CN205864457U - 一种频域分集水声通信调制解调器 - Google Patents

一种频域分集水声通信调制解调器 Download PDF

Info

Publication number
CN205864457U
CN205864457U CN201620367027.9U CN201620367027U CN205864457U CN 205864457 U CN205864457 U CN 205864457U CN 201620367027 U CN201620367027 U CN 201620367027U CN 205864457 U CN205864457 U CN 205864457U
Authority
CN
China
Prior art keywords
module
signal
data
frequency
synchronization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201620367027.9U
Other languages
English (en)
Inventor
孟庆微
任清华
关志军
王刚
冯奎胜
马润年
赵军
崔捷
赵佩林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Force Engineering University of PLA
Original Assignee
Air Force Engineering University of PLA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Force Engineering University of PLA filed Critical Air Force Engineering University of PLA
Priority to CN201620367027.9U priority Critical patent/CN205864457U/zh
Application granted granted Critical
Publication of CN205864457U publication Critical patent/CN205864457U/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Mobile Radio Communication Systems (AREA)

Abstract

一种频域分集水声通信调制解调器包括发射部分和接收部分,发射部分由符号映射模块(101)、PN组块模块(102)、信号组帧模块(103)、数模转换模块(104)、功率放大器(105)、发射换能器(106)依次连接组成;接收部分由接收水听器(107)、多通道处理模块(108)、频域分集合并模块(109)、IFFT变换模块(110)、符号判决模块(111)依次连接组成。本实用新型利用快速傅里叶变换(FFT)计算最大比分集接收调制解调器的均衡器系数,大幅度降低系统复杂度,同时最大限度利用空间分集接收增益,对未来我国水下信息网络建设和部署过程中具有重要意义。

Description

一种频域分集水声通信调制解调器
技术领域
本实用新型公开了一种频域分集水声通信调制解调器,特别涉及一种采用伪随机码(PN)导频前缀的单载波分块传输频域分集水声通信调制解调器。
背景技术
随着国家海洋权益的不断拓展,水声通信在国防建设中的重要战略意义日益突出。水声通信是保障现代海军遂行各种作战任务的主要手段之一,在水雷远程遥控、潜艇通信、蛙人通信等领域应用十分广泛。
水声通信调制解调器是进行水下信息传输的基础。由于声波在水中的传播传播速度约为1500m/s,比电磁波传播速度小五个数量级,导致水声信道多径时延扩展和多普勒效应远大于空中无线传播环境,空-时-频三维中时变特性复杂,高速水声通信调制解调器设计难度加大。
分集接收技术是提高水声通信系统性能的常用方法。目前,相关研究多在时域进行等增益合并或者是针对正交频分复用(OFDM)水声通信系统展开,时域处理方法计算复杂度高,信道估计和均衡参数选择十分复杂;OFDM水声通信技术的计算复杂度低,但其峰均比(PAPR)高,载波频率偏移对系统性能影响大。单载波分块传输(SCBT)技术具有计算复杂度低,对于频率偏移不敏感,峰均比适中的优点,是中近程高速水声通信的一种有效传输手段。利用水下多阵元接收带来的空间分集增益,研制适合于高速SCBT水声通信的低复杂度、高稳健性调制解调器,对于未来高速水下通信网建设和部署具有重要意义。
实用新型内容
基于上述分析,本实用新型公开一种单载波分块传输(SCBT)频域分集水声通信调制解调器,包括发射部分和接收部分,其特征在于:发射部分由符号映射模块101、PN组块模块102、信号组帧模块103、数模转换模块104、功率放大器105、发射换能器106依次连接组成;其中
符号映射模块101将输入的特定信号时长的0、1数据进行分组,按照数据分组进行符号调制,并将调制符号送至PN组块模块102;
PN组块模块102将PN序列插入到调制数据之后,形成数据分组结构,PN组块模块102将数据分组结构输出至信号组帧模块103;
信号组帧模块103将数据分组结构的多个数据分块组成一个数据帧,其帧结构包括线性调频LFM信号、保护间隔、PN导频、数据,其中LFM信号主要用于帧同步和符号同步,保护间隔的作用是防止LFM信号对传输数据造成码间串扰,信号组帧模块103将数据帧输出至数模转换模块104;
数模转换模块104将信号组帧模块103生成的组帧信号调制到载频,并进行数模转换,将数字信号转换为模拟信号以声信号形式进行传输,数模转换模块104将声信号输出至声信号输入功率放大器105;
声信号输入功率放大器105用于完成声信号的放大;
发射换能器106用于完成声信号的调制解调,然后将解调后的声信号送入水声信道;
接收部分由接收水听器107、多通道处理模块108、频域分集合并模块109、IFFT变换模块110、符号判决模块111依次连接组成;
接收水听器107包含K个阵元,K的数量根据具体需要进行选择,每个阵元在接收到水声信道传输的声信号后,进行模数转换,将接收声信号转换为数字信号然后送入多通道处理模块108;
多通道处理模块108由K个单通道处理模块1081-108K组成,分别对应处理接收水听器107的K个阵元接收采样后的数字信号, 其将K个阵元接收的过采样信号进行适当的帧同步和符号同步,转换为符号速率采样数据,并进行相应的信号处理,然后将处理过的数字采样信号送入频域分集合并模块109中;
频域分集合并模块109根据各单通道处理模块1081-108K输出的信道频域冲激响应值的大小,对各单通道处理模块1081-108K输出的频域信号进行最大比合并并形成合并数据,最大程度利用多阵元接收带来的空间增益,频域分集合并模块109将合并数据输出至IFFT变换模块110;
IFFT变换模块110将频域分集合并模块109输出的结果进行IFFT变换,转换到时域,并将该时域信号输出至符号判决模块111;
符号判决模块111根据符号调制星座图,对IFFT变换模块110输出的时域信号进行判决处理,并转换为0,1数据输出。
在本发明的一个实施例中,K个单通道处理模块1081-108K分别对各自阵元接收的数据进行帧同步和符号同步,并利用前缀PN序列的末尾少部分接收采样值,进行水声信道冲激响应值和噪声方差的估计。
在本发明的一个具体实施例中,2≤K≤10。
在本发明的一个实施例中,K个单通道处理模块1081-108K的结构是相同的,其中每一个单通道处理模块1081-108K均包括同步模块10811、PN前缀提取模块10812、数据分组提取模块10813、信道估计模块10814、FFT变换模块10815;单通道处理模块1081-108K的输入信号首先进入同步模块10811,同步模块10811利用数据帧中的LFM信号完成帧同步和符号同步,同步模块10811的输出兵分两路,一路进入PN前缀提取模块10812,PN前缀提取模块10812提取同步后的接收数据中前一个分块的PN序列数据,将其输出至信道估计模块10814,信道估计模块10814利用接收PN序列末尾部分数据进行信道估计和噪声方差估计,并将信道估计值末尾补零到分块长度然后输出至FFT变换模块10815;另一路数据输入数据分组提取模块10813,数据分组提取模块10813提取当前分块数据后,将其输出至 FFT变换模块10815;FFT变换模块10815将信道估计模块10814和数据分组提取模块输入10813的数据以分块长度进行FFT变换,获取频域信号和信道频域冲激响应值。
本实用新型所公开的频域分集接收机能够最大限度利用水下多阵元接收带来的空间增益,提高系统误码率性能,同时,利用快速傅里叶变换(FFT)计算频域最大比分集接收均衡器的参数,可有效降低传统时域接收机的复杂度。本实用新型所公开的频域分集接收机具有实现简单,复杂度低的优点,适合于中、近程高速水声通信,其优势主要包括:
(1)采用单载波体制进行信号传输,峰均比低、频率偏移不敏感,换能器线性范围要求低;
(2)利用FFT计算频域最大比分集接收均衡器系数,实现复杂度低;
(3)按照最大比准则在频域进行分集接收,可最大限度利用多阵元接收带来的空间增益。
附图说明
图1是本实用新型的系统框图;
图2是图1所示PN组块模块的数据分块结构;
图3是图1中单通道处理模块的结构图;
图4是图1所示符号映射模块输入信号的数据帧结构。
具体实施方式
为使本实用新型的目的、技术方案以及优势更加明晰,下面结合附图和实施例,对本实用新型进行进一步详细说明。
如图1所示,本实用新型的发射部分由符号映射模块101、PN组块模块102、信号组帧模块103、数模转换模块104、功率放大器模块105、发射换能器模块106顺次连接组成。
符号映射模块101输入的特定信号时长的0、1数据进行分组,按照数据分组进行符号调制,并将调制符号送至PN组块模块102。
PN组块模块102将PN序列插入到调制数据之后,并形成如图2所示的数据分组结构。该数据分组结构第i-1个数据分块插入的PN序列不仅是第i-1个数据分块的组成部分,同时还作为第i个分块的循环前缀,可以将发射信号与水声信道的线性卷积,转换为循环卷积,便于接收部分利用快速傅里叶变换(FFT)进行频域处理。PN组块模块102将数据分组结构输出至信号组帧模块103。
信号组帧模块103将数据分组结构的多个数据分块组成一个数据帧,其帧结构包括线性调频(LFM)信号、保护间隔、PN导频、数据,其中,LFM信号主要用于帧同步和符号同步,保护间隔的作用是防止LFM信号对传输数据造成码间串扰。信号组帧模块103将数据帧输出至数模转换模块104。
数模转换模块104将信号组帧模块103生成的多组数据帧信号调制到载频,并进行数模转换,将数字信号转换为模拟信号,以声信号形式进行传输。数模转换模块104将声信号输出至声信号输入功率放大器105。
声信号输入功率放大器105用于完成声信号的放大。
发射换能器106用于完成声信号的调制解调,然后将解调后的声信号送入水声信道。
如图1所示,本实用新型的接收部分由接收水听器107、多通道处理模块108、频域分集合并模块109、逆傅里叶变换(IFFT)模块110和符号判决模块111组成顺次连接组成。
接收水听器107是常见的水声通信组件,其包含K个阵元,每个阵元在接收到水声信道传输的声信号后,进行模数转换,将接收声信号转换为数字信号然后送入多通道处理模块108。
多通道处理模块108由K个单通道处理模块1081-108K组成,分别对应处理接收水听器107的K个阵元接收采样后的数字信号,其主要功能是将K个阵元接收的过采样信号进行适当的帧同步和符 号同步,转换为符号速率采样数据,并进行相应的信号处理,然后将处理过的数字采样信号送入频域分集合并模块109中。
单通道处理模块1081-108K的结构是相同的,如图3所示,其包括同步模块10811、PN前缀提取模块10812、数据分组提取模块10813、信道估计模块10814、FFT变换模块10815。输入信号首先进入同步模块10811,同步模块10811利用数据帧中的LFM信号完成帧同步和符号同步。同步模块10811的输出兵分两路,一路进入PN前缀提取模块10812,PN前缀提取模块10812提取同步后的接收数据中前一个分块的PN序列数据,将其输出至信道估计模块10814,信道估计模块10814利用接收PN序列末尾部分数据进行信道估计和噪声方差估计,并将信道估计值末尾补零到分块长度然后输出至FFT变换模块10815;另一路数据输入分组提取模块10813,分组提取模块10813按照特定的分块结构,提取当前分块数据后,将其输出至FFT变换模块10815。在FFT变换模块10815中,FFT变换模块将信道估计模块10814和数据分块提取模块输入10813的数据以分块长度进行FFT变换,获取频域信号和信道频域冲激响应值。
频域分集合并模块109根据各单通道处理模块1081-108K输出的信道频域冲激响应值的大小,对各单通道处理模块1081-108K输出的频域信号进行最大比合并并形成合并数据,最大程度利用多阵元接收带来的空间增益。频域分集合并模块109将合并数据输出至IFFT变换模块110。
IFFT变换模块110对频域分集合并模块109输出的结果进行IFFT变换,转换到时域,并将该时域信号输出至符号判决模块111。
符号判决模块111根据符号调制星座图,对IFFT变换模块110输出的时域信号进行判决处理,并转换为0,1数据输出。
作为本实用新型的一种较佳实施例,选择水声通信中心频率6kHz,系统采样频率36kHz,带宽2kHz,LFM信号时长0.5s,保护间隔时长0.4s,调制方式为QPSK,符号速率为2kbps,数据分块长度为512,PN序列长度为128,每个数据帧包含30个数据分块。通 信距离为1.8公里,实际速率为2kbps。
作为本实用新型的一种较佳实施例,发射信号数据帧结构如图4所示,LFM信号主要用于帧同步和符号同步,取时长为0.5s。考虑到湖试信道的信道时延不大,LFM信号与传输数据块之间的保护间隔设定为0.4s。分块传输数据采用图3所示的数据分块结构,数据分块长度为512,其中导频PN导频长度为128,每个分块可传输的QPSK符号长度为384,即每个数据块可传输768个0、1数据。0、1数据经过符号映射模块101、PN组块模块102、信号组帧模块103后,进入模数变换模块104、功率放大器105,经发射换能器106发射到水声信道中。
接收部分工作流程如下:声信号经水声信道传输至接收机后,接收水听器107对多个阵元接收的信号进行离散化处理(采样频率为36kHz),统一将各阵元接收信采样号送入多通道处理模块108中进行处理,本实施例中,多通道处理模块由4个单通道处理单元1081组成,分别处理接收4个阵元采样的数据。具体来讲,单通道处理模块利用同步模块10811完成帧同步和符号同步后,按照如图3所示的数据分块结构,分别提取PN导频10812和分块数据10813,前一个分块中的PN序列可作为后一个分块的循环前缀,同时在信道估计模块10814中进行信道估计和噪声方差估计,信道估计值在末尾补零后扩展到分块长度,进入FFT变换模块10815进行快速傅里叶变换将其变换到频域,分块数据也采样相同方式变换到频域。各个单通道处理模块1081分别处理接收数据后送入频域分集合并模块109,频域分集合并模块109根据各个信道频域响应值的大小,在频域进行最大比合并,然后输出至IFFT变换模块110,利用IFFT将频域合并结果变换到时域,最后经符号判决模块111根据符号调制星座图,对IFFT变换模块110输出的时域信号进行判决处理,并转换为0,1数据后输出。
该实用新型的主要指标如下:
工作水深:5~15米
通信距离:1.8公里
传输速率:2kbps
误码率:0
工作带宽:4-8k
中心频率:6k
该实用新型的显著特征是复杂度低、换能器线性范围要求低、可最大程度上利用水下多阵元接收带来的空间增益,符合未来中近程高速水声通信的发展趋势。
以上所述仅为本实用新型的一种较佳实施例,但本实用新型的保护范围并不局限于上述实施例,本领域工程技术人员在原有结构基础上,进行适当的改动和变形,均应包含在发明的保护范围内。

Claims (4)

1.一种频域分集水声通信调制解调器,包括发射部分和接收部分,其特征在于:发射部分由符号映射模块(101)、PN组块模块(102)、信号组帧模块(103)、数模转换模块(104)、功率放大器(105)、发射换能器(106)依次连接组成;其中
符号映射模块(101)将输入的特定信号时长的0、1数据进行分组,按照数据分组进行符号调制,并将调制符号送至PN组块模块(102);
PN组块模块(102)将PN序列插入到调制数据之后,形成数据分组结构,PN组块模块(102)将数据分组结构输出至信号组帧模块(103);
信号组帧模块(103)将数据分组结构的多个数据分块组成一个数据帧,其帧结构包括线性调频LFM信号、保护间隔、PN导频、数据,其中LFM信号主要用于帧同步和符号同步,保护间隔的作用是防止LFM信号对传输数据造成码间串扰,信号组帧模块(103)将数据帧输出至数模转换模块(104);
数模转换模块(104)将信号组帧模块(103)生成的组帧信号调制到载频,并进行数模转换,将数字信号转换为模拟信号以声信号形式进行传输,数模转换模块(104)将声信号输出至声信号输入功率放大器(105);
声信号输入功率放大器(105)用于完成声信号的放大;
发射换能器(106)用于完成声信号的调制解调,然后将解调后的声信号送入水声信道;
接收部分由接收水听器(107)、多通道处理模块(108)、频域分集合并模块(109)、IFFT变换模块(110)、符号判决模块(111)依次连接组成;
接收水听器(107)包含K个阵元,K的数量根据具体需要进行选择,每个阵元在接收到水声信道传输的声信号后,进行模数转换, 将接收声信号转换为数字信号然后送入多通道处理模块(108);
多通道处理模块(108)由K个单通道处理模块(1081-108K)组成,分别对应处理接收水听器(107)的K个阵元接收采样后的数字信号,其将K个阵元接收的过采样信号进行适当的帧同步和符号同步,转换为符号速率采样数据,并进行相应的信号处理,然后将处理过的数字采样信号送入频域分集合并模块(109)中;
频域分集合并模块(109)根据各单通道处理模块(1081-108K)输出的信道频域冲激响应值的大小,对各单通道处理模块(1081-108K)输出的频域信号进行最大比合并并形成合并数据,最大程度利用多阵元接收带来的空间增益,频域分集合并模块(109)将合并数据输出至IFFT变换模块(110);
IFFT变换模块(110)将频域分集合并模块(109)输出的结果进行IFFT变换,转换到时域,并将该时域信号输出至符号判决模块(111);
符号判决模块(111)根据符号调制星座图,对IFFT变换模块(110)输出的时域信号进行判决处理,并转换为0,1数据输出。
2.如权利要求1所述的频域分集水声通信调制解调器,其特征在于:K个单通道处理模块(1081-108K)分别对各自阵元接收的数据进行帧同步和符号同步,并利用前缀PN序列的末尾少部分接收采样值,进行水声信道冲激响应值和噪声方差的估计。
3.如权利要求2所述的频域分集水声通信调制解调器,其特征在于:2≤K≤10。
4.如权利要求2或3所述的频域分集水声通信调制解调器,其特征在于:K个单通道处理模块(1081-108K)的结构是相同的,其中每一个单通道处理模块(1081-108K)均包括同步模块(10811)、PN前 缀提取模块(10812)、数据分组提取模块(10813)、信道估计模块(10814)、FFT变换模块(10815);单通道处理模块(1081-108K)的输入信号首先进入同步模块(10811),同步模块(10811)利用数据帧中的LFM信号完成帧同步和符号同步,同步模块(10811)的输出兵分两路,一路进入PN前缀提取模块(10812),PN前缀提取模块(10812)提取同步后的接收数据中前一个分块的PN序列数据,将其输出至信道估计模块(10814),信道估计模块(10814)利用接收PN序列末尾部分数据进行信道估计和噪声方差估计,并将信道估计值末尾补零到分块长度然后输出至FFT变换模块(10815);另一路数据输入数据分组提取模块(10813),数据分组提取模块(10813)按照特定的分块结构,提取当前分块数据后,将其输出至FFT变换模块(10815);FFT变换模块(10815)将信道估计模块(10814)和数据分组提取模块(10813)输入的数据以分块长度进行FFT变换,获取频域信号和信道频域冲激响应值。
CN201620367027.9U 2016-04-27 2016-04-27 一种频域分集水声通信调制解调器 Expired - Fee Related CN205864457U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201620367027.9U CN205864457U (zh) 2016-04-27 2016-04-27 一种频域分集水声通信调制解调器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201620367027.9U CN205864457U (zh) 2016-04-27 2016-04-27 一种频域分集水声通信调制解调器

Publications (1)

Publication Number Publication Date
CN205864457U true CN205864457U (zh) 2017-01-04

Family

ID=57642284

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201620367027.9U Expired - Fee Related CN205864457U (zh) 2016-04-27 2016-04-27 一种频域分集水声通信调制解调器

Country Status (1)

Country Link
CN (1) CN205864457U (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107454031A (zh) * 2017-07-24 2017-12-08 哈尔滨工程大学 一种基于分组信噪比置信度的ofdm‑mfsk水声通信技术
CN107483120A (zh) * 2017-09-13 2017-12-15 厦门大学 水声信号采集与处理系统
CN107579782A (zh) * 2017-09-28 2018-01-12 燕山大学 一种具有跨介质通信能力的水声调制解调器
CN108650007A (zh) * 2018-05-03 2018-10-12 西安交通大学 一种基于空频自适应滤波的高可靠信道均衡方法
CN109474304A (zh) * 2018-11-29 2019-03-15 中国海洋大学 自适应多制式水声通信系统及方法
CN110336595A (zh) * 2019-07-09 2019-10-15 哈尔滨工程大学 一种移动多输入多输出水声通信方法
CN111711493A (zh) * 2020-06-16 2020-09-25 中国电子科技集团公司第三研究所 具有加密解密能力的水下通信设备及发射器和接收器

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107454031B (zh) * 2017-07-24 2020-12-22 哈尔滨工程大学 一种基于分组信噪比置信度的ofdm-mfsk水声通信技术
CN107454031A (zh) * 2017-07-24 2017-12-08 哈尔滨工程大学 一种基于分组信噪比置信度的ofdm‑mfsk水声通信技术
CN107483120A (zh) * 2017-09-13 2017-12-15 厦门大学 水声信号采集与处理系统
CN107483120B (zh) * 2017-09-13 2023-08-01 厦门大学 水声信号采集与处理系统
CN107579782A (zh) * 2017-09-28 2018-01-12 燕山大学 一种具有跨介质通信能力的水声调制解调器
CN107579782B (zh) * 2017-09-28 2021-05-28 燕山大学 一种具有跨介质通信能力的水声调制解调器及调制方法
CN108650007A (zh) * 2018-05-03 2018-10-12 西安交通大学 一种基于空频自适应滤波的高可靠信道均衡方法
CN108650007B (zh) * 2018-05-03 2020-10-27 西安交通大学 一种基于空频自适应滤波的高可靠信道均衡方法
CN109474304A (zh) * 2018-11-29 2019-03-15 中国海洋大学 自适应多制式水声通信系统及方法
CN110336595A (zh) * 2019-07-09 2019-10-15 哈尔滨工程大学 一种移动多输入多输出水声通信方法
CN110336595B (zh) * 2019-07-09 2021-07-16 哈尔滨工程大学 一种移动多输入多输出水声通信方法
CN111711493A (zh) * 2020-06-16 2020-09-25 中国电子科技集团公司第三研究所 具有加密解密能力的水下通信设备及发射器和接收器
CN111711493B (zh) * 2020-06-16 2022-03-11 中国电子科技集团公司第三研究所 具有加密解密能力的水下通信设备及发射器和接收器

Similar Documents

Publication Publication Date Title
CN205864457U (zh) 一种频域分集水声通信调制解调器
KR100893736B1 (ko) 광대역 단일 반송파 이동통신용 채널 사운딩 시스템 및방법
US6421401B1 (en) Method and apparatus for achieving and maintaining symbol synchronization particularly in an OFDM system
CN109450486B (zh) 异步同时同频全双工水声通信系统数字自干扰抵消方法
CN103944848B (zh) 基于线性调频的水声抗多普勒多载波调制解调方法和装置
WO2001099362A8 (en) Sliding-window processing for the reception of multicarrier signals
RU2012120082A (ru) Устройство и способ для передачи данных в низкочастотной полосе в системе связи при помощи человеческого тела и система связи при помощи человеческого тела
CN103618686B (zh) 水声ofdm多普勒因子精确估计方法
CN104735017B (zh) 一种非正交多载波数字调制与解调方法及装置
CN102318305B (zh) 处理光正交频分复用信号的方法、装置和系统
CN108063657B (zh) 基于压缩感知的随钻测井数据nc-ofdm声波传输方法
WO2017174003A1 (zh) 定时同步方法和装置
CN101394385B (zh) 基于时域处理联合信道估计的提高正交频分复用系统性能的方法
CN103973619A (zh) 一种采用时频域联合的单载波调制的信号传输方法
CN101567870B (zh) 信道响应起始位置、峰值位置和结束位置检测方法及装置
CN108111455B (zh) 基于压缩感知的随钻测井数据v-ofdm声波传输方法
CN102377726B (zh) Ofdm系统的定时同步方法
CN203827380U (zh) 基于线性调频的水声抗多普勒多载波调制解调装置
CN105515711B (zh) 联合压缩感知与接收分集的测距仪干扰抑制系统
CN100563232C (zh) 一种多载波系统的离散导频信号发送方法
CN1980114A (zh) 一种信道估计的发射、接收装置及其方法
CN109302240A (zh) 基于双选择衰落信道的低复杂度osdm串行均衡方法
CN102832964A (zh) 多频带ds-mfsk调制解调器
CN103647736A (zh) 一种双通信体制水声Modem及其实现方法
CN110768719B (zh) 一种双路水下可见光通信系统及通信方法

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170104

Termination date: 20170427