CN205741036U - 一种检测含SSeC基因鼠伤寒沙门氏菌纳米生物传感器 - Google Patents

一种检测含SSeC基因鼠伤寒沙门氏菌纳米生物传感器 Download PDF

Info

Publication number
CN205741036U
CN205741036U CN201620478605.6U CN201620478605U CN205741036U CN 205741036 U CN205741036 U CN 205741036U CN 201620478605 U CN201620478605 U CN 201620478605U CN 205741036 U CN205741036 U CN 205741036U
Authority
CN
China
Prior art keywords
fam
ssec
detection
biosensor
salmonella typhi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201620478605.6U
Other languages
English (en)
Inventor
贺气志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changsha Medical University
Original Assignee
Changsha Medical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changsha Medical University filed Critical Changsha Medical University
Priority to CN201620478605.6U priority Critical patent/CN205741036U/zh
Application granted granted Critical
Publication of CN205741036U publication Critical patent/CN205741036U/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本实用新型提供了一种检测含SSeC基因鼠伤寒沙门氏菌纳米生物传感器,该生物传感器基于氧化石墨烯(GO)的非共价偶联核酸分子和强大的荧光猝灭的特性,通过在氧化石墨烯的表面上非共价键偶联羧基荧光素(FAM)标记的核酸探针(FAM‑P)而构建,简称为FAM‑P/GO生物传感器。本实用新型提供的FAM‑P/GO生物传感器在加入靶标后,靶标序列通过竞争与探针序列通过互补配对形成双链,使得探针从氧化石墨烯表面解离下来,体系荧光得以恢复;且靶标序列浓度越大,荧光值越强。本实用新型提供的FAM‑P/GO生物传感器操作简单、检测精确、灵敏度高、特异性好,且能够定量检测含SSeC基因鼠伤寒沙门氏菌的浓度。

Description

一种检测含SSeC基因鼠伤寒沙门氏菌纳米生物传感器
技术领域
本实用新型涉及生物传感器技术领域,更为具体地说,涉及一种检测含SSeC基因鼠伤寒沙门氏菌纳米生物传感器。
背景技术
鼠伤寒沙门氏菌(S.typhimurium)是一种常见的人畜共患病原菌,其致病机制与菌体的毒力岛基因表达分泌的毒素和毒力蛋白有关。鼠伤寒沙门氏菌的毒力岛基因为SSeC基因,SSeC基因位于毒力岛-2(SPI-2)上,且序列十分保守,SSeC基因编码表达的毒素蛋白能够引起机体发生器官功能障碍等症状,因此SSeC基因可以作为检测鼠伤寒沙门氏菌的一个重要标记物。
目前,鼠伤寒沙门氏菌的检测方法有传统的微生物培养检测法、生化鉴定法,以分子生物学为基础的快速检测方法以及以免疫学为基础的检测技术,其中,以分子生物学为基础的快速检测方法包括聚合酶链式反应(PCR)、基因芯片技术等,以免疫学为基础的检测技术包括酶联免疫吸附试验(ELISA)、同位素标记抗体、免疫荧光法、免疫磁性分离技术、自动酶标免疫检测仪等,上述检测方法包含了微生物培养、核酸分析、抗原-抗体反应等技术。但是,微生物培养检测法、生化鉴定法等传统检测方法存在耗时长、灵敏度低、检测准确度低等的缺点;ELISA和PCR等方法虽然检测速度快,但存在操作繁琐、易被污染、对设备要求高等的缺点,而且检测的特异性也不是很理想,无法满足现代临床和食品的快速检测的要求。
为应对上述缺点,近年来,检测鼠伤寒沙门氏菌的方法出现了生物传感器检测法。生物传感器由具有生物活性的识别原件和信号转换器组成,生物活性物质通常包括酶、抗原-抗体、适配体等。由于生物传感器具有高度自动化、微型化、能在复杂的体系中进行实时监测等的功能,因而在制药、食品、化工、生物医学、临床检验等方面带来了巨大的经济效益和广泛的应用前景。然而大多数的纳米生物传感器由于存在灵敏度低、特异性差、检测范围窄的缺点,限制了纳米生物传感器的大范围使用。
实用新型内容
本实用新型的目的是提供一种检测含SSeC基因鼠伤寒沙门氏菌纳米生物传感器,利用纳米氧化石墨烯对单链DNA的吸附及荧光猝灭性构建荧光探针,进而实现对含SSeC基因鼠伤寒沙门氏菌的快速检测,且灵敏度高、特异性好、检测范围宽。
为了解决上述技术问题,本实用新型提供如下技术方案:
一种检测含SSeC基因鼠伤寒沙门氏菌纳米生物传感器,所述生物传感器包括氧化石墨烯和荧光标记的核酸探针,其中,所述氧化石墨烯为载体,所述荧光标记的核酸探针位于所述氧化石墨烯的表面上,所述荧光标记的核酸探针为所述SSeC基因序列的互补链序列。
优选地,所述荧光标记的核酸探针通过非共价键结合在所述氧化石墨烯的表面上。
优选地,所述非共价键为π-π共价键。
优选地,所述荧光标记的核酸探针的基因序列为6-FAM-GCCTCCTCTGCCATCTCATTCG。
一种检测含SSeC基因鼠伤寒沙门氏菌纳米生物传感器,所述生物传感器包括氧化石墨烯和荧光标记的核酸探针,其中,所述氧化石墨烯为载体,所述荧光标记的核酸探针位于所述氧化石墨烯的表面上,所述荧光标记的核酸探针为所述SSeC基因序列的互补链序列。本实用新型提供的检测含SSeC基因鼠伤寒沙门氏菌纳米生物传感器通过以氧化石墨烯为载体,基于氧化石墨烯的非共价偶联核酸分子和猝灭荧光的特性,已荧光标记的核酸探针设置在氧化石墨烯的表面上,从而得到检测含SSeC基因鼠伤寒沙门氏菌纳米生物传感器。本实用新型提供的生物传感器处于非检测状态时,由于氧化石墨烯和荧光标记的核酸探针之间的距离很小,因此,生物传感器中发生能量共振转移,进而荧光猝灭;当生物传感器处于检测状态时,即生物传感器中加入待检测样品的单链DNA时,单链DNA会与荧光标记的核酸探针互补形成双链DNA,从而双链DNA从氧化石墨烯的表面游离下来,进而恢复荧光,通过检测荧光值就能够得知待检测样品中含SSeC基因鼠伤寒沙门氏菌的浓度。本实用新型提供的检测含SSeC基因鼠伤寒沙门氏菌纳米生物传感器具有操作简单、检测精确、检测下限低、灵敏度高、特异性好的特点,且能够定量检测含SSeC基因鼠伤寒沙门氏菌的浓度。
附图说明
为了更清楚地说明本实用新型实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1是本实用新型实施例提供的检测含SSeC基因鼠伤寒沙门氏菌纳米生物传感器的结构示意图;
图2是本实用新型实施例提供的检测含SSeC基因鼠伤寒沙门氏菌纳米生物传感器的氧化石墨烯与荧光标记的核酸探针的浓度优化图;
图3是本实用新型实施例提供的检测含SSeC基因鼠伤寒沙门氏菌纳米生物传感器检测待测样品灵敏度的线性曲线图;
图4是本实用新型实施例提供的检测含SSeC基因鼠伤寒沙门氏菌纳米生物传感器检测待测样品时特异性的图谱。
具体实施方式
本实用新型的目的是提供检测含SSeC基因鼠伤寒沙门氏菌纳米生物传感器,利用纳米氧化石墨烯对单链DNA的吸附及荧光猝灭性构建荧光探针,进而实现对含SSeC基因鼠伤寒沙门氏菌的快速检测。
为了使本技术领域的人员更好地理解本实用新型实施例中的技术方案,并使本实用新型实施例的上述目的、特征和优点能够更加明显易懂,下面结合附图对本实用新型实施例中的技术方案作进一步详细的说明。
本实用新型提供了一种检测含SSeC基因鼠伤寒沙门氏菌纳米生物传感器,所述生物传感器包括氧化石墨烯1(graphene oxide,GO)和荧光标记的核酸探针2(FAM-P),其中,所述氧化石墨烯1为载体,所述荧光标记的核酸探针2位于所述氧化石墨烯1的表面上,所述荧光标记的核酸探针2为所述SSeC基因序列的互补链序列。
具体的,本实用新型提供的检测含SSeC基因鼠伤寒沙门氏菌纳米生物传感器简称为FAM-P/GO生物传感器,GO1为纳米材料,FAM-P2为羧基荧光素(carboxy-fluorescein,FAM)标记的核酸。附图1示出了本实用新型实施例提供的FAM-P/GO生物传感器的结构示意图。本实用新型提供的FAM-P/GO生物传感器包含有GO1和FAM-P2两个部分,GO1为载体,FAM-P2分布在GO1的表面上,优选地,FAM-P2均匀地分布在GO1的表面上。FAM-P2通过非共价键偶联在GO1的表面上,其中,该非共价键为π-π共价键结合,即FAM-P2通过π-π共价键结合在GO1的表面上。
本实用新型提供的FAM-P/GO生物传感器的检测原理为:基于GO1的非共价偶联核酸分子和猝灭荧光的特性,在GO1的表面引入FAM-P2。具体为:当FAM-P/GO生物传感器处于非检测状态时,即没有加入靶标DNA时,FAM-P2呈自由卷曲状态,由于FAM-P2位于GO1的表面上,FAM-P2和GO1之间的距离很小,因此,FAM-P/GO生物传感器中发生能量共振转移,进而荧光猝灭,检测不到荧光值;当FAM-P/GO生物传感器处于检测状态时,即FAM-P/GO生物传感器中加入待检测样品的单链DNA(single-stranded DNA,ssDNA)时,即加入靶标DNA时,靶标DNA的ssDNA会与FAM-P2互补形成双链DNA(double-stranded DNA,dsDNA),由于形成dsDNA时的结合力大于GO1和FAM-P2之间的非共价键力,因此,dsDNA能够从GO1的表面游离下来,进而恢复荧光,最后通过检测荧光值就能够得知待检测样品中含SSeC基因鼠伤寒沙门氏菌的浓度,检测精确,操作简单。
基于上述原理,加入的靶标DNA越多,形成的双链也就越多,荧光回复也就越强,进而能够定量检测含SSeC基因鼠伤寒沙门氏菌的浓度,同时,本实用新型提供的FAM-P/GO生物传感器还具有检测下限低、灵敏度高的特点。
进一步,SSeC基因序列为5’-CGAATGAGATGGCAGAGGAGGC-3’,由于FAM-P的基因序列为SSeC基因序列的互补链序列,则FAM-P的基因序列为6-FAM-GCCTCCTCTGCCATCTCATTCG。
由于荧光共振能量转移受纳米材料GO1和FAM-P2比例的影响很大,同时,为使本实用新型实施例提供的FAM-P/GO生物传感器具有灵敏的检测性能及检测极低浓度的含SSeC基因鼠伤寒沙门氏菌的性能,本实用新型实施例提供了FAM-P/GO生物传感器供受比例优化的研究,即研究GO1的表面上设置多少FAM-P2时,FAM-P/GO生物传感器具有最优的效益,具体研究内容为:
设定FAM-P/GO生物传感器体系中FAM-P2溶液的浓度恒定为50nM,考察GO1溶液浓度分别为0.02mg/mL、0.04mg/mL、0.05mg/mL、0.06mg/mL、0.07mg/mL、0.08mg/mL、0.09mg/mL时的荧光值。具体实施过程为:在一定体积的FAM-P2溶液中分别加入超声处理后的不同浓度的GO1溶液形成混合液,上述混合液在温度为95℃的条件下变性处理5min,并用磷酸缓冲盐溶液(phosphate buffer saline,PBS)稀释至100ul形成复合溶液,该复合溶液充分混合并在37℃下静置15min,检测各荧光值。在进行荧光值检测时,设置激发波长为480nm,发射波长517nm,测定复合溶液荧光值F和原始荧光值F0,通过GO1溶液浓度与荧光相对值F/F0-1之间的关系得知FAM-P2溶液的浓度为50nM时,与FAM-P2相配合的GO1溶液的最佳浓度,具体请参考附图2。
附图2示出了本实用新型实施例提供的FAM-P/GO生物传感器体系中FAM-P2与GO1的浓度优化图。从附图2中能够看出,随着GO1浓度的不断增大,FAM-P/GO生物传感器体系的荧光相对值F/F0-1不断升高,这表明随着GO1浓度的增大荧光值呈显著下降的趋势,当GO1浓度达到0.05mg/mL及以上时,荧光相对值F/F0-1几乎不变且接近于1.0,而且超过95%的FAM-P2的荧光被GO1猝灭,由此能够表明FAM-P/GO生物传感器体系中FAM-P2已经完全结合到GO1表面,溶液中不存在游离的FAM-P2,背景值低,此时,FAM-P2溶液的浓度为50nM,与FAM-P2相配合的GO1溶液的最佳浓度为0.05mg/mL。
本实用新型实施例还提供了FAM-P/GO生物传感器检测待测样品灵敏度的实验研究, 具体内容为:将鼠伤寒沙门氏菌在温度为37℃的条件下培养24h,经平板计数后,制备浓度分别为103CFU/mL、104CFU/mL、105CFU/mL、106CFU/mL、107CFU/mL和108CFU/mL的菌体,将上述不同浓度的菌体放置于95℃的水浴中15min,然后放置冰上10min以获取相应的ssDNA,将所获得的ssDNA分别加入配置好的FAM-P/GO生物传感器体系中,在温度为37℃的条件下孵育30min,最后分别检测各体系的荧光值,并根据所测得的各体系的荧光值与菌体浓度的对数绘制线性曲线,线性曲线结果具体请参考附图3。
附图3示出了本实用新型实施例提供的FAM-P/GO生物传感器检测待测样品灵敏度的线性曲线图。从附图3中能够得知,随着菌体浓度的不断增大,荧光值显著增大,且在上述浓度范围内荧光值与菌体浓度的对数呈现良好的线性关系,荧光值与菌体浓度的对数的线性方程为Y=29.192X-45.239,线性相关系数为0.9987,由此能够说明,FAM-P/GO生物传感器体系能够检测到菌体的下限为103CFU/mL,进而说明本实用新型实施例提供的FAM-P/GO生物传感器在检测待检样品时具有很高的灵敏度,且能够检测到较低浓度的菌体。
进一步,本实用新型实施例还提供了FAM-P/GO生物传感器检测待测样品特异性的实验研究,具体研究内容为:将20种不同菌体的ssDNA,均配置成浓度为5×107CFU/ml的溶液,其中,20种不同菌体为1-鼠伤寒沙门氏菌;2-甲型副伤寒沙门氏菌;3-肠炎沙门菌;4-猪霍乱沙门氏菌;5-志贺氏菌;6-金黄色葡萄球菌;7-大肠杆菌K88;8-变形杆菌;9-副溶血性弧菌;10-溶血性弧菌;11-李斯特菌;12-空肠弯曲菌;13-嗜热链球菌;14-枯草杆菌;15-地衣芽孢杆菌;16-嗜热双歧杆菌;17-长双歧杆菌;18-短双歧杆菌19-嗜酸乳杆菌、20-干酪乳杆菌,上述菌体均可以采用外购菌体。设置不加菌体的ssDNA为空白组,即为图4中的21组,将空白组与上述20种不同菌体的ssDNA分别加入配置好的FAM-P/GO生物传感器体系中,在温度为37℃的条件下孵育30min,然后分别测量荧光值,并以各菌体的排列为横坐标、荧光值为纵坐标绘制特异性图谱,具体结果请参考附图4。
附图4示出了本实用新型实施例提供的FAM-P/GO生物传感器检测待测样品时特异性的图谱。从附图4中能够得知,1号菌体的荧光值显著增加且明显高于其余20组菌体的荧光值,2-4号的其余种类的沙门氏菌由于其序列存在一定的同源性而产生部分荧光,但其荧光值远远低于1号菌体的荧光值,其他种类的菌体及空白组的荧光值更低,由此能够说明,本实用新型实施例提供的FAM-P/GO生物传感器在检测待检样品时具有很好的特异性。
由上述检测内容及描述能够得知,本实用新型实施例提供的FAM-P/GO生物传感器具有检测下限低、灵敏度高、特异性好的特点,且能够定量检测含SSeC基因鼠伤寒沙门 氏菌的浓度。
虽然已经以具体实施例的方式描述了本实用新型,但是对于本领域技术人员来说,在不脱离所附权利要求书所限定的本实用新型的精神和范围的情况下,可以对本实用新型进行各种变化和修改,这些变化和修改同样包括在本实用新型的范围内。

Claims (4)

1.一种检测含SSeC基因鼠伤寒沙门氏菌纳米生物传感器,其特征在于,所述生物传感器包括氧化石墨烯(1)和荧光标记的核酸探针(2),其中,所述氧化石墨烯(1)为载体,所述荧光标记的核酸探针(2)位于所述氧化石墨烯(1)的表面上,所述荧光标记的核酸探针(2)为所述SSeC基因序列的互补链序列。
2.根据权利要求1所述的检测含SSeC基因鼠伤寒沙门氏菌纳米生物传感器,其特征在于,所述荧光标记的核酸探针(2)通过非共价键偶联在所述氧化石墨烯(1)的表面上。
3.根据权利要求2所述的检测含SSeC基因鼠伤寒沙门氏菌纳米生物传感器,其特征在于,所述非共价键为π-π共价键。
4.根据权利要求1所述的检测含SSeC基因鼠伤寒沙门氏菌纳米生物传感器,其特征在于,所述荧光标记的核酸探针的基因序列为6-FAM-GCCTCCTCTG CCATCTCATTCG。
CN201620478605.6U 2016-05-24 2016-05-24 一种检测含SSeC基因鼠伤寒沙门氏菌纳米生物传感器 Expired - Fee Related CN205741036U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201620478605.6U CN205741036U (zh) 2016-05-24 2016-05-24 一种检测含SSeC基因鼠伤寒沙门氏菌纳米生物传感器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201620478605.6U CN205741036U (zh) 2016-05-24 2016-05-24 一种检测含SSeC基因鼠伤寒沙门氏菌纳米生物传感器

Publications (1)

Publication Number Publication Date
CN205741036U true CN205741036U (zh) 2016-11-30

Family

ID=57362855

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201620478605.6U Expired - Fee Related CN205741036U (zh) 2016-05-24 2016-05-24 一种检测含SSeC基因鼠伤寒沙门氏菌纳米生物传感器

Country Status (1)

Country Link
CN (1) CN205741036U (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105861295A (zh) * 2016-05-24 2016-08-17 长沙医学院 一种检测鼠伤寒沙门氏菌的生物传感器及制备、检测方法
CN112255397A (zh) * 2020-10-16 2021-01-22 吉林大学 一种检测单核细胞增多性李斯特菌、副溶血性弧菌和鼠伤寒沙门菌的试剂盒及其制备方法
CN112275335A (zh) * 2020-10-16 2021-01-29 吉林大学 一种自吸阀区隔式芯片、制备方法及单增李斯特菌的检测方法
CN113005026A (zh) * 2020-06-17 2021-06-22 山东大学 一种基因检测芯片及检测方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105861295A (zh) * 2016-05-24 2016-08-17 长沙医学院 一种检测鼠伤寒沙门氏菌的生物传感器及制备、检测方法
CN113005026A (zh) * 2020-06-17 2021-06-22 山东大学 一种基因检测芯片及检测方法
CN112255397A (zh) * 2020-10-16 2021-01-22 吉林大学 一种检测单核细胞增多性李斯特菌、副溶血性弧菌和鼠伤寒沙门菌的试剂盒及其制备方法
CN112275335A (zh) * 2020-10-16 2021-01-29 吉林大学 一种自吸阀区隔式芯片、制备方法及单增李斯特菌的检测方法

Similar Documents

Publication Publication Date Title
Soni et al. Biosensor for the detection of Listeria monocytogenes: emerging trends
CN205741036U (zh) 一种检测含SSeC基因鼠伤寒沙门氏菌纳米生物传感器
Gill et al. Nanomaterial-based optical and electrochemical techniques for detection of methicillin-resistant Staphylococcus aureus: a review
Waswa et al. Direct detection of E. coli O157: H7 in selected food systems by a surface plasmon resonance biosensor
CN105861295A (zh) 一种检测鼠伤寒沙门氏菌的生物传感器及制备、检测方法
Tokarskyy et al. Immunosensors for rapid detection of Escherichia coli O157: H7—Perspectives for use in the meat processing industry
CA2511372C (en) Methods, compositions and kits for biomarker extraction
Lim et al. The potential of electrochemistry for the detection of coronavirus-induced infections
Wu et al. Recent trends in the detection of pathogenic Escherichia coli O157: H7
CN107084966A (zh) 一种心肌肌钙蛋白i的高灵敏定量检测方法
CN103436602B (zh) 双重分子信标-lamp法同时检测金黄色葡萄球菌基因和大肠杆菌基因的试剂盒及方法
Xia et al. Methods for the detection and characterization of Streptococcus suis: from conventional bacterial culture methods to immunosensors
Nesakumar et al. Principles and recent advances in biosensors for pathogens detection
CN102384974B (zh) 一种过渡金属氧化物的应用
CN104561275A (zh) 一种副溶血性弧菌的恒温扩增检测试剂盒及检测方法
Asghar et al. Advancements in testing strategies for COVID-19
Khatami et al. Aptamer-based biosensors for Pseudomonas aeruginosa detection
Sosnowski et al. The future of microbiome analysis: Biosensor methods for big data collection and clinical diagnostics
CN107502653A (zh) 一种检测凝血酶蛋白浓度的方法
CN107022612A (zh) 一种金黄色葡萄球菌的检测方法
CN102936625B (zh) 一种用于副溶血性弧菌分子分型的分子马达生物传感器试剂盒
Qu et al. 16S rRNA‐functionalized multi‐HCR concatemers in a signal amplification nanostructure for visual detection of Salmonella
CN104630328A (zh) 肺炎支原体23S rRNA 2064位点A:G突变检测特异性引物和探针
CN206828549U (zh) 一种检测含tst基因金黄色葡萄球菌的纳米生物传感器
CN102912021B (zh) 一种用于分子马达生物传感器技术的沙门氏菌分子分型试剂盒

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20161130

Termination date: 20210524