间,来改变副边电感补偿电路80的电感值。
当副边电感补偿电路80包括多个第一副边控制开关时,可以使每一第一副边控制开关与副边电感补偿电路80中的一个电感串联连接,若其中的若干个第一副边控制开关闭合,而其余的第一副边控制开关断开,则与闭合的第一副边控制开关串联连接的若干电感接入接收线圈70和整流滤波电路100之间。这样,就可以通过第一副边控制开关控制接入接收线圈70和整流滤波电路100的电感数量来改变副边电感补偿电路80的电感值。
可以理解的是,还可以使每一第一副边控制开关与多个电感串联连接,或者,使每一第一副边控制开关与一个或者多个电感并联连接,等等。此处采用一个第一副边控制开关与一个电感串联连接的方式,仅用于解释本实用新型技术方案,并不对本实用新型技术方案进行限制。
具体地,在一较佳实施例中,上述副边电感补偿电路80包括并联连接的第三电感(图未示出)及第四电感(图未示出),每一电感均串联一第一副边控制开关。容易理解,通过改变两个第一副边控制开关的开关状态,可以达到对副边电感补偿电路80的电感值进行调节的目的。
需要说明的是,在一实施例中,上述副边电感补偿电路80包括至少一个可调电感(图未示出),可调电感包括电感磁芯(图未示出)与电感线圈(图未示出)。这样,通过副边电感调节装置调节电感磁芯与电感线圈的相对位置关系就可以改变副边电感补偿电路80的电感值。当然,副边电感补偿电路80的结构包括但不限于以上列举出的实施例,其它调节副边电感补偿电路80的电感值的实施方式也在本专利保护范围内,此处不再一一赘述。
在一较佳实施例中,上述第一副边电容补偿电路85包括至少一个电容,第一副边电容调节装置为控制接入接收线圈70和整流滤波电路100之间的电容值的第二副边控制开关。其中,多个电容可以是串联的,也可以是并联的,还可以是混联的,此处不做限制。第一副边电容补偿电路85可以包括一个第二副边控制开关,也可以包括多个第二副边控制开关。
当第一副边电容补偿电路85包括一个第二副边控制开关时,可以使该第二副边控制开关与第一副边电容补偿电路85中的一个电容串联连接,若第二副边控制开关闭合,则与该第二副边控制开关串联连接的电容接入接收线圈70和整流滤波电路100之间;若第二副边控制开关断开,则与第二副边控制开关串联连接的电容不接入接收线圈70和整流滤波电路100之间。这样,就可以通过第二副边控制开关控制与之串联连接的电容是否接入接收线圈70和整流滤波电路100之间,来改变第一副边电容补偿电路85的电容值。
当第一副边电容补偿电路85包括多个第二副边控制开关时,可以使每一第二副边控制开关与第一副边电容补偿电路85中的一个电容串联连接,若其中的若干个第二副边控制开关闭合,而其余的第二副边控制开关断开,则与闭合的第二副边控制开关串联连接的若干电容接入接收线圈70和整流滤波电路100之间。这样,就可以通过第二副边控制开关控制接入接收线圈70和整流滤波电路100之间的电容数量来改变第一副边电容补偿电路85的电容值。
可以理解的是,还可以使每一第二副边控制开关与多个电容串联连接,或者,使每一第一副边控制开关与一个或者多个电容并联连接,等等。此处采用一个第二副边控制开关与一个电容串联连接的方式,仅用于解释本实用新型技术方案,并不对本实用新型技术方案进行限制。
具体地,在一较佳实施例中,上述第一副边电容补偿电路85包括并联连接的第五电容(图未示出)及第六电容(图未示出),每一电容均串联一第二副边控制开关。容易理解,通过改变两个第二副边控制开关的开关状态,可以达到对第一副边电容补偿电路85的电容值进行调节的目的。
需要说明的是,在一实施例中,上述第一副边电容补偿电路85包括至少一个可调电容(图未示出),可调电容包括上极板(图未示出)和下极板(图未示出)。这样,通过第一副边电容调节装置调节上极板和下极板的正对面积就可以改变第一副边电容补偿电路85的电容值。当然,第一副边电容补偿电路85的结构包括但不限于以上列举出的实施例,其它调节第一电容补偿电路85的电容值的实施方式也在本专利保护范围内,此处不再一一赘述。
进一步地,无线充电接收系统还包括串联于接收线圈70和副边电感补偿电路之间80的第二副边电容补偿电路90,第二副边电容补偿电路90具有用以调节其电容值大小的第二副边电容调节装置(图未示出)。
值得一提的是,本实施例中,第二副边电容补偿电路90用于与副边电感补偿电路80、第一副边电容补偿电路85及接收线圈70产生谐振。其中,副边电感补偿电路80、第一副边电容补偿电路85及第二副边电容补偿电路90构成LCC补偿网络,无线充电系统的输出功率会受到接收线圈70的电感值及副边电感补偿电路80的电感值的影响。
接收线圈70接收的能量分别经第二副边电容补偿电路90、第一副边电容补偿电路85、副边电感补偿电路80及整流滤波电路100进行相应处理后输出。当需要调整无线充电系统的输出功率时,可以通过任意一个或者多个副边调节装置调整对应的副边补偿电路的电容值和/或电感值。比如,通过副边电感调节装置调整副边电感补偿电路80的电感值,或者通过第一副边电容调节装置调整第一副边电容补偿电路85的电容值,或者同时通过副边电感调节装置调整副边电感补偿电路80的电感值和第一副边电容调节装置调整第一副边电容补偿电路85的电容值,从而改变无线充电系统的输出功率。
需要说明的是,理论上,当谐振频率与开关频率一致时,无线充电系统具有最高的能量传输效率。本实施例中,在调整副边电感补偿电路80的电感值以调整无线充电系统的输出功率时,可以同时调节第一副边电容补偿电路85和/或第二副边电容补偿电路90的电容值,保持无线充电接收系统的谐振频率不变,使系统保持谐振状态。这样,就可以达到在保证无线充电系统具有较高能量传输效率的条件下,对无线充电系统的输出功率进行调节的目的。
在一较佳实施例中,上述第二副边电容补偿电路90包括至少一个电容,第二副边电容调节装置为控制接入接收线圈70和整流滤波电路100之间的电容值的第三副边控制开关(图未示出)。其中,多个电容可以是串联的,也可以是并联的,还可以是混联的,此处不做限制。第二副边电容补偿电路90可以包括一个第三副边控制开关,也可以包括多个第三副边控制开关。
当第二副边电容补偿电路90包括一个第三副边控制开关时,可以使该第三副边控制开关与第二副边电容补偿电路90中的一个电容串联连接,若第三副边控制开关闭合,则与该第三副边控制开关串联连接的电容接入接收线圈和整流滤波电路之间;若第三副边控制开关断开,则与第三副边控制开关串联连接的电容不接入接收线圈70和整流滤波电路100之间。这样,就可以通过第三副边控制开关控制与之串联的电容是否接入接收线圈70和整流滤波电路100之间,来改变第二副边电容补偿电路90的电容值。
当第二副边电容补偿电路90包括多个第三副边控制开关时,可以使每一控制开关与第二副边电容补偿电路90中的一个电容串联连接,若其中的若干个第三副边控制开关闭合,而其余的第三副边控制开关断开,则与闭合的第三副边控制开关串联连接的若干电容接入接收线圈70和整流滤波电路100之间。这样,就可以通过第三副边控制开关控制接入接收线圈70和整流滤波电路100之间的电容数量来改变第二副边电容补偿电路90的电容值。
可以理解的是,还可以使每一第三副边控制开关与多个电容串联连接,或者,使每一第三副边控制开关与一个或者多个电容并联连接,等等。此处采用一个第三副边控制开关与一个电容串联连接,仅用于解释本实用新型技术方案,并不对本实用新型技术方案进行限制。
具体地,在一较佳实施例中,上述第二副边电容补偿电路90包括并联连接的第七电容(图未示出)及第八电容(图未示出),每一电容均串联一第三副边控制开关。容易理解,通过改变两个第三副边控制开关的开关状态,可以达到对第二副边电容补偿电路90的电容值进行调节的目的。
需要说明的是,在一实施例中,上述第二副边电容补偿电路90包括至少一个可调电容(图未示出),可调电容包括上极板(图未示出)和下极板(图未示出)。这样,通过第二副边电容调节装置调节上极板和下极板的正对面积就可以改变第二副边电容补偿电路90的电容值。当然,第二副边电容补偿电路90的结构包括但不限于以上列举出的实施例,其它调节第二副边电容补偿电路90的电容值的实施方式也在本专利保护范围内,此处不再一一赘述。
以下,结合图1至图6,说明本实用新型无线充电发射系统和无线充电接收系统的工作原理:
当有交流电源输入至PFC电路10时,PFC电路10将交流电源转换为直流电源并输送至逆变电路20,逆变电路20将直流电源转换为高频交流电源并通过发射线圈发射60,整流滤波电路100通过接收线圈70接收高频交流电源并将其进行整流滤波处理后输出。参照图6,逆变电路20包括多个开关管,开关管的开关状态受到控制芯片的控制,开关管的开关频率与发射线圈60及接收线圈70的谐振频率相同。
参照图6,假设电感补偿电路30的电感值为Lp0,第一电容补偿电路40的电容值为Cp0,第二电容补偿电路50的电容值为Cp,发射线圈60的电感值为Lp,接收线圈70的电感值为Ls,无线充电系统的谐振频率为f,谐振角频率为ω=2πf,发射线圈60与接收线圈70的互感值为(k为耦合系数)。
当发射线圈60和接收线圈70工作在谐振频率f中时,有 输出电压为其中,Uin为原边补偿网络输入电压的有效值,Uout为副边补偿网络输出电压的有效值。
上式表明,在系统谐振时,无线充电系统的输出电压与电感补偿电路30的电感值成反比,与发射线圈60和接收线圈70的互感成正比。这样,就可以通过调节电感补偿电路30的电感值来调节无线充电系统的输出功率。更进一步地,当只调节电感补偿电路30的电感值时,原边谐振频率会随之改变,因此,还可以对第一电容补偿电路40和/或第二电容补偿电路50的电容值进行调节,使得发射线圈60及接收线圈70的谐振频率不变,始终工作在谐振状态,进而使得无线充电系统保持高效率的能量传输。
值得一提的是,为了增强无线充电系统的输出功率与能量接收装置的匹配度,还可以增设反馈系统(图未示出),该反馈系统可以与无线充电接收系统配合工作,也可以同时与无线充电发射系统及无线充电接收系统配合工作。其中,该反馈系统可以包括控制模块及用于采集无线充电系统输出功率的功率采集模块,控制模块根据功率采集模块采集得的数据对调节装置进行控制,使得无线充电系统的输出功率与能量接收装置所需的功率相匹配。
需要说明的是,图6所示的无线充电系统中,发射线圈60的补偿电路为LCC补偿电路,而接收线圈70的补偿电路为串联补偿电路。在无线充电系统的其它实施例中,也可以使发射线圈60的补偿电路为串联或者并联补偿电路,而接收线圈70的补偿电路为LCC补偿电路;还可以使发射线圈60的补偿电路及接收线圈70的补偿电路均为LCC拓扑补偿电路,其输出功率调整原理与本实施例中的输出功率的调整原理相同,此处不再赘述。
以上所述仅为本实用新型的优选实施例,并非因此限制本实用新型的专利范围,凡是在本实用新型的发明构思下,利用本实用新型说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本实用新型的专利保护范围内。

Claims (10)

1.一种无线充电发射系统,包括依次连接交流电源的PFC电路、逆变电路、发射线圈,其特征在于,所述无线充电发射系统还包括串联于所述逆变电路和所述发射线圈之间的电感补偿电路及与所述发射线圈并联的第一电容补偿电路,所述电感补偿电路具有用以调整其电感值大小的电感调节装置,所述第一电容补偿电路具有用以调整其电容值大小的第一电容调节装置。
2.如权利要求1所述的无线充电发射系统,其特征在于,所述电感补偿电路包括至少一个电感,所述电感调节装置为控制接入所述逆变电路和所述发射线圈之间的电感值的第一控制开关。
3.如权利要求1所述的无线充电发射系统,其特征在于,所述第一电容补偿电路包括至少一个电容,所述第一电容调节装置为控制接入所述逆变电路和所述发射线圈之间的电容值的第二控制开关。
4.如权利要求1至3任意一项所述的无线充电发射系统,其特征在于,所述无线充电发射系统还包括串联于所述电感补偿电路和所述发射线圈之间的第二电容补偿电路,所述第二电容补偿电路具有用以调节其电容值大小的第二电容调节装置。
5.如权利要求4所述的无线充电发射系统,其特征在于,所述第二电容补偿电路包括至少一个电容,所述第二电容调节装置为控制接入所述逆变电路和所述发射线圈之间的电容值的第三控制开关。
6.一种无线充电接收系统,包括用于与无线充电发射系统中发射线圈耦合的接收线圈及与所述接收线圈连接的整流滤波电路;其特征在于,所述无线充电接收系统还包括与所述接收线圈并联的第一副边电容补偿电路及串联于所述接收线圈和所述整流滤波电路之间的副边电感补偿电路,所述第一副边电容补偿电路具有用以调节其电容值大小的第一副边电容调节装置,所述副边电感补偿电路具有用以调整电感值大小的副边电感调节装置。
7.如权利要求6所述的无线充电接收系统,其特征在于,所述副边电感补偿电路包括至少一个电感,所述副边电感调节装置为控制接入所述接收线圈和所述整流滤波电路之间的电感值的第一副边控制开关。
8.如权利要求7所述的无线充电接收系统,其特征在于,所述第一副边电容补偿电路包括至少一个电容,所述第一副边电容调节装置为控制接入所述接收线圈和所述整流滤波电路之间的电容值的第二副边控制开关。
9.如权利要求6-8任意一项所述的无线充电接收系统,其特征在于,所述无线充电接收系统还包括串联于所述接收线圈和所述副边电感补偿电路之间的第二副边电容补偿电路,所述第二副边电容补偿电路具有用以调节其电容值大小的第二副边电容调节装置。
10.如权利要求9所述的无线充电接收系统,其特征在于,所述第二副边电容补偿电路包括至少一个电容,所述第二副边电容调节装置为控制接入所述接收线圈和所述整流滤波电路之间的电容值的第三副边控制开关。
CN201620647893.3U 2016-06-27 2016-06-27 无线充电发射系统和无线充电接收系统 Active CN205921458U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201620647893.3U CN205921458U (zh) 2016-06-27 2016-06-27 无线充电发射系统和无线充电接收系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201620647893.3U CN205921458U (zh) 2016-06-27 2016-06-27 无线充电发射系统和无线充电接收系统

Publications (1)

Publication Number Publication Date
CN205921458U true CN205921458U (zh) 2017-02-01

Family

ID=57874039

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201620647893.3U Active CN205921458U (zh) 2016-06-27 2016-06-27 无线充电发射系统和无线充电接收系统

Country Status (1)

Country Link
CN (1) CN205921458U (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106560976A (zh) * 2016-06-27 2017-04-12 中兴新能源汽车有限责任公司 无线充电发射系统和无线充电接收系统
CN109103972A (zh) * 2017-06-21 2018-12-28 立锜科技股份有限公司 无线电源发送电路及其控制方法
CN109552086A (zh) * 2018-12-18 2019-04-02 深圳市信维通信股份有限公司 一种电动汽车无线充电系统及其控制方法
CN109617255A (zh) * 2018-12-26 2019-04-12 北京酷能科技有限公司 无线充电接收电路

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106560976A (zh) * 2016-06-27 2017-04-12 中兴新能源汽车有限责任公司 无线充电发射系统和无线充电接收系统
CN106560976B (zh) * 2016-06-27 2023-09-01 中兴新能源汽车有限责任公司 无线充电发射系统和无线充电接收系统
CN109103972A (zh) * 2017-06-21 2018-12-28 立锜科技股份有限公司 无线电源发送电路及其控制方法
CN109552086A (zh) * 2018-12-18 2019-04-02 深圳市信维通信股份有限公司 一种电动汽车无线充电系统及其控制方法
CN109552086B (zh) * 2018-12-18 2024-03-19 深圳市信维通信股份有限公司 一种电动汽车无线充电系统及其控制方法
CN109617255A (zh) * 2018-12-26 2019-04-12 北京酷能科技有限公司 无线充电接收电路

Similar Documents

Publication Publication Date Title
CN106560976A (zh) 无线充电发射系统和无线充电接收系统
WO2021008203A1 (zh) 一种无线电能传输系统在最大效率跟踪下的阻抗匹配网络优化方法
CN105186646B (zh) 一种用于动态无线充电的装置及其参数获取方法
CN205921458U (zh) 无线充电发射系统和无线充电接收系统
CN110429720A (zh) 一种实现恒流恒压输出切换的感应式无线电能传输系统
CN108039778B (zh) 基于lcl-lcc补偿网络的恒压恒流wpt系统及其参数设计方法
CN106451800B (zh) 既能输出恒流也能输出恒压的感应式无线电能传输系统
CN108471173A (zh) 兼具恒压及恒流输出的无线能量传输系统
CN110266113B (zh) 一种航天器间无线配电系统及控制方法
CN109245231A (zh) 一种具有自然恒压恒流输出特性的无线充电拓扑结构
CN204992720U (zh) 一种无线充电装置
CN110293859B (zh) 一种巡视无人机在线充电补给装置及方法
CN108551211A (zh) 一种移动式无线电能传输系统效率最优的闭环控制方法
CN105914831A (zh) 基于ss拓扑的磁耦合谐振无线电能传输系统参数设计方法
CN113659684A (zh) 副边cl/s恒流恒压ipt充电系统及其参数设计方法
CN106740238A (zh) 一种电动汽车无线充电电路及其控制方法
CN109638978A (zh) 一种高效率的恒压恒流切换无线充电拓扑结构
CN107546869A (zh) 三线圈无线输电系统频率分裂现象的抑制方法
CN105680577A (zh) 一种宽范围功率可调无线电能传输系统及其控制方法
CN113315258A (zh) 基于lcl-lcl-s混合自切换谐振式的充电方法
CN104716747B (zh) 无线充电系统及其控制方法
CN106712319A (zh) 一种电动汽车磁共振式无线充电电路及其控制方法
CN110138097A (zh) 一种采用特殊拓扑结构实现恒流恒压磁感应式充电系统
CN109067184B (zh) 一种恒流恒压无缝切换的感应电能传输系统
CN206564492U (zh) 一种电动汽车磁共振式无线充电电路

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant