CN204669165U - Motor radial ventilation cooling structure - Google Patents

Motor radial ventilation cooling structure Download PDF

Info

Publication number
CN204669165U
CN204669165U CN201520419995.5U CN201520419995U CN204669165U CN 204669165 U CN204669165 U CN 204669165U CN 201520419995 U CN201520419995 U CN 201520419995U CN 204669165 U CN204669165 U CN 204669165U
Authority
CN
China
Prior art keywords
motor
ventilation
steel channel
ventilation steel
cooling structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201520419995.5U
Other languages
Chinese (zh)
Inventor
范文寿
马盛骏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Goldwind Science and Creation Windpower Equipment Co Ltd
Original Assignee
Beijing Goldwind Science and Creation Windpower Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Goldwind Science and Creation Windpower Equipment Co Ltd filed Critical Beijing Goldwind Science and Creation Windpower Equipment Co Ltd
Priority to CN201520419995.5U priority Critical patent/CN204669165U/en
Application granted granted Critical
Publication of CN204669165U publication Critical patent/CN204669165U/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Motor Or Generator Cooling System (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

The utility model provides a kind of motor radial ventilation cooling structure.This motor radial ventilation cooling structure comprises: at least three core packets, ventilation steel channel is provided with between adjacent described core packet, form ventilation ducts between adjacent described core packet and described ventilation steel channel, the impedance of multiple described ventilation ducts along motor two ends to motor third side to increasing gradually.The motor radial ventilation cooling structure that the utility model provides; the impedance of multiple ventilation ducts along motor two ends to motor third side to increasing gradually; the harmony of the flow of the wind flowing through multiple ventilation ducts can be improved; thus improve the harmony of temperature along motor axial distribution of coil and multiple core packet; when not changing the total flow of wind; reduce maximum temperature value; effectively avoid the motor stopping fault caused because local temperature rise is too high; reduce iron core bracket thermal deformation simultaneously, ensure that motor normally runs.

Description

Motor radial ventilation cooling structure
Technical field
The utility model relates to technical field of motors, particularly relates to a kind of motor radial ventilation cooling structure.
Background technology
Operationally, meeting produce power loss on the parts such as coil, iron core, this part loss finally distributes with the form of heat energy motor (comprising motor and generator).Radial ventilation methods for cooling is one of conventional methods for cooling of motor, and this type of cooling can increase area of dissipation, improves the power density of generator, is therefore widely used.
Fig. 1 is the structural representation of existing motor radial ventilation cooling structure.(illustrate only the half in motor symmetrical structure) as shown in Figure 1, the iron core (stator or rotor core) of motor is divided into multiple core packet 11, ventilation steel channel 12 (or being called air duct slats) is provided with along the radial direction of motor between adjacent core packet 11, ventilation steel channel 12 is while playing a supporting role to core packet 11, space between adjacent iron cores section 11 is separated into ventilation ducts 13 (or being called radial ducts), its circulating ventilation path is that cold wind enters air gap 14 from the end of winding (not shown in figure 1), the cavity between two iron core brackets 15 is arrived through ventilation ducts 13 (the branch road ventilation ducts 1 ~ 8 in such as Fig. 1), finally by pipeline the hot-air in cavity is retracted to the heat exchanger outside motor, become after cold air through heat exchanger, enter motor internal again.Fig. 2 is the structural representation of ventilation steel channel in existing motor radial ventilation cooling structure.As shown in Figure 2, ventilation steel channel 12 is the rectangular bar shaped ventilation steel channel of cross section, the height of ventilation ducts 13 on motor axial direction, namely the height h of ventilation steel channel 12 on motor axial direction (as shown in Fig. 1,2), equal with the spacing between adjacent iron cores section 11 on motor axial direction.
State in realization in the process of ventilating and cooling, inventor finds that in prior art, at least there are the following problems: after air-flow enters air gap, due to shunting, the reason such as local and on-way resistance of ventilation ducts, cause the speed goes of air-flow little, like this from air gap import department to air gap centre position, static pressure is increasing, and dynamic pressure is more and more less.But because multiple ventilation steel channel is identical with the structure of multiple core packet, therefore cause the impedance of multiple ventilation ducts identical, thus cause the flow of the wind flowing through multiple ventilation ducts increasing.The heat produced due to motor internal thermal source (parts such as coil, iron core) is uniform along motor axial distribution, and be uneven by the flow distribution of the wind of multiple ventilation ducts, thus cause the temperature of coil and multiple core packet to be uneven along motor axial distribution, and more and more lower to air gap centre position temperature from air gap import department.The temperature of coil and multiple core packet is along motor shaft to skewness, and maximum temperature value is comparatively large, easily produces the too high phenomenon of local temperature rise, causes motor stopping fault, easily causes iron core bracket thermal deformation simultaneously, affects motor and normally run.
Utility model content
Embodiment of the present utility model provides a kind of motor radial ventilation cooling structure; the harmony of the flow of the wind flowing through multiple ventilation ducts can be improved; thus improve the harmony of temperature along motor axial distribution of coil and multiple core packet; when not changing the total flow of wind; reduce maximum temperature value; effectively avoid the motor stopping fault caused because local temperature rise is too high, reduce iron core bracket thermal deformation simultaneously, ensure that motor normally runs.
For achieving the above object, embodiment of the present utility model adopts following technical scheme:
The utility model provides a kind of motor radial ventilation cooling structure, comprise at least three core packets, ventilation steel channel is provided with between adjacent described core packet, form ventilation ducts between adjacent described core packet and described ventilation steel channel, the impedance of multiple described ventilation ducts along motor two ends to motor third side to increasing gradually.
In motor radial ventilation cooling structure as above, the impedance of the ventilating path at multiple described ventilation ducts place is equal, and the impedance of described ventilating path equals the impedance sum of the air gap in the impedance of the described ventilation ducts in described ventilating path and described ventilating path.
In motor radial ventilation cooling structure as above, described ventilation steel channel comprises multiple grouping, each grouping comprises at least one ventilation steel channel, and each grouping adopts in following structure one: the arrangement of overall yi word pattern, segmented linear, subsection interleaving arrangement, the arrangement of segmentation product word, the arrangement of the segmentation word of falling product and overall S type; In the same grouping that the quantity of ventilation steel channel is multiple, arrange the structural parameters of described ventilation steel channel according to following processing mode, described processing mode comprises as the one or more combination under type: the height on motor axial direction along motor two ends to motor third side to reducing gradually; At motor width circumferentially along motor two ends to motor third side to increasing gradually; The quantity comprising ventilation steel channel section along motor two ends to motor third side to increasing gradually; Spacing between the described ventilation steel channel section that motor is adjacent in the radial direction along motor two ends to motor third side to reducing gradually; At motor Breadth Maximum circumferentially along motor two ends to motor third side to increasing gradually; Comprise the quantity of turning round along motor two ends to motor third side to increasing gradually; The angle of bend turned round along motor two ends to motor third side to reducing gradually.
In motor radial ventilation cooling structure as above, each described ventilation steel channel adopts in following structure one: the arrangement of overall yi word pattern, segmented linear, subsection interleaving arrangement, the arrangement of segmentation product word, the arrangement of the segmentation word of falling product and overall S type.
In motor radial ventilation cooling structure as above, described ventilation steel channel is the bar shaped ventilation steel channel of overall yi word pattern, and the height of multiple described ventilation steel channel on motor axial direction along motor two ends to motor third side to reduce gradually and/or at motor width circumferentially along motor two ends to motor third side to increasing gradually.
In motor radial ventilation cooling structure as above, described ventilation steel channel comprises the identical ventilation steel channel section of multiple structures of separation, described ventilation steel channel section is the bar shaped ventilation steel channel section of overall yi word pattern, spacing in same described ventilation steel channel between the described ventilation steel channel section that motor is adjacent is in the radial direction identical, and in multiple described ventilation steel channel the quantity of ventilation steel channel section along motor two ends to motor third side to increase gradually and/or in multiple described ventilation steel channel spacing between the described ventilation steel channel section that motor is adjacent in the radial direction along motor two ends to motor third side to reducing gradually.
In motor radial ventilation cooling structure as above, the layout of described ventilation steel channel is segmented linear arrangement, subsection interleaving arrangement, the arrangement of segmentation product word or the arrangement of the segmentation word of falling product.
In motor radial ventilation cooling structure as above, described ventilation steel channel is the bar shaped ventilation steel channel of overall S type, in same described ventilation steel channel, the angle of bend of multiple corner is identical, and multiple described ventilation steel channel meet the following conditions in one or more combinations: at motor Breadth Maximum circumferentially along motor two ends to motor third side to increasing gradually; The quantity of turning round along motor two ends to motor third side to increasing gradually; The angle of bend turned round along motor two ends to motor third side to reducing gradually.
In motor radial ventilation cooling structure as above, be provided with the ventilation hole along motor axial direction in described core packet, described ventilation hole is communicated with two described ventilation ductss of described core packet both sides.
In motor radial ventilation cooling structure as above, described ventilation hole is arranged at the part near the air inlet of described ventilation ducts in described core packet.
In motor radial ventilation cooling structure as above, described core packet is set to chamfering structure near the part of the air inlet of described ventilation ducts, the A/F of multiple described chamfering structure along motor two ends to motor third side to reducing gradually.
The motor radial ventilation cooling structure that the utility model provides; the impedance of multiple ventilation ducts along motor two ends to motor third side to increasing gradually; the harmony of the flow of the wind flowing through multiple ventilation ducts can be improved; thus improve the harmony of temperature along motor axial distribution of coil and multiple core packet; when not changing the total flow of wind; reduce maximum temperature value; effectively avoid the motor stopping fault caused because local temperature rise is too high; reduce iron core bracket thermal deformation simultaneously, ensure that motor normally runs.
Accompanying drawing explanation
Fig. 1 is the structural representation of existing motor radial ventilation cooling structure;
Fig. 2 is the structural representation of ventilation steel channel in existing motor radial ventilation cooling structure;
The equivalent schematic of the motor radial ventilation cooling structure that Fig. 3 provides for the utility model;
Structural representation in motor radial ventilation cooling structure one embodiment that Fig. 4 provides for the utility model after ventilation steel channel adjust size;
Fig. 5 is the structural representation of ventilation steel channel in the motor radial ventilation cooling structure shown in Fig. 4;
Fig. 6 is the distribution schematic diagram flowing through the flow of the wind of multiple ventilation ducts after the size of adjustment ventilation steel channel;
The structural representation of ventilation steel channel segmented linear arrangement in another embodiment of motor radial ventilation cooling structure that Fig. 7 provides for the utility model;
The structural representation of ventilation steel channel subsection interleaving arrangement in another embodiment of motor radial ventilation cooling structure that Fig. 8 provides for the utility model;
The structural representation of ventilation steel channel segmentation product word arrangement in another embodiment of motor radial ventilation cooling structure that Fig. 9 provides for the utility model;
The structural representation of the ventilation steel channel segmentation word of falling product arrangement in another embodiment of motor radial ventilation cooling structure that Figure 10 provides for the utility model;
The structural representation of the overall S type of ventilation steel channel in another embodiment of motor radial ventilation cooling structure that Figure 11 provides for the utility model;
The structural representation that in another embodiment of motor radial ventilation cooling structure that Figure 12 provides for the utility model, multiple ventilation ducts is connected;
Figure 13 is the structural representation of ventilation steel channel in the motor radial ventilation cooling structure shown in Figure 12;
In another embodiment of motor radial ventilation cooling structure that Figure 14 provides for the utility model, core packet arranges the structural representation of chamfering structure;
The structural representation of the chamfering structure that Figure 15 is arranged for core packet in the motor radial ventilation cooling structure shown in Figure 14;
The structural representation of ventilation steel channel grouping in another embodiment of motor radial ventilation cooling structure that Figure 16 provides for the utility model;
Wherein, 11-core packet; 111-ventilation hole; 112-chamfering structure; 113-punching; 12-ventilation steel channel; 121-ventilation steel channel section; 13-ventilation ducts; 1 ~ 8-branch road ventilation ducts; 14-air gap; 15-iron core bracket.
Embodiment
Be described in detail below in conjunction with the motor radial ventilation cooling structure of accompanying drawing to the utility model embodiment.
Embodiment one
With reference to the existing motor radial ventilation cooling structure shown in Fig. 1, the motor radial ventilation cooling structure of the utility model embodiment comprises at least three core packets 11 equally, ventilation steel channel 12 is provided with between adjacent core packet 11, ventilation ducts 13 is formed between adjacent core packet 11 and ventilation steel channel 12, but with existing motor radial ventilation cooling structure unlike, because the structure of multiple ventilation steel channel 12 and/or multiple core packet 11 is different, cause the impedance R of multiple ventilation ducts 13 along motor two ends to motor third side to increasing gradually.
Concrete, the impedance R of ventilation ducts 13 and the resistance (comprising local resistance and on-way resistance) of ventilation ducts 13 pairs of air-flows.Ventilation ducts 13 in the motor radial ventilation cooling structure of the present embodiment can be equivalent to the parallel pipeline in fluid mechanics.The equivalent schematic of the motor radial ventilation cooling structure that Fig. 3 provides for the utility model.(illustrate only the half in motor symmetrical structure) as shown in Figure 3, node a is the air inlet of air gap 14, node a1, a2 ..., a8 be respectively branch road ventilation ducts 1,2 ..., 8 air inlet, node b be branch road ventilation ducts 1,2 ..., 8 air outlet.After air-flow enters air gap 14, due to shunting, the reason such as local and on-way resistance of ventilation ducts 13, cause the speed goes of air-flow little, like this from air gap 14 import department to air gap 14 centre position, namely along motor two ends to motor third side to, air-flow node a1, a2 ..., a8 static pressure U1, U2 ..., U8 is increasing, dynamic pressure is more and more less.Suppose that air-flow is U0 at the static pressure of node b (i.e. the air outlet of ventilation ducts 13), the assignment of traffic rule according to parallel pipeline in fluid mechanics:
Q 1 : Q 2 : . . . : Q 8 = U 1 - U 0 R 1 : U 2 - U 0 R 2 : . . . : U 8 - U 0 R 8
Wherein, Q1, Q2 ..., Q8 be respectively flow through branch road ventilation ducts 1,2 ..., 8 the flow of wind.
Known, the impedance R of multiple ventilation ducts 13 along motor two ends to motor third side to increasing gradually, namely branch road ventilation ducts 1,2 ..., 8 impedance R1, R2 ..., R8 increases that (the impedance R1 of branch road ventilation ducts 1 is minimum gradually, the impedance of branch road ventilation ducts 8 is maximum), the harmony of the flow Q of the wind flowing through multiple ventilation ducts 13 can be improved, by adjusting the impedance R of multiple ventilation ducts 13, the flow Q of the wind flowing through multiple ventilation ducts 13 can be made identical.The Adjustment principle of the impedance R of ventilation ducts 13 is: if the flow of ventilation ducts 13 large (little), then increase the impedance R of (reduction) ventilation ducts 13, the impedance R sum of multiple ventilation ducts 13 is constant.
The motor radial ventilation cooling structure of the utility model embodiment; the impedance of multiple ventilation ducts along motor two ends to motor third side to increasing gradually; the harmony of the flow of the wind flowing through multiple ventilation ducts can be improved; thus improve the harmony of temperature along motor axial distribution of coil and multiple core packet; when not changing the total flow of wind; reduce maximum temperature value; effectively avoid the motor stopping fault caused because local temperature rise is too high; reduce iron core bracket thermal deformation simultaneously, ensure that motor normally runs.
Embodiment two
With reference to the existing motor radial ventilation cooling structure shown in Fig. 1, the motor radial ventilation cooling structure of the utility model embodiment comprises at least three core packets 11 equally, ventilation steel channel 12 is provided with between adjacent core packet 11, ventilation ducts 13 is formed between adjacent core packet 11 and ventilation steel channel 12, but with existing motor radial ventilation cooling structure unlike, because the structure of multiple ventilation steel channel 12 and/or multiple core packet 11 is different, cause the impedance R of multiple ventilation ducts 13 along motor two ends to motor third side to increasing gradually, and the impedance S-phase etc. of the ventilating path at multiple ventilation ducts 13 place.Wherein, the impedance S of ventilating path equals the impedance sum of the air gap 14 in the impedance R of the ventilation ducts 13 in ventilating path and ventilating path.
Concrete, with reference to Fig. 3, branch road a → a1 → b, a → a2 → b ..., a → a8 → b be respectively branch road ventilation ducts 1,2 ..., 8 places ventilating path.Because in fluid mechanics, the assignment of traffic rule of parallel pipeline is as follows:
Q 1 : Q 2 : . . . : Q 8 = 1 S 1 : 1 S 2 : . . . : 1 S 8
Therefore, branch road ventilation ducts 1,2 ..., 8 places branch road ventilating path impedance S1, S2 ..., S8 is equal, can make to flow through branch road ventilation ducts 1,2 ..., 8 wind flow Q1, Q2 ..., Q8 is identical, namely the impedance S-phase etc. of the ventilating path at multiple ventilation ducts 13 place, can make the flow Q of the wind flowing through multiple ventilation ducts 13 identical.
The motor radial ventilation cooling structure of the utility model embodiment, the impedance of multiple ventilation ducts along motor two ends to motor third side to increasing gradually, and the impedance of the ventilating path at multiple ventilation ducts place is equal, the flow of the wind flowing through multiple ventilation ducts can be made identical, improve the harmony flowing through the flow of the wind of multiple ventilation ducts, thus improve the harmony of temperature along motor axial distribution of coil and multiple core packet, when not changing the total flow of wind, reduce maximum temperature value, effectively avoid the motor stopping fault caused because local temperature rise is too high, reduce iron core bracket thermal deformation simultaneously, ensure that motor normally runs.
Embodiment three
Structural representation in motor radial ventilation cooling structure embodiment that Fig. 4 provides for the utility model after ventilation steel channel adjust size, Fig. 5 is the structural representation of ventilation steel channel in the motor radial ventilation cooling structure shown in Fig. 4.As shown in Figure 4, Figure 5, the motor radial ventilation cooling structure of the present embodiment is on the basis of embodiment one or embodiment two, giving the mode of size by adjusting ventilation steel channel 12 (be included in height h on motor axial direction and/or at motor width w circumferentially), making the impedance R of multiple ventilation ducts 13 along motor two ends to motor third side to increasing gradually.
Concrete, the ventilation steel channel 12 in the present embodiment is still the bar shaped ventilation steel channel of overall yi word pattern.
Because the height h of ventilation steel channel 12 increases (reduction), the impedance R of corresponding ventilation ducts 13 reduces (increase), therefore the height h of the multiple ventilation steel channel 12 of adjustable is along motor two ends to motor third side to reducing gradually, thus makes the impedance R of multiple ventilation ducts 13 along motor two ends to motor third side to increasing gradually.Preferably, for not affecting the electromagnetic performance of motor, after adjustment, the height h sum of multiple ventilation steel channel 12 is constant.
Because the width w of ventilation steel channel 12 increases (reduction), the impedance R of corresponding ventilation ducts 13 increases (reduction), therefore the width w of the multiple ventilation steel channel 12 of adjustable is along motor two ends to motor third side to increasing gradually, thus makes the impedance R of multiple ventilation ducts 13 along motor two ends to motor third side to increasing gradually.
Preferably, for not affecting the electromagnetic performance of motor as far as possible, the height h of each ventilation steel channel 12 can not be excessive, should be not more than 10mm.
Preferably, for making each ventilation ducts 13 at vacuum pressure impregnation (Vacuum Pressure Impregnating, be called for short VPI) bake and bank up with earth after do not block, the width w of each ventilation steel channel 12 can not be excessive, should 12mm more than less of the iron core facewidth, the height h of each ventilation steel channel 12 can not be too small, should be not less than 6mm.
It should be noted that herein, the mode of the height h of each ventilation steel channel 12 of adjustment separately can be adopted, also the mode of the width w of each ventilation steel channel 12 of adjustment separately can be adopted, also the mode of height h and the width w simultaneously adjusting multiple ventilation steel channel 12 can be adopted (such as first to adjust the height h of multiple ventilation steel channel 12, finely tune the width w of multiple ventilation steel channel 12 again), also can adopting the mode of the height h of adjustment member ventilation steel channel 12 and the width w of partial ventilation channel-section steel 12, making the impedance R of multiple ventilation ducts 13 along motor two ends to motor third side to increasing gradually.
Such as, under adjusting the height h of multiple ventilation steel channel 12 and the mode of width w, the size of multiple ventilation steel channel 12 is as shown in table 1 simultaneously:
The size of table 1 many ventilation steel channels
Fig. 6 is the distribution schematic diagram flowing through the flow of the wind of multiple ventilation ducts after the size of adjustment ventilation steel channel.Current capacity contrast's schematic diagram of the wind of multiple ventilation ducts is flowed through before being illustrated in figure 6 the simulation result that flows through the flow of the wind of multiple ventilation ducts after adjusting by the height h of ventilation steel channel multiple in table 1 and width w and adjustment, as shown in Figure 6, by adjusting height h and the width w of multiple ventilation steel channel, with the impedance R adjusting multiple ventilation ducts 13 along motor two ends to motor third side to increasing gradually, the harmony of the flow Q of the wind flowing through multiple ventilation ducts 13 can be improved.By further adjustment, the flow Q of the wind flowing through multiple ventilation ducts 13 can be made identical.
The motor radial ventilation cooling structure of the utility model embodiment, by adjusting height h and/or the width w of multiple ventilation steel channel, make the impedance of multiple ventilation ducts along motor two ends to motor third side to increasing gradually, the harmony of the flow of the wind flowing through multiple ventilation ducts can be improved, thus improve the harmony of temperature along motor axial distribution of coil and multiple core packet, when not changing the total flow of wind, reduce maximum temperature value, effectively avoid the motor stopping fault caused because local temperature rise is too high, reduce iron core bracket thermal deformation simultaneously, ensure that motor normally runs.
Embodiment four
The structural representation of ventilation steel channel segmented linear arrangement in another embodiment of motor radial ventilation cooling structure that Fig. 7 provides for the utility model.The structural representation of ventilation steel channel subsection interleaving arrangement in another embodiment of motor radial ventilation cooling structure that Fig. 8 provides for the utility model.The structural representation of ventilation steel channel segmentation product word arrangement in another embodiment of motor radial ventilation cooling structure that Fig. 9 provides for the utility model.The structural representation of the ventilation steel channel segmentation word of falling product arrangement in another embodiment of motor radial ventilation cooling structure that Figure 10 provides for the utility model.As shown in Fig. 7 ~ Figure 10, the motor radial ventilation cooling structure of the present embodiment is on the basis of embodiment one or embodiment two, giving by the mode by ventilation steel channel 12 segmentation (the quantity n of section and/or different at motor intersegmental separation delta h in the radial direction) different layout (comprising segmented linear arrangement, subsection interleaving arrangement, the arrangement of segmentation product word, the arrangement of the segmentation word of falling product), making the impedance R of multiple ventilation ducts 13 along motor two ends to motor third side to increasing gradually.
Concrete, ventilation steel channel 12 in the present embodiment comprises the identical ventilation steel channel section 121 of multiple structures of separation, ventilation steel channel section 121 is the bar shaped ventilation steel channel section of overall yi word pattern, and the separation delta h in same ventilation steel channel 12 between the ventilation steel channel section 121 that motor is adjacent is in the radial direction identical.The layout of ventilation steel channel 12 can be the segmented linear arrangement shown in Fig. 7, also can be the subsection interleaving arrangement shown in Fig. 8, also can be the segmentation product word arrangement shown in Fig. 9, also can be the segmentation word of the falling product arrangement shown in Figure 10.
Because the quantity n of ventilation steel channel section 121 in ventilation steel channel 12 increases (reduction), the impedance R of corresponding ventilation ducts 13 increases (reduction), therefore in the multiple ventilation steel channel 12 of adjustable the quantity n of ventilation steel channel section 121 along motor two ends to motor third side to increasing gradually, thus make the impedance R of multiple ventilation ducts 13 along motor two ends to motor third side to increasing gradually.
Because the separation delta h in same ventilation steel channel 12 between ventilation steel channel section 121 increases (reduction), the impedance R of corresponding ventilation ducts 13 reduces (increase), therefore the separation delta h in the multiple ventilation steel channel 12 of adjustable between ventilation steel channel section 121 to motor third side to reducing gradually, thus makes the impedance R of multiple ventilation ducts 13 along motor two ends to motor third side to increasing gradually along motor two ends.
It should be noted that herein, the mode of the quantity n adjusting separately ventilation steel channel section 121 in each ventilation steel channel 12 can be adopted, also the mode adjusting separately the separation delta h in each ventilation steel channel 12 between ventilation steel channel section 121 can be adopted, also the mode of the separation delta h between quantity n and ventilation steel channel section 121 simultaneously adjusting ventilation steel channel section 121 in multiple ventilation steel channel 12 can be adopted (such as first to adjust the quantity n of ventilation steel channel section 121 in multiple ventilation steel channel 12, finely tune the separation delta h between ventilation steel channel section 121 in multiple ventilation steel channel 12 again), also the mode of the height h of adjustment member ventilation steel channel 12 and the width w of partial ventilation channel-section steel 12 can be adopted, make the impedance R of multiple ventilation ducts 13 along motor two ends to motor third side to increasing gradually.Wherein, the layout of multiple ventilation steel channel 12 can be identical or different, and namely the layout of multiple ventilation steel channel 12 can adopt the combination of one or more in following layout: the segmented linear arrangement shown in Fig. 7, the subsection interleaving arrangement shown in Fig. 8, the segmentation product word arrangement shown in Fig. 9, the segmentation word of the falling product arrangement shown in Figure 10.
Known by simulation calculation, by adjusting the layout of separation delta h between the quantity n of ventilation steel channel section 121 in multiple ventilation steel channel 12 and/or ventilation steel channel section 121 and/or multiple ventilation steel channel 12, with the impedance R adjusting multiple ventilation ducts 13 along motor two ends to motor third side to increasing gradually, the harmony of the flow Q of the wind flowing through multiple ventilation ducts 13 can be improved.By further adjustment, the flow Q of the wind flowing through multiple ventilation ducts 13 can be made identical.
The motor radial ventilation cooling structure of the utility model embodiment, by adjusting the layout of separation delta h between the quantity n of ventilation steel channel section in multiple ventilation steel channel and/or ventilation steel channel section and/or multiple ventilation steel channel, make the impedance of multiple ventilation ducts along motor two ends to motor third side to increasing gradually, the harmony of the flow of the wind flowing through multiple ventilation ducts can be improved, thus improve the harmony of temperature along motor axial distribution of coil and multiple core packet, when not changing the total flow of wind, reduce maximum temperature value, effectively avoid the motor stopping fault caused because local temperature rise is too high, reduce iron core bracket thermal deformation simultaneously, ensure that motor normally runs.In addition, multiple ventilation steel channel segmentation, effectively can suppress the growth in boundary layer, thus enhanced heat exchange, reduce the temperature of coil and multiple core packet further.
Embodiment five
The structural representation of the overall S type of ventilation steel channel in another embodiment of motor radial ventilation cooling structure that Figure 11 provides for the utility model.As shown in figure 11, the motor radial ventilation cooling structure of the present embodiment, on the basis of embodiment one or embodiment two, gives by multiple ventilation steel channel 12 is set to overall S type, and adjusts multiple ventilation steel channel 12 at motor Breadth Maximum w circumferentially maxand/or the quantity m turned round and/or the mode of angle of bend θ of turning round, make the impedance R of multiple ventilation ducts 13 along motor two ends to motor third side to increasing gradually.
Concrete, the ventilation steel channel 12 in the present embodiment is the bar shaped ventilation steel channel of overall S type.In same ventilation steel channel 12, multiple angle of bend θ turned round is identical.
Due to the Breadth Maximum w of ventilation steel channel 12 maxincrease (reduction), the impedance R of corresponding ventilation ducts 13 increases (reduction), therefore the Breadth Maximum w of the multiple ventilation steel channel 12 of adjustable maxalong motor two ends to motor third side to increasing gradually, thus make the impedance R of multiple ventilation ducts 13 along motor two ends to motor third side to increasing gradually.
Because the quantity m turned round in ventilation steel channel 12 increases (reduction), the impedance R of corresponding ventilation ducts 13 increases (reduction), therefore the quantity m turned round in the multiple ventilation steel channel 12 of adjustable to motor third side to increasing gradually, thus makes the impedance R of multiple ventilation ducts 13 along motor two ends to motor third side to increasing gradually along motor two ends.
Because the angle of bend θ turned round in ventilation steel channel 12 increases (reduction), the impedance R of corresponding ventilation ducts 13 reduces (increase), therefore the angle of bend θ turned round in the multiple ventilation steel channel 12 of adjustable to motor third side to reducing gradually, thus makes the impedance R of multiple ventilation ducts 13 along motor two ends to motor third side to increasing gradually along motor two ends.
It should be noted that herein, the Breadth Maximum w of each ventilation steel channel 12 of adjustment separately can be adopted maxmode, also can adopt the mode of the quantity m turned round in the independent each ventilation steel channel 12 of adjustment, also can adopt the mode of the angle of bend θ turned round in each ventilation steel channel 12 of adjustment separately, also can adopt the Breadth Maximum w simultaneously adjusting multiple ventilation steel channel 12 maxwith the mode of the quantity m turned round, the Breadth Maximum w simultaneously adjusting multiple ventilation steel channel 12 also can be adopted maxwith the mode of the angle of bend θ turned round, also can adopt the mode simultaneously adjusting the quantity m turned round in multiple ventilation steel channel 12 and the angle of bend θ turned round, also can adopt the Breadth Maximum w simultaneously adjusting multiple ventilation steel channel 12 max, the quantity m that turns round and the mode of angle of bend θ of turning round, also can adopt the Breadth Maximum w of adjustment member ventilation steel channel 12 max, the quantity m turned round in partial ventilation channel-section steel 12, the mode of angle of bend θ of turning round in partial ventilation channel-section steel 12, make the impedance R of multiple ventilation ducts 13 along motor two ends to motor third side to increasing gradually.
Known by simulation calculation, by adjusting the Breadth Maximum w of multiple ventilation steel channel 12 maxand/or the quantity m turned round and/or the angle of bend θ turned round, with the impedance R adjusting multiple ventilation ducts 13 along motor two ends to motor third side to increasing gradually, the harmony of the flow Q of the wind flowing through multiple ventilation ducts 13 can be improved.By further adjustment, the flow Q of the wind flowing through multiple ventilation ducts 13 can be made identical.
The motor radial ventilation cooling structure of the utility model embodiment, by adjusting the Breadth Maximum w of multiple ventilation steel channel maxand/or the quantity m turned round and/or the angle of bend θ turned round; make the impedance of multiple ventilation ducts along motor two ends to motor third side to increasing gradually; the harmony of the flow of the wind flowing through multiple ventilation ducts can be improved; thus improve the harmony of temperature along motor axial distribution of coil and multiple core packet; when not changing the total flow of wind; reduce maximum temperature value; effectively avoid the motor stopping fault caused because local temperature rise is too high; reduce iron core bracket thermal deformation simultaneously, ensure that motor normally runs.In addition, multiple ventilation steel channel is set to overall S type, effectively can suppress the growth in boundary layer, thus enhanced heat exchange, reduce the temperature of coil and multiple core packet further.
Embodiment six
The structural representation that in another embodiment of motor radial ventilation cooling structure that Figure 12 provides for the utility model, multiple ventilation ducts is connected.As shown in figure 12, the motor radial ventilation cooling structure of the present embodiment is on the basis of embodiment one or embodiment two, giving the mode by being connected by multiple ventilation ducts 13, making the impedance R of multiple ventilation ducts 13 along motor two ends to motor third side to increasing gradually.
Concrete, the motor radial ventilation cooling structure of the present embodiment adds ventilation hole 111 on the basis of Fig. 1.Be provided with the ventilation hole 111 along motor axial direction in core packet 11 between any two ventilation ductss 13, this ventilation hole 111 is for being communicated with two ventilation ductss 13 of these core packet 11 both sides.Figure 13 is the structural representation of ventilation steel channel in the motor radial ventilation cooling structure shown in Figure 12.As shown in figure 13, for ensureing to be connected between multiple ventilation ducts 13, ventilation steel channel 12 sectional is arranged.
Preferably, for not affecting the electromagnetic performance of motor as far as possible, each ventilation ducts 13 and ventilation hole 111 do not block after vacuum pressure impregnation VPI bakes and banks up with earth, and the diameter of each ventilation hole 111 should between 4mm ~ 8mm.In each iron core teeth portion, the quantity of ventilation hole 111 should be not more than 3.
Preferably, ventilation hole 111 is arranged at the part near the air inlet of ventilation ducts 13 in core packet 11, namely near the part of air gap 14.
Alternatively, the ventilation hole 111 in different core packet 11 is highly different in motor radial direction.
Known by simulation calculation, by quantity and/or the height of ventilation hole 111 in core packet 11 of the diameter and/or ventilation hole 111 that adjust multiple ventilation hole 111, with the impedance R adjusting multiple ventilation ducts 13 along motor two ends to motor third side to increasing gradually, the harmony of the flow Q of the wind flowing through multiple ventilation ducts 13 can be improved.By further adjustment, the flow Q of the wind flowing through multiple ventilation ducts 13 can be made identical.
The motor radial ventilation cooling structure of the utility model embodiment, by multiple ventilation ducts is connected, and adjust the diameter of multiple ventilation hole and/or the quantity of ventilation hole and/or the height of ventilation hole in core packet, make the impedance of multiple ventilation ducts along motor two ends to motor third side to increasing gradually, the harmony of the flow of the wind flowing through multiple ventilation ducts can be improved, thus improve the harmony of temperature along motor axial distribution of coil and multiple core packet, when not changing the total flow of wind, reduce maximum temperature value, effectively avoid the motor stopping fault caused because local temperature rise is too high, reduce iron core bracket thermal deformation simultaneously, ensure that motor normally runs.
Embodiment seven
In another embodiment of motor radial ventilation cooling structure that Figure 14 provides for the utility model, core packet arranges the structural representation of chamfering structure.As shown in figure 14, the motor radial ventilation cooling structure of the present embodiment is on the basis of embodiment one or embodiment two, giving the mode by arranging chamfering structure 112 for multiple core packet 11, making the impedance R of multiple ventilation ducts 13 along motor two ends to motor third side to increasing gradually.
Concrete, the motor radial ventilation cooling structure of the present embodiment on the basis of Fig. 1, for multiple core packet 11 is provided with chamfering structure 112.Chamfering structure 112 is arranged at the part of core packet 11 near the air inlet of ventilation ducts 13, namely near the part of air gap 14, to reduce the local resistance of the air inlet of multiple ventilation ducts 13.And the A/F of multiple chamfering structure 112 along motor two ends to motor third side to reducing gradually, the local resistance of the air inlet of multiple ventilation ducts 13 is large to subtracting gradually to motor third side along motor two ends, making the impedance R of multiple ventilation ducts 13 along motor two ends to motor third side to increasing gradually, the harmony of the flow Q of the wind flowing through multiple ventilation ducts 13 can be improved.By further adjustment, the flow Q of the wind flowing through multiple ventilation ducts 13 can be made identical.
The structural representation of the chamfering structure that Figure 15 is arranged for core packet in the motor radial ventilation cooling structure shown in Figure 14.As shown in figure 15, being formed because core packet 11 is laminated by multiple punching 113, therefore by adjusting the tooth radial height of each punching 113, making the core packet after laminating 11 form stair-stepping chamfering structure 112.
The motor radial ventilation cooling structure of the utility model embodiment; by arranging chamfering structure for multiple core packet; make the impedance of multiple ventilation ducts along motor two ends to motor third side to increasing gradually; the harmony of the flow of the wind flowing through multiple ventilation ducts can be improved; thus improve the harmony of temperature along motor axial distribution of coil and multiple core packet; when not changing the total flow of wind; reduce maximum temperature value; effectively avoid the motor stopping fault caused because local temperature rise is too high; reduce iron core bracket thermal deformation simultaneously, ensure that motor normally runs.
Embodiment eight
Ventilation steel channel 12 can be divided into multiple grouping.The structural representation of ventilation steel channel grouping in another embodiment of motor radial ventilation cooling structure that Figure 16 provides for the utility model.As shown in figure 16, on the basis of embodiment one or embodiment two, ventilation steel channel 12 is divided into multiple grouping, ventilation steel channel in Figure 16 in each dotted line frame is a grouping, each grouping comprises at least one ventilation steel channel 12, ventilation steel channel 12 in each grouping adopts identical shape and layout setting, ventilation steel channel 12 in multiple grouping adopts one or more the combination in following shape and layout: the overall yi word pattern shown in Fig. 5, segmented linear arrangement shown in Fig. 7, subsection interleaving arrangement shown in Fig. 8, segmentation product word arrangement shown in Fig. 9, the segmentation word of falling product arrangement shown in Figure 10, overall S type shown in Figure 11.Preferably, can also in conjunction with the scheme be connected between ventilation ducts 13 multiple in the embodiment six shown in Figure 12 ~ Figure 13 and/or in conjunction with in the embodiment seven shown in Figure 14 ~ Figure 15 for multiple core packet 11 arranges the scheme of chamfering structure 112.
Embodiment nine
Ventilation steel channel 12 can adopt one or more the combination in following shape and layout: the overall yi word pattern shown in Fig. 5, the segmented linear arrangement shown in Fig. 7, the subsection interleaving arrangement shown in Fig. 8, the segmentation product word arrangement shown in Fig. 9, the segmentation word of the falling product arrangement shown in Figure 10, the overall S type shown in Figure 11.Preferably, can also in conjunction with the scheme be connected between ventilation ducts 13 multiple in the embodiment six shown in Figure 12 ~ Figure 13 and/or in conjunction with in the embodiment seven shown in Figure 14 ~ Figure 15 for multiple core packet 11 arranges the scheme of chamfering structure 112.
The above; be only embodiment of the present utility model; but protection range of the present utility model is not limited thereto; anyly be familiar with those skilled in the art in the technical scope that the utility model discloses; change can be expected easily or replace, all should be encompassed within protection range of the present utility model.Therefore, protection range of the present utility model should be as the criterion with the protection range of described claim.

Claims (11)

1. a motor radial ventilation cooling structure, comprise at least three core packets (11), ventilation steel channel (12) is provided with between adjacent described core packet (11), ventilation ducts (13) is formed between adjacent described core packet (11) and described ventilation steel channel (12), it is characterized in that, the impedance of multiple described ventilation ducts (13) along motor two ends to motor third side to increasing gradually.
2. motor radial ventilation cooling structure according to claim 1, it is characterized in that, the impedance of the ventilating path at multiple described ventilation ducts (13) place is equal, and the impedance of described ventilating path equals the impedance sum of the air gap in the impedance of the described ventilation ducts (13) in described ventilating path and described ventilating path.
3. motor radial ventilation cooling structure according to claim 1 and 2, it is characterized in that, described ventilation steel channel (12) comprises multiple grouping, each grouping comprises at least one ventilation steel channel (12), and each grouping adopts one in following structure: the arrangement of overall yi word pattern, segmented linear, subsection interleaving arrangement, the arrangement of segmentation product word, the arrangement of the segmentation word of falling product and overall S type;
In the same grouping that the quantity of ventilation steel channel (12) is multiple, arrange the structural parameters of described ventilation steel channel (12) according to following processing mode, described processing mode comprises as the one or more combination under type:
Height on motor axial direction along motor two ends to motor third side to reducing gradually;
At motor width circumferentially along motor two ends to motor third side to increasing gradually;
The quantity comprising ventilation steel channel section (121) along motor two ends to motor third side to increasing gradually;
Spacing between the described ventilation steel channel section (121) that motor is adjacent in the radial direction along motor two ends to motor third side to reducing gradually;
At motor Breadth Maximum circumferentially along motor two ends to motor third side to increasing gradually;
Comprise the quantity of turning round along motor two ends to motor third side to increasing gradually;
The angle of bend turned round along motor two ends to motor third side to reducing gradually.
4. motor radial ventilation cooling structure according to claim 1 and 2, it is characterized in that, each described ventilation steel channel (12) adopts in following structure one: the arrangement of overall yi word pattern, segmented linear, subsection interleaving arrangement, the arrangement of segmentation product word, the arrangement of the segmentation word of falling product and overall S type.
5. motor radial ventilation cooling structure according to claim 1 and 2, it is characterized in that, the bar shaped ventilation steel channel that described ventilation steel channel (12) is overall yi word pattern, and the height of multiple described ventilation steel channel (12) on motor axial direction along motor two ends to motor third side to reduce gradually and/or at motor width circumferentially along motor two ends to motor third side to increasing gradually.
6. motor radial ventilation cooling structure according to claim 1 and 2, it is characterized in that, described ventilation steel channel (12) comprises the identical ventilation steel channel section (121) of multiple structures of separation, the bar shaped ventilation steel channel section that described ventilation steel channel section (121) is overall yi word pattern, spacing in same described ventilation steel channel (12) between the described ventilation steel channel section (121) that motor is adjacent is in the radial direction identical, and in multiple described ventilation steel channel (12) quantity of ventilation steel channel section (121) spacing along motor two ends to motor third side in increase gradually and/or multiple described ventilation steel channel (12) between the described ventilation steel channel section (121) that motor is adjacent in the radial direction along motor two ends to motor third side to reducing gradually.
7. motor radial ventilation cooling structure according to claim 6, is characterized in that, the layout of described ventilation steel channel (12) is segmented linear arrangement, subsection interleaving arrangement, the arrangement of segmentation product word or the arrangement of the segmentation word of falling product.
8. motor radial ventilation cooling structure according to claim 1 and 2, it is characterized in that, described ventilation steel channel (12) is the bar shaped ventilation steel channel of overall S type, in same described ventilation steel channel (12), the angle of bend of multiple corner is identical, and multiple described ventilation steel channel (12) meet the following conditions in one or more combinations:
At motor Breadth Maximum circumferentially along motor two ends to motor third side to increasing gradually;
The quantity of turning round along motor two ends to motor third side to increasing gradually;
The angle of bend turned round along motor two ends to motor third side to reducing gradually.
9. motor radial ventilation cooling structure according to claim 1 and 2, it is characterized in that, be provided with the ventilation hole (111) along motor axial direction in described core packet (11), described ventilation hole (111) is communicated with two described ventilation ductss (13) of described core packet (11) both sides.
10. motor radial ventilation cooling structure according to claim 9, is characterized in that, described ventilation hole (111) is arranged at the part near the air inlet of described ventilation ducts (13) in described core packet (11).
11. motor radial ventilation cooling structures according to claim 1 and 2, it is characterized in that, described core packet (11) is set to chamfering structure (112) near the part of air inlet of described ventilation ducts (13), the A/F of multiple described chamfering structure (112) along motor two ends to motor third side to reducing gradually.
CN201520419995.5U 2015-06-17 2015-06-17 Motor radial ventilation cooling structure Active CN204669165U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201520419995.5U CN204669165U (en) 2015-06-17 2015-06-17 Motor radial ventilation cooling structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201520419995.5U CN204669165U (en) 2015-06-17 2015-06-17 Motor radial ventilation cooling structure

Publications (1)

Publication Number Publication Date
CN204669165U true CN204669165U (en) 2015-09-23

Family

ID=54139507

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201520419995.5U Active CN204669165U (en) 2015-06-17 2015-06-17 Motor radial ventilation cooling structure

Country Status (1)

Country Link
CN (1) CN204669165U (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104953766A (en) * 2015-06-17 2015-09-30 北京金风科创风电设备有限公司 Radial ventilation cooling structure of motor
CN106253526A (en) * 2016-08-29 2016-12-21 北京交通大学 Combine the electric machine structure of dissimilar channel-section steel
CN106329744A (en) * 2016-08-29 2017-01-11 北京交通大学 Motor structure based on transverse H-shaped sectional ventilating channel steel
EP3869670A1 (en) * 2020-02-21 2021-08-25 Siemens Gamesa Renewable Energy A/S Generator for an electrical machine having improved cooling system, and wind turbine
US11489394B2 (en) 2018-08-30 2022-11-01 Xinjiang Goldwind Science & Technology Co., Ltd. Slot wedge element, stator device, motor, and wind turbine

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104953766A (en) * 2015-06-17 2015-09-30 北京金风科创风电设备有限公司 Radial ventilation cooling structure of motor
WO2016201877A1 (en) * 2015-06-17 2016-12-22 北京金风科创风电设备有限公司 Radial ventilation cooling structure for motor
CN104953766B (en) * 2015-06-17 2018-11-13 北京金风科创风电设备有限公司 Radial ventilation cooling structure of motor
US10756597B2 (en) 2015-06-17 2020-08-25 Beijing Goldwind Science & Creation Windpower Equipment Co., Ltd. Radial ventilation cooling structure for motor
CN106253526A (en) * 2016-08-29 2016-12-21 北京交通大学 Combine the electric machine structure of dissimilar channel-section steel
CN106329744A (en) * 2016-08-29 2017-01-11 北京交通大学 Motor structure based on transverse H-shaped sectional ventilating channel steel
US11489394B2 (en) 2018-08-30 2022-11-01 Xinjiang Goldwind Science & Technology Co., Ltd. Slot wedge element, stator device, motor, and wind turbine
EP3869670A1 (en) * 2020-02-21 2021-08-25 Siemens Gamesa Renewable Energy A/S Generator for an electrical machine having improved cooling system, and wind turbine

Similar Documents

Publication Publication Date Title
CN104953766A (en) Radial ventilation cooling structure of motor
CN204669165U (en) Motor radial ventilation cooling structure
CN102290922A (en) Double-fed wind generator
CN104410190A (en) Ventilating slot structure of generator rotor
CN108917006B (en) Wall-mounted air conditioner indoor unit and wall-mounted air conditioner
CN104539071A (en) Ventilation channel steel, manufacturing method thereof, ventilation structure and motor
JP3225678U (en) Inverter heat dissipation configuration
JP2008108802A (en) Gas insulated transformer
CN208936315U (en) Wall-hanging air conditioner indoor unit and wall-mounted air conditioner
CN203734404U (en) Internal and external cooling separated cooler of rotor magnetic pole
CN101451796B (en) Heat exchanger, heat exchanger core body and method for manufacturing same
CN204559319U (en) Motor
CN110207256B (en) Air conditioner indoor unit and air conditioner
CN107834774A (en) A kind of motor of stator with ventilation slot mouth
CN204463988U (en) Lightweight multiple duct filter reactor
CN108233626A (en) Cooling-fan installation inside a kind of large synchronous compensator
CN104578485B (en) Ventilation structure and motor
CN210468932U (en) Rotor punching sheet wind path structure
CN114374287A (en) Salient pole motor rotor air-internal cooling ventilation structure assembly
CN203216342U (en) Air cold-heat exchanger
CN201652730U (en) Air conditioner set centrifugal fan air outlet overhead flow equalization device
CN101917074B (en) Large air-cooling steam turbo generator stator capable of improving aeration-cooling effect
CN201821104U (en) Structure of active power filter device
CN206195501U (en) Rotor ventilation structure under rotor duct spacer various combination mode
CN104578483B (en) Ventilation channel steel, manufacturing method thereof, ventilation structure and motor

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant