CN204834631U - Adopt slot field effect to realize device structure of self -adaptation field by technique - Google Patents

Adopt slot field effect to realize device structure of self -adaptation field by technique Download PDF

Info

Publication number
CN204834631U
CN204834631U CN201520633002.4U CN201520633002U CN204834631U CN 204834631 U CN204834631 U CN 204834631U CN 201520633002 U CN201520633002 U CN 201520633002U CN 204834631 U CN204834631 U CN 204834631U
Authority
CN
China
Prior art keywords
groove
field
effect
current potential
device architecture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201520633002.4U
Other languages
Chinese (zh)
Inventor
胡强
蒋兴莉
孔梓玮
王思亮
张世勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dongfang Electric Corp
Original Assignee
Dongfang Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dongfang Electric Corp filed Critical Dongfang Electric Corp
Priority to CN201520633002.4U priority Critical patent/CN204834631U/en
Application granted granted Critical
Publication of CN204834631U publication Critical patent/CN204834631U/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)

Abstract

The utility model relates to a semiconductor device field specifically is an adopt slot field effect to realize device structure of self -adaptation field by technique, including the metallic conduction layer, the one side on metallic conduction layer is provided with the substrate, is provided with a plurality of slots on the substrate, and one side of substrate is provided with the depletion region, and depletion region one side is provided with current potential V1, is provided with current potential V2 on the metallic conduction layer of slot one side, each ditch inslot is provided with the slot conductive filler the lateral wall and the bottom of slot are provided with the insulating layer, form interconnect's induced charge concentration enhancement region between each slot. The utility model discloses a realize what ended the field through device structure design, limited, the pyroprocess of intrinsic diffusion depth of thoroughly having broken away from the doping method that prior art adopted influences other structures of device and technology shortcoming such as limited. And the utility model provides a that field effect through the slot realizes that this effect has the adaptive characteristic of reinforcing along with the electric field reinforcing by the function.

Description

A kind of device architecture adopting trench field-effect to realize adaptive field cut-off technology
Technical field
The utility model relates to field of semiconductor devices, is specially a kind of device architecture adopting trench field-effect to realize adaptive field cut-off technology.
Background technology
In the process of power semiconductor development, higher withstand voltage and introduce field cut-off technology in order to realize on thinner chip.Field cut-off realizes with the form of high-concentration dopant usually, and after making the border Receiving yaxd cutoff layer of depletion region, electric field decays to zero rapidly, thus avoids depletion region break-through to cause puncturing.Cut-off technology in field is common in diode, triode, metal-oxide-semiconductor and insulated gate bipolar transistor etc.
According to electrostatic field Poisson's equation
for electromotive force, for charge density, for permittivity of vacuum, for relative dielectric constant.
Electric field strength decays with the increase of concentration of electric charges, and therefore the concentration of electric charges in certain region increases, and just can accelerate the rate of decay of electric field in this region.The method that tradition improves concentration of electric charges improves doping content, and doping realizes by spreading or inject to increase temperature usually.There are two shortcomings in this method, one is that diffusion depth is limited, and two is containing pyroprocess.As phosphorus spreads 7 microns in silicon, about need to spread 400 minutes under the high temperature of 1150 degrees Celsius, this can produce serious influence to other structures of device, and produces very large restriction to technique.
Semiconductor application so far, many experts and scholar are all devoted to improve the problems referred to above, selected, realize darker high-concentration dopant at lower temperatures by different impurity, as selected seleno to replace P elements to adulterate as N-shaped in N-shaped silicon, because selenium has larger diffusion coefficient than phosphorus; And for example utilize H+implantation, because protonatomic mass is little, the injection degree of depth is larger.But said method could not break away from the method for doping all the time, does not tackle the problem at its root.
Existing patent such as number of patent application is 201010164106.7, the applying date is 2010-05-06, name is called the patent of invention of " a kind of non-punch-through deep trench IGBT and manufacture method thereof with field stop structure ", and its technical scheme is as follows: the invention discloses a kind of non-punch-through deep trench IGBT and the manufacture method thereof with field stop structure.This IGBT is equivalent to a NMOS field effect transistor and drives a PNP bipolar transistor, or a PMOS field effect transistor drives a npn bipolar transistor.NMOS tube in this invention or PMOS achieve vertical gate and vertical-channel by deep trench processes, and adopt high withstand voltage trenched grid technique technology; NMOS tube or PMOS, PNP pipe or NPN pipe are directly made on polished silicon slice, form non-punch IGBT structure; The base of PNP pipe or NPN pipe by ion implantation or diffuse to form one and have identical doping type with base, has the field cutoff layer of more high-dopant concentration near the position of collector region than base.
Field cut-off method in above-mentioned documents uses traditional doping method, namely introduces a cutoff layer by the mode of ion implantation or diffusion.Above we have mentioned this conventional method and there are two shortcomings, and one is that diffusion depth is limited, and two is containing pyroprocess.As phosphorus spreads 7 microns in silicon, about need to spread 400 minutes under the high temperature of 1150 degrees Celsius, this can produce serious influence to other structures of device, and produces very large restriction to technique.
Utility model content
In order to solve the problem, the utility model proposes a kind of device architecture adopting trench field-effect to realize adaptive field cut-off technology.
For realizing above-mentioned utility model object, concrete scheme of the present utility model is as follows:
A kind of device architecture adopting trench field-effect to realize adaptive field cut-off technology, it is characterized in that: comprise metal conducting layer, the side of described metal conducting layer is provided with substrate, described substrate is provided with multiple groove, the side of described substrate is provided with depletion region, side, described depletion region is provided with current potential V1, the metal conducting layer of groove side is provided with current potential V2; Be provided with groove conductive filler in each groove, the sidewall of described groove and channel bottom be provided with insulating barrier, between each groove, form interconnective charge inducing concentration enhancement region.
Described substrate comprises silicon, carborundum, gallium nitride, GaAs or diamond, and the conduction type of described substrate is P type or N-type.
Described metal conducting layer comprises polysilicon, aluminium, silver, copper, titanium, nickel, molybdenum, gold or its alloy.
Described groove conductive filler comprises polysilicon, aluminium, silver, copper, titanium, nickel, molybdenum, gold or its alloy.
Described insulating barrier comprises silica, silicon nitride, tantalum oxide or zirconia.
Described depletion region is PN junction or schottky junction.
Described substrate is n type material, described current potential V2> current potential V1.
Described substrate is P-type material, described current potential V2< current potential V1.
The width of each charge inducing concentration enhancement region all identical, part is identical or all different.
The cross section of described groove is trapezoidal or rectangle, and channel bottom is straight line or camber line, and groove opening width is 0.5um-3um, and trench bottom width is 0.5um-3um, and groove is spaced apart 0.5um-1.5um, and gash depth is 2um-20um.
The utility model has the advantage of:
1, cut-off technology in field of the present utility model is a kind of mechanism completely newly, is different from existing conventional field cut-off technology.The utility model realizes field cut-off by device structure design, the shortcoming such as thoroughly broken away from that the intrinsic diffusion depth of doping method that prior art adopts is limited, pyroprocess affects other structures of device and technique is limited.And the field cutoff function described in the utility model is realized by the field effect of groove, and this effect has the adaptive characteristic strengthened with electric-field enhancing.
2, for background technology Patent file, what the utility model adopted is a kind of adaptive field cut-off technology utilizing trench field-effect to realize, and does not namely need doping process, only needs to make groove at the device back side and can introduce a cutoff layer.The method avoids the above-mentioned inherent shortcoming of Traditional dopant method, and technique is consistent with the front technique of conventional groove type IGBT, does not need to introduce new technology.
Accompanying drawing explanation
Fig. 1 is basic block diagram of the present utility model, and wherein groove pitch is identical.
Fig. 2 is basic block diagram of the present utility model, and wherein groove pitch is incomplete same.
Fig. 3 is trench cross section pattern schematic diagram.
Fig. 4 is the carrier concentration profile schematic diagram between groove.
Fig. 5 is the field cut-off effect schematic diagram of cut-off technology in field described in the utility model.
Fig. 6 is the structure chart of embodiment 8.
In accompanying drawing: 100 is substrates, 101 is metal conducting layers, and 102 is groove conductive fillers, and 103 is insulating barriers, and 104 is charge inducing concentration enhancement regions, and 105 is depletion regions, and 1031 is channel bottoms.
Embodiment
Embodiment 1
A kind of device architecture adopting trench field-effect to realize adaptive field cut-off technology comprises metal conducting layer 101, the side of described metal conducting layer 101 is provided with substrate 100, described substrate 100 is provided with multiple groove, the side of described substrate 100 is provided with depletion region 105, side, described depletion region 105 is provided with current potential V1, and the metal conducting layer 101 of groove side is provided with current potential V2; Be provided with groove conductive filler 102 in each groove, the sidewall of described groove and bottom 1031 be provided with insulating barrier 103, between each groove, form interconnective charge inducing concentration enhancement region 104.The width of each charge inducing concentration enhancement region 104, each charge inducing concentration enhancement region 104 be respectively a1, a2 ..., an, wherein n represents the quantity of charge inducing concentration enhancement region 104.Interconnective charge inducing concentration enhancement region 104 refers to that one end of each charge inducing concentration enhancement region 104 is interconnected.
Cut-off technology in field of the present utility model is a kind of mechanism completely newly, is different from existing conventional field cut-off technology.The utility model realizes field cut-off by device structure design, the shortcoming such as thoroughly broken away from that the intrinsic diffusion depth of doping method that prior art adopts is limited, pyroprocess affects other structures of device and technique is limited.And the field cutoff function described in the utility model is realized by the field effect of groove, and this effect has the adaptive characteristic strengthened with electric-field enhancing.
Embodiment 2
A kind of device architecture adopting trench field-effect to realize adaptive field cut-off technology comprises metal conducting layer 101, the side of described metal conducting layer 101 is provided with substrate 100, described substrate 100 is provided with multiple groove, the side of described substrate 100 is provided with depletion region 105, side, described depletion region 105 is provided with current potential V1, and the metal conducting layer 101 of groove side is provided with current potential V2; Groove conductive filler 102 is provided with in each groove, described trenched side-wall and channel bottom 1031 are provided with insulating barrier 103, interconnective charge inducing concentration enhancement region 104 is formed between each groove, the width of each charge inducing concentration enhancement region 104 be respectively a1, a2 ..., an, wherein n represents the quantity of charge inducing concentration enhancement region 104.
Substrate 100 comprises silicon, carborundum, gallium nitride, GaAs or diamond, and the conduction type of described substrate 100 is P type or N-type.
Metal conducting layer 101 comprises polysilicon, aluminium, silver, copper, titanium, nickel, molybdenum, gold or its alloy, and alloy here specifically refers to states the alloy that material is base above.
Described groove conductive filler 102 comprises polysilicon, aluminium, silver, copper, titanium, nickel, molybdenum, gold or its alloy, and alloy here specifically refers to states the alloy that material is base above.
Described insulating barrier 103 comprises silica, silicon nitride, tantalum oxide or zirconia.
Described depletion region 105 is PN junction or schottky junction.
When described substrate 100 is n type material, described current potential V2> current potential V1.
When described substrate 100 is P-type material, described current potential V2< current potential V1.
The width of each charge inducing concentration enhancement region 104 all identical, part is identical or all different.
The cross section of described groove is trapezoidal or rectangle, and channel bottom 1031 is straight line or camber line, and groove opening width is 0.5um-3um, and channel bottom 1031 width is 0.5um-3um, and groove is spaced apart 0.5um-1.5um, and gash depth is 2um-20um.
Cut-off technology in field of the present utility model is a kind of mechanism completely newly, is different from existing conventional field cut-off technology.The utility model realizes field cut-off by device structure design, the shortcoming such as thoroughly broken away from that the intrinsic diffusion depth of doping method that prior art adopts is limited, pyroprocess affects other structures of device and technique is limited.And the field cutoff function described in the utility model is realized by the field effect of groove, and this effect has the adaptive characteristic strengthened with electric-field enhancing.For background technology Patent file, what the utility model adopted is a kind of adaptive field cut-off technology utilizing trench field-effect to realize, and does not namely need doping process, only needs to make groove at the device back side and can introduce a cutoff layer.The method avoids the above-mentioned inherent shortcoming of Traditional dopant method, and technique is consistent with the front technique of conventional groove type IGBT, does not need to introduce new technology.
Embodiment 3
A kind of device architecture adopting trench field-effect to realize adaptive field cut-off technology comprises metal conducting layer 101, the side of described metal conducting layer 101 is provided with substrate 100, described substrate 100 is provided with multiple groove, the side of described substrate 100 is provided with depletion region 105, side, described depletion region 105 is provided with current potential V1, and the metal conducting layer 101 of groove side is provided with current potential V2; Be provided with groove conductive filler 102 in each groove, described trenched side-wall and channel bottom 1031 are provided with insulating barrier 103, between each groove, form interconnective charge inducing concentration enhancement region 104.The width of each charge inducing concentration enhancement region 104 be respectively a1, a2 ..., an, wherein n represents the quantity of charge inducing concentration enhancement region 104.
Substrate 100 comprises silicon, carborundum, gallium nitride, GaAs or diamond, and the conduction type of described substrate 100 is P type or N-type.Metal conducting layer 101 comprises polysilicon, aluminium, silver, copper, titanium, nickel, molybdenum, gold or its alloy, and alloy here specifically refers to states the alloy that material is base above.Described groove conductive filler 102 comprises polysilicon, aluminium, silver, copper, titanium, nickel, molybdenum, gold or its alloy, and alloy here specifically refers to states the alloy that material is base above.Described insulating barrier 103 comprises silica, silicon nitride, tantalum oxide or zirconia.Described depletion region 105 is PN junction or schottky junction.When described substrate 100 is n type material, described current potential V2> current potential V1.When described substrate 100 is P-type material, described current potential V2< current potential V1.The width of each charge inducing concentration enhancement region 104 all identical, part is identical or all different.
The cross section of described groove is trapezoidal, and channel bottom 1031 is straight line or camber line, and groove opening width is 3um, and channel bottom 1031 width is 0.5um, and groove is spaced apart 1.5um, and gash depth is 2um.
Cut-off technology in field of the present utility model is a kind of mechanism completely newly, is different from existing conventional field cut-off technology.The utility model realizes field cut-off by device structure design, the shortcoming such as thoroughly broken away from that the intrinsic diffusion depth of doping method that prior art adopts is limited, pyroprocess affects other structures of device and technique is limited.And the field cutoff function described in the utility model is realized by the field effect of groove, and this effect has the adaptive characteristic strengthened with electric-field enhancing.For background technology Patent file, what the utility model adopted is a kind of adaptive field cut-off technology utilizing trench field-effect to realize, and does not namely need doping process, only needs to make groove at the device back side and can introduce a cutoff layer.The method avoids the above-mentioned inherent shortcoming of Traditional dopant method, and technique is consistent with the front technique of conventional groove type IGBT, does not need to introduce new technology.
Embodiment 4
A kind of device architecture adopting trench field-effect to realize adaptive field cut-off technology comprises metal conducting layer 101, the side of described metal conducting layer 101 is provided with substrate 100, described substrate 100 is provided with multiple groove, the side of described substrate 100 is provided with depletion region 105, side, described depletion region 105 is provided with current potential V1, and the metal conducting layer 101 of groove side is provided with current potential V2; Be provided with groove conductive filler 102 in each groove, described trenched side-wall and channel bottom 1031 are provided with insulating barrier 103, between each groove, form interconnective charge inducing concentration enhancement region 104.The width of each charge inducing concentration enhancement region 104 be respectively a1, a2 ..., an, wherein n represents the quantity of charge inducing concentration enhancement region 104.
Substrate 100 comprises silicon, carborundum, gallium nitride, GaAs or diamond, and the conduction type of described substrate 100 is P type or N-type.Metal conducting layer 101 comprises polysilicon, aluminium, silver, copper, titanium, nickel, molybdenum, gold or its alloy, and alloy here specifically refers to states the alloy that material is base above.Described groove conductive filler 102 comprises polysilicon, aluminium, silver, copper, titanium, nickel, molybdenum, gold or its alloy, and alloy here specifically refers to states the alloy that material is base above.Described insulating barrier 103 comprises silica, silicon nitride, tantalum oxide or zirconia.Described depletion region 105 is PN junction or schottky junction.When described substrate 100 is n type material, described current potential V2> current potential V1.When described substrate 100 is P-type material, described current potential V2< current potential V1.The width of each charge inducing concentration enhancement region 104 all identical, part is identical or all different.
The cross section of described groove is rectangle, and channel bottom 1031 is straight line or camber line, and groove opening width is 3um, and channel bottom 1031 width is 3um, and groove is spaced apart 0.5um, and gash depth is 20um.
Cut-off technology in field of the present utility model is a kind of mechanism completely newly, is different from existing conventional field cut-off technology.The utility model realizes field cut-off by device structure design, the shortcoming such as thoroughly broken away from that the intrinsic diffusion depth of doping method that prior art adopts is limited, pyroprocess affects other structures of device and technique is limited.And the field cutoff function described in the utility model is realized by the field effect of groove, and this effect has the adaptive characteristic strengthened with electric-field enhancing.For background technology Patent file, what the utility model adopted is a kind of adaptive field cut-off technology utilizing trench field-effect to realize, and does not namely need doping process, only needs to make groove at the device back side and can introduce a cutoff layer.The method avoids the above-mentioned inherent shortcoming of Traditional dopant method, and technique is consistent with the front technique of conventional groove type IGBT, does not need to introduce new technology.
Embodiment 5
A kind of device architecture adopting trench field-effect to realize adaptive field cut-off technology comprises metal conducting layer 101, the side of described metal conducting layer 101 is provided with substrate 100, described substrate 100 is provided with multiple groove, the side of described substrate 100 is provided with depletion region 105, side, described depletion region 105 is provided with current potential V1, and the metal conducting layer 101 of groove side is provided with current potential V2; Be provided with groove conductive filler 102 in each groove, trenched side-wall and channel bottom 1031 are provided with insulating barrier 103, between each groove, form interconnective charge inducing concentration enhancement region 104.The width of each charge inducing concentration enhancement region 104 be respectively a1, a2 ..., an, wherein n represents the quantity of charge inducing concentration enhancement region 104.
Substrate 100 comprises silicon, carborundum, gallium nitride, GaAs or diamond, and the conduction type of described substrate 100 is P type or N-type.Metal conducting layer 101 comprises polysilicon, aluminium, silver, copper, titanium, nickel, molybdenum, gold or its alloy, and alloy here specifically refers to states the alloy that material is base above.Described groove conductive filler 102 comprises polysilicon, aluminium, silver, copper, titanium, nickel, molybdenum, gold or its alloy, and alloy here specifically refers to states the alloy that material is base above.Described insulating barrier 103 comprises silica, silicon nitride, tantalum oxide or zirconia.Described depletion region 105 is PN junction or schottky junction.When described substrate 100 is n type material, described current potential V2> current potential V1.When described substrate 100 is P-type material, described current potential V2< current potential V1.The width of each charge inducing concentration enhancement region 104 all identical, part is identical or all different.
The cross section of described groove is trapezoidal, and channel bottom 1031 is straight line or camber line, and groove opening width is 1.6um, and channel bottom 1031 width is 1.0um, and groove is spaced apart 1.0um, and gash depth is 15um.
Cut-off technology in field of the present utility model is a kind of mechanism completely newly, is different from existing conventional field cut-off technology.The utility model realizes field cut-off by device structure design, the shortcoming such as thoroughly broken away from that the intrinsic diffusion depth of doping method that prior art adopts is limited, pyroprocess affects other structures of device and technique is limited.And the field cutoff function described in the utility model is realized by the field effect of groove, and this effect has the adaptive characteristic strengthened with electric-field enhancing.For background technology Patent file, what the utility model adopted is a kind of adaptive field cut-off technology utilizing trench field-effect to realize, and does not namely need doping process, only needs to make groove at the device back side and can introduce a cutoff layer.The method avoids the above-mentioned inherent shortcoming of Traditional dopant method, and technique is consistent with the front technique of conventional groove type IGBT, does not need to introduce new technology.
Embodiment 6
A kind of device architecture adopting trench field-effect to realize the device architecture of adaptive field cut-off technology is as shown in Figure 1:
A.100 be substrate, material includes but not limited to silicon, carborundum, gallium nitride, GaAs, diamond etc., and conduction type is P type or N-type;
B.101 be metal conducting layer, material includes but not limited to polysilicon, aluminium, silver, copper, titanium, nickel, molybdenum, gold and alloy thereof;
C.102 be groove conductive filler, material includes but not limited to polysilicon, aluminium, silver, copper, titanium, nickel, molybdenum, gold and alloy thereof;
D.103 be trenched side-wall and bottom insulation layer, material includes but not limited to silica, silicon nitride, tantalum oxide, zirconia etc.;
E.104 be charge inducing concentration enhancement region, be distributed between groove;
F.105 being depletion region, can be PN junction or schottky junction;
G.V1 end is in side, depletion region 105, and V2 end is in groove side;
If H. 100 is n type material, then V2>V1; If 100 is P-type material, then V2<V1;
I. groove is cycle arrangement, and the spacing namely between each groove is identical, as shown in Figure 1;
J. trench cross section pattern is rectangle, and channel bottom 1031 is straight line, and groove width is 1um, and groove is spaced apart 0.5um-1.5um, and gash depth is 2um-20um.
Adopt said structure, the carrier concentration profile of A-A ' and B-B ' distribution in " U " type between groove, as shown in Figure 4, the field cut-off effect of C-C ' and D-D ' as shown in Figure 5.
Embodiment 7
A kind of device architecture adopting trench field-effect to realize the device architecture of adaptive field cut-off technology is as shown in Figure 2:
A.100 be substrate, material includes but not limited to silicon, carborundum, gallium nitride, GaAs, diamond etc., and conduction type is P type or N-type;
B.101 be metal conducting layer, material includes but not limited to polysilicon, aluminium, silver, copper, titanium, nickel, molybdenum, gold and alloy thereof;
C.102 be groove conductive filler, material includes but not limited to polysilicon, aluminium, silver, copper, titanium, nickel, molybdenum, gold and alloy thereof;
D.103 be trenched side-wall and bottom insulation layer, material includes but not limited to silica, silicon nitride, tantalum oxide, zirconia etc.;
E.104 be charge inducing concentration enhancement region, be distributed between groove;
F.105 being depletion region, can be PN junction or schottky junction;
G.V1 end is in side, depletion region 105, and V2 end is in groove side;
If H. 100 is n type material, then V2>V1; If 100 is P-type material, then V2<V1;
I. groove is arrangement aperiodic, and the compartment namely between groove is identical or all different, as shown in Figure 2;
J. trench cross section pattern is rectangle, and channel bottom 1031 is straight line, and groove width is 1um, and groove is spaced apart 0.5um-1.5um, and gash depth is 5um-15um.
Embodiment 8
A kind of device architecture adopting trench field-effect to realize the device architecture of adaptive field cut-off technology is as shown in Figure 6:
A.100 be substrate, material includes but not limited to silicon, carborundum, gallium nitride, GaAs, diamond etc., and conduction type is P type or N-type;
B.101 be metal conducting layer, material includes but not limited to polysilicon, aluminium, silver, copper, titanium, nickel, molybdenum, gold and alloy thereof;
C.102 be groove conductive filler, material includes but not limited to polysilicon, aluminium, silver, copper, titanium, nickel, molybdenum, gold and alloy thereof;
D.103 be trenched side-wall and bottom insulation layer, material includes but not limited to silica, silicon nitride, tantalum oxide, zirconia etc.;
E.104 be charge inducing concentration enhancement region, be distributed between groove;
F.105 being depletion region, can be PN junction or schottky junction;
G.V1 end is in side, depletion region 105, and V2 end is in groove side;
If H. 100 is n type material, then V2>V1; If 100 is P-type material, then V2<V1;
I. groove is cycle arrangement, and the spacing namely between each groove is identical, as shown in Figure 6;
J. trench cross section pattern is trapezoidal, and channel bottom 1031 is camber line, and groove opening width is 1.0um-1.4um, and trench bottom width is 0.6um-1.0um, and groove is spaced apart 0.5um-1.5um, and gash depth is 2um-20um.
Parameter disclosed in this patent and method only for reference; protection content is not limited only to parameter described in literary composition; for the person of ordinary skill of the art; without departing from the concept of the premise utility; can also make some distortion and improvement, these all belong to protection range of the present utility model.

Claims (10)

1. the device architecture adopting trench field-effect to realize adaptive field cut-off technology, it is characterized in that: comprise metal conducting layer (101), the side of described metal conducting layer (101) is provided with substrate (100), (100) are provided with multiple groove to described substrate, the side of described substrate (100) is provided with depletion region (105), described depletion region (105) side is provided with current potential V1, and the metal conducting layer (101) of groove side is provided with current potential V2; Be provided with groove conductive filler (102) in each groove, the sidewall of described groove and channel bottom (1031) be provided with insulating barrier (103), between each groove, form interconnective charge inducing concentration enhancement region (104).
2. a kind of device architecture adopting trench field-effect to realize adaptive field cut-off technology according to claim 1, it is characterized in that: described substrate (100) comprises silicon, carborundum, gallium nitride, GaAs or diamond, the conduction type of described substrate (100) is P type or N-type.
3. a kind of device architecture adopting trench field-effect to realize adaptive field cut-off technology according to claim 1, is characterized in that: described metal conducting layer (101) comprises polysilicon, aluminium, silver, copper, titanium, nickel, molybdenum, gold or its alloy.
4. a kind of device architecture adopting trench field-effect to realize adaptive field cut-off technology according to claim 1, is characterized in that: described groove conductive filler (102) comprises polysilicon, aluminium, silver, copper, titanium, nickel, molybdenum, gold or its alloy.
5. a kind of device architecture adopting trench field-effect to realize adaptive field cut-off technology according to claim 1, is characterized in that: described insulating barrier (103) comprises silica, silicon nitride, tantalum oxide or zirconia.
6. a kind of device architecture adopting trench field-effect to realize adaptive field cut-off technology according to claim 1, is characterized in that: described depletion region (105) are PN junction or schottky junction.
7. a kind of device architecture adopting trench field-effect to realize adaptive field cut-off technology according to claim 2, is characterized in that: described substrate (100) is n type material, described current potential V2> current potential V1.
8. a kind of device architecture adopting trench field-effect to realize adaptive field cut-off technology according to claim 2, is characterized in that: described substrate (100) is P-type material, described current potential V2< current potential V1.
9. a kind of device architecture adopting trench field-effect to realize adaptive field cut-off technology according to claim 1-8 any one, is characterized in that: the width of each charge inducing concentration enhancement region (104) all identical, part is identical or all different.
10. a kind of device architecture adopting trench field-effect to realize adaptive field cut-off technology according to claim 1-8 any one, it is characterized in that: the cross section of described groove is trapezoidal or rectangle, channel bottom (1031) is straight line or camber line, groove opening width is 0.5um-3um, channel bottom (1031) width is 0.5um-3um, groove is spaced apart 0.5um-1.5um, and gash depth is 2um-20um.
CN201520633002.4U 2015-08-21 2015-08-21 Adopt slot field effect to realize device structure of self -adaptation field by technique Active CN204834631U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201520633002.4U CN204834631U (en) 2015-08-21 2015-08-21 Adopt slot field effect to realize device structure of self -adaptation field by technique

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201520633002.4U CN204834631U (en) 2015-08-21 2015-08-21 Adopt slot field effect to realize device structure of self -adaptation field by technique

Publications (1)

Publication Number Publication Date
CN204834631U true CN204834631U (en) 2015-12-02

Family

ID=54692198

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201520633002.4U Active CN204834631U (en) 2015-08-21 2015-08-21 Adopt slot field effect to realize device structure of self -adaptation field by technique

Country Status (1)

Country Link
CN (1) CN204834631U (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105161520A (en) * 2015-08-21 2015-12-16 中国东方电气集团有限公司 Device structure for achieving adaptive field cut-off technology through channel field effect
CN110412015A (en) * 2019-06-23 2019-11-05 南京理工大学 A kind of high sensitivity microwave molecular spectrum instrument

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105161520A (en) * 2015-08-21 2015-12-16 中国东方电气集团有限公司 Device structure for achieving adaptive field cut-off technology through channel field effect
CN105161520B (en) * 2015-08-21 2018-05-18 中国东方电气集团有限公司 A kind of device architecture that adaptive field shut-off technology is realized using trench field-effect
CN110412015A (en) * 2019-06-23 2019-11-05 南京理工大学 A kind of high sensitivity microwave molecular spectrum instrument

Similar Documents

Publication Publication Date Title
CN104332494B (en) A kind of igbt and its manufacturing method
CN104051540B (en) Super-junction device and its manufacturing method
CN109830532A (en) Superjunction IGBT device and its manufacturing method
CN109155338A (en) The electric field shielding in silicone carbide metal oxide semiconductor (MOS) device unit extended using body region
CN108461537B (en) A kind of trench gate charge storage type IGBT and preparation method thereof
CN105679816B (en) A kind of trench gate charge storage type IGBT and its manufacturing method
CN105742346A (en) Double split trench gate charge storage-type RC-IGBT and manufacturing method thereof
CN110504310A (en) A kind of RET IGBT and preparation method thereof with automatic biasing PMOS
CN104716177A (en) Radio frequency LOMOS device for overcoming electricity leakage and manufacturing method of radio frequency LOMOS device for overcoming electricity leakage
CN105448961A (en) Terminal protection structure of super-junction device
CN108321193A (en) A kind of trench gate charge storage type IGBT and preparation method thereof
CN105932055A (en) Plane gate IGBT and manufacturing method therefor
CN207183281U (en) A kind of groove grid super node semiconductor devices of adjustable switch speed
CN106158927B (en) super junction semiconductor device with optimized switching characteristics and manufacturing method
CN204130542U (en) Power semiconductor
CN204834631U (en) Adopt slot field effect to realize device structure of self -adaptation field by technique
CN109659359A (en) Bipolar transistor and the method for manufacturing bipolar transistor
CN110943124A (en) IGBT chip and manufacturing method thereof
CN110416309B (en) Super junction power semiconductor device and manufacturing method thereof
CN208422922U (en) A kind of groove grid super node semiconductor devices optimizing switching speed
CN204834629U (en) Field is by voltage control type power device with adaptive
CN206116403U (en) Optimize super knot semiconductor device of switching characteristic
CN105161520A (en) Device structure for achieving adaptive field cut-off technology through channel field effect
CN109887990A (en) Superjunction IGBT device and its manufacturing method
CN103367396B (en) Super junction Schottky semiconductor device and preparation method thereof

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant