JP2008108802A - Gas insulated transformer - Google Patents

Gas insulated transformer Download PDF

Info

Publication number
JP2008108802A
JP2008108802A JP2006288311A JP2006288311A JP2008108802A JP 2008108802 A JP2008108802 A JP 2008108802A JP 2006288311 A JP2006288311 A JP 2006288311A JP 2006288311 A JP2006288311 A JP 2006288311A JP 2008108802 A JP2008108802 A JP 2008108802A
Authority
JP
Japan
Prior art keywords
gas
winding
flow rate
rate adjusting
insulated transformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006288311A
Other languages
Japanese (ja)
Inventor
Masumi Nakatate
真澄 中楯
Hiroshi Muramatsu
浩史 村松
Tsuneo Kobayashi
恒夫 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2006288311A priority Critical patent/JP2008108802A/en
Publication of JP2008108802A publication Critical patent/JP2008108802A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Coils Of Transformers For General Uses (AREA)
  • Transformer Cooling (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gas insulated transformer that can uniform and improve winding cooling performance by insulating gas and maximize the cooling capacity. <P>SOLUTION: The gas insulated transformer is provided with thin-plate flow regulating plates 14a and 15a that are installed between an inner winding 3 and a spacer 9a and between the lower side of an outer winding 4 and a spacer 9b, respectively. The width of the flow regulating plate 15a under the outer winding in the direction of gas flow is made larger than that of the flow regulating plate 14a under the inner winding in the direction of gas flow. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、SF6 ガス、窒素ガス、炭酸ガス、空気などの絶縁ガスにより冷却を行うガス絶縁変圧器に係り、特に冷却性能を向上させる技術に関する。 The present invention relates to a gas insulation transformer that performs cooling with an insulating gas such as SF 6 gas, nitrogen gas, carbon dioxide gas, and air, and more particularly to a technique for improving cooling performance.

ガス絶縁変圧器の従来例を図5を用いて説明する。すなわち、タンク1内にけい素鋼板を積層した鉄心2と、この鉄心2の主脚に巻回された内側(低圧)巻線3および外側(高圧)巻線4からなる機器本体がSF6 ガス、窒素ガスなどの絶縁ガス5とともに収納されている。 A conventional example of a gas-insulated transformer will be described with reference to FIG. That is, an apparatus body comprising an iron core 2 in which a silicon steel plate is laminated in a tank 1 and an inner (low voltage) winding 3 and an outer (high voltage) winding 4 wound around the main leg of the iron core 2 is an SF 6 gas. And an insulating gas 5 such as nitrogen gas.

また、内側巻線3および外側巻線4はそれぞれ絶縁被覆された銅線を円筒状に巻回し、これを4層分形成した多重円筒巻線であり、内周側および外周側に設置された絶縁筒6により巻線間の絶縁や鉄心2との絶縁を保っている。各円筒巻線間および円筒巻線と絶縁筒との間には垂直ダクト用のスペーサ7により垂直ダクト8が形成され、さらに、円筒巻線の上下部には水平ダクト用のスペーサ9a、9bにより水平ダクト10が形成されている。   Each of the inner winding 3 and the outer winding 4 is a multi-cylindrical winding formed by winding a copper wire with insulation coating into a cylindrical shape and forming four layers thereof, and is installed on the inner peripheral side and the outer peripheral side. Insulation between the windings and the iron core 2 are maintained by the insulating cylinder 6. Vertical ducts 8 are formed between the respective cylindrical windings and between the cylindrical windings and the insulating cylinders by vertical duct spacers 7. Further, horizontal duct spacers 9 a and 9 b are formed above and below the cylindrical windings. A horizontal duct 10 is formed.

そして、タンク外部に前記絶縁ガスを冷却するための複数の冷却器11が設置され、前記タンク1と前記複数の冷却器11の間にガスを循環させるための配管12および送風機13が設けられている。   A plurality of coolers 11 for cooling the insulating gas are installed outside the tank, and a pipe 12 and a blower 13 for circulating gas between the tank 1 and the plurality of coolers 11 are provided. Yes.

冷却器で冷やされた絶縁ガスは温度が上昇しながら鉄心および巻線を冷却し、冷却器に戻り循環する。特に巻線内では図中矢印で示すように絶縁ガスが外側下部から流入し、垂直ダクト内を下から上に流れて巻線の冷却を行っている。このように、鉄心と巻線からなる機器本体は絶縁ガスにより冷却されると共に絶縁されている。   The insulating gas cooled by the cooler cools the iron core and the windings as the temperature rises, and circulates back to the cooler. In particular, in the winding, as shown by the arrows in the figure, the insulating gas flows in from the outside lower part and flows in the vertical duct from the bottom to the top to cool the winding. As described above, the device body composed of the iron core and the winding is cooled and insulated by the insulating gas.

ここで、変圧器の容量が小さい場合は送風機がない自然循環冷却方式となるが、ガスの流れは全く同様である。
特開2003−109825号公報
Here, when the capacity | capacitance of a transformer is small, it becomes a natural circulation cooling system without an air blower, but the flow of gas is completely the same.
JP 2003-109825 A

ところで、近年、環境問題の観点からガス絶縁機器のSF6 ガス使用量の削減が提案されており、SF6 ガスのガス圧力を下げることや窒素ガス、炭酸ガス、空気、あるいはこれらの混合ガスなどを用いた機器の開発・研究も行われている。 By the way, in recent years, reduction of the amount of SF 6 gas used in gas insulation equipment has been proposed from the viewpoint of environmental problems, such as reducing the gas pressure of SF 6 gas, nitrogen gas, carbon dioxide gas, air, or a mixed gas thereof. Development and research of the equipment using is carried out.

ここで、上記従来のようなガス絶縁変圧器において、SF6 ガスのガス圧力を下げた場合や上記のような他の絶縁ガスを用いた場合には、ガスの熱容量がSF6 ガスに比べて大幅に減少するため、冷却能力も大幅に低減することになる。特に、送風機を持たないガス自然循環方式のガス絶縁変圧器では冷却能力の低下が顕著であり、課題となっていた。 Here, in the gas insulated transformer as described above, when the gas pressure of the SF 6 gas is lowered or when another insulating gas as described above is used, the heat capacity of the gas is larger than that of the SF 6 gas. Since it is greatly reduced, the cooling capacity is also greatly reduced. In particular, in a gas-insulated transformer of the natural gas circulation type that does not have a blower, the cooling capacity is significantly reduced, which has been a problem.

このような問題に対処する手段としては、本体タンク内の巻線を大型化して発熱量を小さくする、あるいは冷却器の台数あるいは1台当たりのパネル枚数を増やすといった冷却設計を行うことが考えられる。しかし、これらの対策では機器の大型化を招くという欠点がある。   As a means for coping with such a problem, it is conceivable to make a cooling design by increasing the winding in the main body tank to reduce the amount of heat generation, or increasing the number of coolers or the number of panels per unit. . However, these measures have a drawback that the size of the equipment is increased.

また、ガスが流れやすい円筒巻線を採用すればガス循環流量が増加するため、冷却性能が向上する。しかし、この場合もガスが流れやすい巻線と流れにくい巻線の差が顕著になり、局所的に巻線温度が上昇してしまうという欠点がある。特に、図5に示す従来例においては、外周側から流入したガスが入口から近い垂直ダクトに多く流れてしまい、入口から遠い垂直ダクトにあまり流れない場合がある。この場合は、内側の円筒巻線の温度が上昇することになってしまう。   In addition, if a cylindrical winding that facilitates gas flow is employed, the gas circulation flow rate is increased, so that the cooling performance is improved. However, in this case as well, there is a drawback that the difference between the winding that tends to flow gas and the winding that does not flow easily becomes remarkable, and the winding temperature rises locally. In particular, in the conventional example shown in FIG. 5, there are cases where a large amount of gas flowing from the outer peripheral side flows into the vertical duct near the entrance and does not flow so much into the vertical duct far from the entrance. In this case, the temperature of the inner cylindrical winding will increase.

本発明は、上記のような従来技術の問題点を解決するために提案されたものであり、その目的は、絶縁ガスによる巻線冷却性能の均一化および向上を図り、冷却能力を最大限にできるガス絶縁変圧器を提供することにある。   The present invention has been proposed in order to solve the above-described problems of the prior art, and its purpose is to achieve uniform and improved winding cooling performance with an insulating gas to maximize the cooling capacity. It is to provide a gas-insulated transformer that can.

上記目的を達成するため、本発明のガス絶縁変圧器は、けい素鋼板を積層した鉄心と、前記鉄心の主脚部分に銅線を円筒状に巻回してなる低圧の内側巻線と高圧の外側巻線をそれぞれ複数同心円状に配置した多重円筒巻線と、各円筒巻線間に垂直スペーサを円周方向に等間隔に配置してなる垂直冷却ダクトと、前記円筒巻線の上下に水平スペーサを放射状かつ等間隔に配置してなる水平ダクトと、を備えたガス絶縁変圧器において、前記内側巻線および外側巻線の上下端部の少なくとも一方と、前記水平スペーサとの間に、前記水平スペーサの位置に対応して、板状の流量調整部を設けたことを特徴とする。   In order to achieve the above object, a gas-insulated transformer according to the present invention comprises an iron core laminated with silicon steel sheets, a low-voltage inner winding formed by winding a copper wire in a cylindrical shape around the main leg portion of the iron core, and a high-voltage Multiple cylindrical windings each having a plurality of outer windings arranged concentrically, a vertical cooling duct in which vertical spacers are arranged at equal intervals in the circumferential direction between the cylindrical windings, and horizontally above and below the cylindrical windings In a gas-insulated transformer comprising a horizontal duct having spacers arranged radially and at equal intervals, between at least one of the upper and lower ends of the inner winding and the outer winding, and the horizontal spacer, A plate-like flow rate adjusting unit is provided corresponding to the position of the horizontal spacer.

以上のような本発明によれば、内側巻線および外側巻線の上下端部の少なくとも一方と、前記水平スペーサとの間に、水平スペーサの位置に対応して設けた、板状の流量調整板により流路の断面積が狭められて圧力損失が発生するため、各垂直ダクト内のガスの流れが均一になる。このため、巻線の冷却効率が均一化し向上し、巻線温度の局所的な上昇を抑えることができる。これにより、ガス絶縁変圧器の巻線冷却性能を最大限に高めることができる。   According to the present invention as described above, a plate-like flow rate adjustment provided corresponding to the position of the horizontal spacer between at least one of the upper and lower ends of the inner winding and the outer winding and the horizontal spacer. Since the cross-sectional area of the flow path is narrowed by the plate and pressure loss occurs, the gas flow in each vertical duct becomes uniform. For this reason, the cooling efficiency of the winding is made uniform and improved, and a local increase in the winding temperature can be suppressed. Thereby, the winding cooling performance of the gas insulated transformer can be maximized.

以上のような本発明によれば、絶縁ガスによる巻線冷却性能の均一化および向上を図り、冷却能力を最大限にできるガス絶縁変圧器を提供することができる。   According to the present invention as described above, it is possible to provide a gas-insulated transformer that can achieve uniform and improved winding cooling performance with an insulating gas and maximize the cooling capacity.

以下、本発明に係る代表的な実施形態について、図1〜図3を参照して具体的に説明する。   Hereinafter, typical embodiments according to the present invention will be described in detail with reference to FIGS.

(1)第1の実施の形態
[構成]
本発明の第1の実施形態のガス絶縁変圧器は、図1に示すように、低圧側の内側巻線3と高圧側の外側巻線4とが、それぞれ絶縁被覆された銅線を円筒状に巻回され、これを4層分形成した多重円筒巻線であり、内周側および外周側に設置された絶縁筒6により巻線間の絶縁や鉄心との絶縁を保っている。
(1) First Embodiment [Configuration]
As shown in FIG. 1, the gas-insulated transformer according to the first embodiment of the present invention has a cylindrical shape in which a low-voltage side inner winding 3 and a high-voltage side outer winding 4 are respectively coated with insulation. Insulated between the windings and the iron core is maintained by the insulating cylinders 6 installed on the inner and outer peripheral sides.

各円筒巻線間および円筒巻線と絶縁筒との間には垂直ダクト用のスペーサ7により垂直ダクト8が形成されている。また、内側巻線および外側巻線の上下部にはそれぞれ水平ダクト用のスペーサ9a,9bが設置され、これにより水平ダクト10が形成されている。この水平ダクト10の存在により、冷却用の絶縁ガスが水平ダクト10の外周側から流入する構造になっている。   A vertical duct 8 is formed between the cylindrical windings and between the cylindrical winding and the insulating cylinder by a vertical duct spacer 7. Also, horizontal duct spacers 9a and 9b are respectively installed on the upper and lower portions of the inner and outer windings, thereby forming a horizontal duct 10. Due to the presence of the horizontal duct 10, a cooling insulating gas flows from the outer peripheral side of the horizontal duct 10.

本実施形態では、さらに、内側巻線3とスペーサ9aとの間、外側巻線4の下部とスペーサ9bとの間に、それぞれ薄板状の流量調整板14a,15aが設置されており、外側巻線下部の流量調整板15aのガスの流れ方向に対する幅は、内側巻線下部の流量調整板14aにおけるガスの流れ方向に対する幅よりも広く形成されている。   In this embodiment, furthermore, thin plate-like flow rate adjusting plates 14a and 15a are installed between the inner winding 3 and the spacer 9a and between the lower portion of the outer winding 4 and the spacer 9b, respectively. The width of the flow rate adjustment plate 15a at the lower part of the wire with respect to the gas flow direction is formed wider than the width of the flow rate adjustment plate 14a at the lower side of the inner winding with respect to the gas flow direction.

[作用効果]
以上のような構成の本実施形態において、巻線内では図1中矢印で示すように、絶縁ガスは巻線下部の水平ダクト外周側から流入し、外周側の垂直ダクトから内周側の垂直ダクトまで順に分流していき、それぞれの垂直ダクト内を下から上に流れて巻線の冷却を行う。
[Function and effect]
In the present embodiment configured as described above, the insulating gas flows from the outer peripheral side of the horizontal duct at the lower part of the winding and from the vertical duct on the outer peripheral side to the inner peripheral side as indicated by the arrows in FIG. The air is shunted to the ducts in order, and the windings are cooled by flowing in the vertical ducts from the bottom to the top.

ここで、従来は、入口から近い外周側の垂直ダクトにガスが流れやすく、入口から遠い内周側の垂直ダクトにガスが流れにくいガスの分流特性があった。   Here, conventionally, there has been a gas shunting characteristic in which gas easily flows into the vertical duct on the outer peripheral side close to the inlet and hardly flows into the vertical duct on the inner peripheral side far from the inlet.

これに対し、本実施形態では、流れやすい外周側に幅の広い流量調整板15aを設置することにより、垂直ダクト入口の流路断面積が絞られ、流れの急縮小及び急拡大が起こり、比較的大きな圧力損失が発生することになる。また、流れにくい内周側に設置される流量調整板14aは幅が狭いため、大きな圧力損失は発生せず、流れの抵抗はほとんど変わらない。   On the other hand, in the present embodiment, by installing the wide flow rate adjusting plate 15a on the outer peripheral side where it is easy to flow, the flow passage cross-sectional area of the vertical duct inlet is narrowed, and the flow suddenly shrinks and expands. A large pressure loss will occur. Further, since the flow rate adjusting plate 14a installed on the inner peripheral side which is difficult to flow is narrow, a large pressure loss does not occur, and the flow resistance hardly changes.

したがって、従来流れやすかった外側巻線の垂直ダクトにおいてはガスが流れにくくなり、内側巻線の垂直ダクトでは従来と変わらないため、両巻線のガスの流れは均一になる。特に、流量調整板14a,15aの幅を調整することにより、巻線の発熱量に応じてガス流量を制御することが可能になる。これにより、巻線の冷却効率が平均化され、巻線温度の上昇を抑えることができ、ガス絶縁変圧器の巻線冷却性能を最大限に高めることができる。   Therefore, gas hardly flows in the vertical duct of the outer winding, which has been easy to flow in the past, and the gas flow in both windings becomes uniform because the vertical duct of the inner winding is not different from the conventional. In particular, by adjusting the widths of the flow rate adjusting plates 14a and 15a, the gas flow rate can be controlled in accordance with the heat generation amount of the winding. Thereby, the cooling efficiency of the winding is averaged, the rise in winding temperature can be suppressed, and the winding cooling performance of the gas insulated transformer can be maximized.

(2)第2の実施の形態
[構成]
本発明の第2の実施形態について、図2を用いて説明する。図2は、図1と同様な巻線部の詳細図であり、内側巻線および外側巻線の上下部にはそれぞれ水平ダクト用のスペーサ9a,9bが設置され、水平ダクト10が形成されている。本実施形態では、水平ダクトの外周側が絶縁筒6aにより塞ぎ、その代替的な役割を担うものとして、内周側のスペーサ間に開口部16を設けたものである。すなわち、冷却用の絶縁ガスは開口部16から流入し、巻線の内周側から外周側に向かって水平ダクトを進み、巻線内に流入する構造になっている。
(2) Second Embodiment [Configuration]
A second embodiment of the present invention will be described with reference to FIG. FIG. 2 is a detailed view of a winding portion similar to FIG. 1, and horizontal duct spacers 9a and 9b are respectively installed on the upper and lower portions of the inner and outer windings, and a horizontal duct 10 is formed. Yes. In the present embodiment, the outer peripheral side of the horizontal duct is closed by the insulating cylinder 6a, and the opening 16 is provided between the inner peripheral side spacers as an alternative function. That is, the insulating gas for cooling flows from the opening 16, travels through the horizontal duct from the inner peripheral side to the outer peripheral side of the winding, and flows into the winding.

また、内側巻線3とスペーサ9aの間と、外側巻線4の下部とスペーサ9bとの間に、それぞれ薄板状の流量調整板14c,15cを設置され、内側巻線下部の流量調整板14cの幅は、外側巻線下部の流量調整板15cよりも広く構成されている。   Further, thin plate-like flow rate adjusting plates 14c and 15c are installed between the inner winding 3 and the spacer 9a, and between the lower portion of the outer winding 4 and the spacer 9b, respectively. Is wider than the flow rate adjusting plate 15c below the outer winding.

[作用効果]
以上のような構成の本実施形態において、巻線内では図中矢印で示すように、絶縁ガスは巻線下部の水平ダクト内周側から流入し、内周側の垂直ダクト8から外周側の垂直ダクト8まで順に分流していき、それぞれの垂直ダクト8内を下から上に流れて巻線の冷却を行うことになる。
[Function and effect]
In the present embodiment configured as described above, the insulating gas flows from the inner peripheral side of the horizontal duct at the lower part of the winding and from the vertical duct 8 on the outer peripheral side to the outer peripheral side, as indicated by arrows in the drawing. The current is diverted sequentially to the vertical ducts 8 and flows in the respective vertical ducts 8 from below to cool the windings.

ここで、入口から近い垂直ダクト8にガスが流れやすく、入口から遠い垂直ダクト8にガスが流れにくいガスの分流特性は本実施形態でも同様である。流れやすい内周側に幅の広い流量調整板14cを設置することにより、垂直ダクト8入口の流路断面積が絞られ、比較的大きな圧力損失が発生する。また、流れにくい外周側に設置される、流量調整板15cは幅が狭いため、大きな圧力損失は発生しない。   Here, the gas shunting characteristics are also the same in this embodiment as the gas easily flows into the vertical duct 8 close to the inlet and the gas hardly flows into the vertical duct 8 far from the inlet. By installing the wide flow rate adjusting plate 14c on the inner peripheral side where it easily flows, the flow passage cross-sectional area at the entrance of the vertical duct 8 is reduced, and a relatively large pressure loss occurs. Further, since the flow rate adjusting plate 15c installed on the outer peripheral side where it is difficult to flow is narrow, a large pressure loss does not occur.

したがって、流れやすかった内側巻線の垂直ダクト8でガスが流れにくくなり、外側巻線の垂直ダクト8ではガスの流れにくさは変わらないため、両巻線のガスの流れは均一に近づく。特に、流量調整板14c,15cの幅を調整することにより、巻線の発熱量に応じてガス流量を制御することが可能になる。これにより、巻線の冷却効率が平均化され、巻線温度の上昇を抑えることができ、ガス絶縁変圧器の巻線冷却性能を最大限に高めることができる。   Accordingly, the gas does not easily flow in the vertical duct 8 of the inner winding, which is easy to flow, and the gas flow does not change in the vertical duct 8 of the outer winding, so that the gas flows in both windings approach uniformly. In particular, by adjusting the widths of the flow rate adjusting plates 14c and 15c, the gas flow rate can be controlled in accordance with the heat generation amount of the winding. Thereby, the cooling efficiency of the winding is averaged, the rise in winding temperature can be suppressed, and the winding cooling performance of the gas insulated transformer can be maximized.

(3)第3の実施の形態
[構成]
本発明の第3の実施形態について、図3を用いて説明する。図3は、本実施形態における流量調整板14d,15dの概略図である。内側巻線3用の流量調整板14dおよび外側巻線4用の流量調整板15dは共に巻線断面形状に概略一致したドーナツ板形状をしており、各巻線ごとに異なる大きさの穴17a,17bが、一定の間隔並びにピッチで設けられている。
(3) Third Embodiment [Configuration]
A third embodiment of the present invention will be described with reference to FIG. FIG. 3 is a schematic view of the flow rate adjusting plates 14d and 15d in the present embodiment. Both the flow rate adjusting plate 14d for the inner winding 3 and the flow rate adjusting plate 15d for the outer winding 4 have a donut plate shape that roughly matches the cross-sectional shape of the winding, and holes 17a, 17b are provided at regular intervals and pitches.

図3では、内側巻線3における穴17aが大きくかつ密に設けられ、外側巻線4における穴17bが小さく粗に設けられていることがわかる。これは、水平ダクトの外周側から絶縁ガスが流入する場合の実施形態を表すものである。反対に、水平ダクトの内周側から絶縁ガスが流入する場合は、図3の態様と逆であり、内側巻線3における穴17aを小さくかつ粗に設け、外側巻線4における穴17bを大きく密に設ける。   In FIG. 3, it can be seen that the holes 17a in the inner winding 3 are large and dense, and the holes 17b in the outer winding 4 are small and rough. This represents an embodiment where the insulating gas flows from the outer peripheral side of the horizontal duct. On the other hand, when the insulating gas flows from the inner peripheral side of the horizontal duct, it is the reverse of the mode of FIG. Install closely.

[作用効果]
以上のような構成の本実施形態において、水平ダクトの外周側から絶縁ガスが流入する場合は、内側巻線用の流量調整板14dに大きい穴17aを密に開け、外側巻線用の流量調整板15dに小さい穴17bを粗く設けていることにより、流路断面積を簡単に精度よく設定でき、巻線間のガス流量を精度よく制御できる。
[Function and effect]
In the present embodiment configured as described above, when the insulating gas flows from the outer peripheral side of the horizontal duct, a large hole 17a is densely formed in the flow adjustment plate 14d for the inner winding to adjust the flow for the outer winding. By providing the small holes 17b roughly in the plate 15d, the flow passage cross-sectional area can be easily set with high accuracy, and the gas flow rate between the windings can be controlled with high accuracy.

一方、逆に水平ダクトの内周側から絶縁ガスが流入する場合は穴の関係を逆に設定することにより、流路断面積の調整およびガス流量の制御が容易になる。なお、本実施形態では、工作性を考慮して扇形状の流量調整板を数枚組み合わせてドーナツ板状に加工するのが好ましい。   On the other hand, when the insulating gas flows in from the inner peripheral side of the horizontal duct, the adjustment of the flow path cross-sectional area and the control of the gas flow rate are facilitated by setting the hole relationship in reverse. In the present embodiment, it is preferable to process several fan-shaped flow rate adjusting plates into a donut plate shape in consideration of workability.

(4)他の実施形態
本発明は上記各実施形態に限定されるものではなく、例えば以下のような態様も含むものである。例えば、第1の実施形態における薄板状の流量調整板14a,15aは、巻線の下部だけでなく、巻線上部に設置することや巻線上下部の両方に設けることも可能である。上下に設けた場合、半分の圧力損失を2ヶ所で発生させることになるが、寸法誤差や組立誤差などによる圧力損失の見積り誤差は小さくなる。
(4) Other Embodiments The present invention is not limited to the above embodiments, and includes the following aspects, for example. For example, the thin plate-like flow rate adjusting plates 14a and 15a in the first embodiment can be provided not only at the lower part of the winding but also at the upper part of the winding or at both the upper and lower parts of the winding. When installed on the top and bottom, half of the pressure loss is generated at two locations, but the estimation error of the pressure loss due to dimensional error or assembly error becomes small.

また、入口から遠い内側の流量調整板14aを省略することや、同幅を水平ダクトのスペーサ9aよりも小さくすることも可能である。後者の場合、垂直ダクト入口部の流路断面積を拡大することになり、結果的にガスを流れやすくする効果が得られる。さらに、流量調整板14aをスペーサ9aと接着することにより、位置決めや組立精度が高まるとともに工作性も向上する。これにより、巻線組立時に発生する前記流量調整板の位置ずれなどをなくすことができ、寸法誤差や性能見積り誤差を小さくすることができる。   It is also possible to omit the inner flow rate adjusting plate 14a far from the inlet, or to make the same width smaller than the horizontal duct spacer 9a. In the latter case, the cross-sectional area of the vertical duct inlet is enlarged, and as a result, an effect of facilitating gas flow can be obtained. Furthermore, by adhering the flow rate adjusting plate 14a to the spacer 9a, positioning and assembling accuracy are improved and workability is also improved. As a result, it is possible to eliminate the positional deviation of the flow rate adjusting plate that occurs at the time of winding assembly, and to reduce dimensional errors and performance estimation errors.

さらに、図4に示すように、内周巻線下部の流量調整板14bおよび外周巻線下部の流量調整板15bを内周側から外周側に向かって徐々に幅が広くなるように構成することも可能である。この場合、隣り合う流量調整板間の流路断面積は内周側から外周側に向かって徐々に狭くなる。すなわち、流れにくい内周側の垂直ダクトでは入口の流路断面積が広く、流れやすい外周側の垂直ダクトでは入口の流路断面積が狭くなるため、外周側に向かうほど大きな圧力損失が発生することになる。   Furthermore, as shown in FIG. 4, the flow rate adjusting plate 14b at the lower part of the inner peripheral winding and the flow rate adjusting plate 15b at the lower part of the outer peripheral winding are configured so that the width gradually increases from the inner peripheral side toward the outer peripheral side. Is also possible. In this case, the cross-sectional area of the flow path between adjacent flow rate adjusting plates gradually decreases from the inner peripheral side toward the outer peripheral side. In other words, the flow path area of the inlet is wide in the vertical duct on the inner circumference side, which is difficult to flow, and the flow path cross-sectional area of the inlet is narrow in the vertical duct on the outer circumference side, which tends to flow, so that a larger pressure loss occurs toward the outer circumference side. It will be.

したがって、内周側と外周側の垂直ダクトでガスを均一に流すことができ、巻線毎のガス流量制御ではなく、垂直ダクト毎のガス流量制御が可能となる。さらに、この流量調整板は各垂直ダクト毎に異なる幅を持たせて構成することも可能である。   Therefore, gas can be made to flow uniformly in the vertical ducts on the inner peripheral side and the outer peripheral side, and gas flow rate control for each vertical duct is possible instead of gas flow rate control for each winding. Further, the flow rate adjusting plate can be configured to have a different width for each vertical duct.

本発明の第1の実施形態における巻線部の概略図。Schematic of the winding part in the 1st Embodiment of this invention. 本発明の第2の実施形態における巻線部の概略図。Schematic of the winding part in the 2nd Embodiment of this invention. 本発明の第3の実施形態における流量調整板の平面図。The top view of the flow volume adjustment board in the 3rd Embodiment of this invention. 本発明の他の実施形態における流量調整板の形状および配置例を示す平面図。The top view which shows the shape and arrangement example of the flow volume adjustment board in other embodiment of this invention. 従来のガス絶縁変圧器の正面図と巻線部の詳細図。The front view of the conventional gas insulation transformer and the detailed drawing of a coil | winding part.

符号の説明Explanation of symbols

1…タンク
2…鉄心
3…内側巻線
4…外側巻線
5…絶縁ガス
6,6a…絶縁筒
7…垂直スペーサ
8…垂直ダクト
9…水平スペーサ
10…水平ダクト
11…冷却器
12…配管
13…送風機
14a,14b,14c,14d…内側流量調整板
15a,15b,15c,15d…外側流量調整板
16…開口部
17a,17b…穴
DESCRIPTION OF SYMBOLS 1 ... Tank 2 ... Iron core 3 ... Inner winding 4 ... Outer winding 5 ... Insulating gas 6, 6a ... Insulating cylinder 7 ... Vertical spacer 8 ... Vertical duct 9 ... Horizontal spacer 10 ... Horizontal duct 11 ... Cooler 12 ... Pipe 13 ... Blowers 14a, 14b, 14c, 14d ... Inner flow rate adjustment plates 15a, 15b, 15c, 15d ... Outer flow rate adjustment plates 16 ... Openings 17a, 17b ... Holes

Claims (7)

けい素鋼板を積層した鉄心と、前記鉄心の主脚部分に銅線を円筒状に巻回してなる低圧の内側巻線と高圧の外側巻線をそれぞれ複数同心円状に配置した多重円筒巻線と、各円筒巻線間に垂直スペーサを円周方向に等間隔に配置してなる垂直冷却ダクトと、前記円筒巻線の上下に水平スペーサを放射状かつ等間隔に配置してなる水平ダクトと、を備えたガス絶縁変圧器において、
前記内側巻線および外側巻線の上下端部の少なくとも一方と、前記水平スペーサとの間に、前記水平スペーサの位置に対応して、板状の流量調整部を設けたことを特徴とするガス絶縁変圧器。
An iron core in which silicon steel sheets are laminated, and a multi-cylindrical winding in which a plurality of low-voltage inner windings and a plurality of high-voltage outer windings are concentrically arranged around a main leg portion of the iron core in a cylindrical shape. A vertical cooling duct in which vertical spacers are arranged at equal intervals in the circumferential direction between the cylindrical windings, and a horizontal duct in which horizontal spacers are arranged radially and at equal intervals above and below the cylindrical windings, In the gas-insulated transformer provided,
A gas characterized in that a plate-like flow rate adjusting portion is provided between at least one of the upper and lower end portions of the inner winding and the outer winding and the horizontal spacer, corresponding to the position of the horizontal spacer. Isolation transformer.
前記流量調整部は、前記内側巻線および外側巻線の上下端部のいずれにも設けられたことを特徴とする請求項1記載のガス絶縁変圧器。   The gas-insulated transformer according to claim 1, wherein the flow rate adjusting unit is provided at both upper and lower ends of the inner winding and the outer winding. 前記垂直冷却ダクトと前記水平ダクトとにより、ガス流路が巻線の外周側から流入し内周側から流出されるように形成され、
前記流量調整部は、前記2つのダクトを流れるガスの上流側においてガスの流れ方向に対する板幅が広く形成され、ガス流の下流側においてガスの流れ方向に対する板幅が狭く形成されたことを特徴とする請求項1又は2記載のガス絶縁変圧器。
The vertical cooling duct and the horizontal duct are formed so that the gas flow path flows in from the outer peripheral side of the winding and flows out from the inner peripheral side,
The flow rate adjusting unit is formed with a wide plate width with respect to the gas flow direction on the upstream side of the gas flowing through the two ducts, and with a narrow plate width with respect to the gas flow direction on the downstream side of the gas flow. The gas insulation transformer according to claim 1 or 2.
前記流量調整部の板幅は、前記2つのダクトを流れるガスの上流側から下流側に向けて、除々に狭く構成されたことを特徴とする請求項3記載のガス絶縁変圧器。   The gas-insulated transformer according to claim 3, wherein a plate width of the flow rate adjusting portion is gradually narrowed from the upstream side to the downstream side of the gas flowing through the two ducts. 前記流量調整部は、前記各円筒巻線と、同心円状に配置されかつ内径及び外径が略同一なドーナツ形状からなり、
前記ドーナツ形状の流量調整部は、表面に複数の穴を備え、
前記複数の穴は、前記2つのダクトを流れるガスの上流側は大きく密に設けられ、下流側に向けて小さく粗に設けられていることを特徴とする請求項1記載のガス絶縁変圧器。
The flow rate adjusting portion is formed in a donut shape that is concentrically arranged with each cylindrical winding and has substantially the same inner diameter and outer diameter.
The donut-shaped flow rate adjustment unit has a plurality of holes on the surface,
2. The gas-insulated transformer according to claim 1, wherein the plurality of holes are provided densely on the upstream side of the gas flowing through the two ducts, and are provided small and coarse toward the downstream side.
前記流量調整部は、前記各円筒巻線と、同心円状に配置されかつ内径及び外径が略同一な扇形状を、複数配置してなり、
前記扇形状の流量調整部は、表面に複数の穴を備え、
前記複数の穴は、前記2つのダクトを流れるガスの上流側は大きく密に設けられ、下流側に向けて小さく粗に設けられていることを特徴とする請求項1記載のガス絶縁変圧器。
The flow rate adjusting unit is arranged in a plurality of fan shapes that are concentrically arranged with the cylindrical windings and have substantially the same inner diameter and outer diameter,
The fan-shaped flow rate adjusting unit includes a plurality of holes on the surface,
2. The gas-insulated transformer according to claim 1, wherein the plurality of holes are provided densely on the upstream side of the gas flowing through the two ducts, and are provided small and coarse toward the downstream side.
前記流量調整部と前記水平スペーサとは、接着固定されていることを特徴とする請求項1〜6のいずれか1項に記載のガス絶縁変圧器。   The gas-insulated transformer according to claim 1, wherein the flow rate adjusting unit and the horizontal spacer are bonded and fixed.
JP2006288311A 2006-10-24 2006-10-24 Gas insulated transformer Pending JP2008108802A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006288311A JP2008108802A (en) 2006-10-24 2006-10-24 Gas insulated transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006288311A JP2008108802A (en) 2006-10-24 2006-10-24 Gas insulated transformer

Publications (1)

Publication Number Publication Date
JP2008108802A true JP2008108802A (en) 2008-05-08

Family

ID=39441923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006288311A Pending JP2008108802A (en) 2006-10-24 2006-10-24 Gas insulated transformer

Country Status (1)

Country Link
JP (1) JP2008108802A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011258795A (en) * 2010-06-10 2011-12-22 Mitsubishi Electric Corp Transformer
JP2012004295A (en) * 2010-06-16 2012-01-05 Toshiba Industrial Products Manufacturing Corp Dryer of coil body and coil body
CN102576596A (en) * 2009-09-11 2012-07-11 Abb技术有限公司 Disc wound transformer with improved cooling
JP2016178287A (en) * 2015-03-19 2016-10-06 株式会社リコー Transformer and plasma generator
KR20180029755A (en) * 2016-09-13 2018-03-21 삼일변압기 주식회사 A Cooling Apparatus for Transformer
KR102108119B1 (en) * 2018-12-18 2020-05-07 송암시스콤 주식회사 A Dry Air Transformer Using Mixed Air

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102576596A (en) * 2009-09-11 2012-07-11 Abb技术有限公司 Disc wound transformer with improved cooling
JP2011258795A (en) * 2010-06-10 2011-12-22 Mitsubishi Electric Corp Transformer
JP2012004295A (en) * 2010-06-16 2012-01-05 Toshiba Industrial Products Manufacturing Corp Dryer of coil body and coil body
JP2016178287A (en) * 2015-03-19 2016-10-06 株式会社リコー Transformer and plasma generator
KR20180029755A (en) * 2016-09-13 2018-03-21 삼일변압기 주식회사 A Cooling Apparatus for Transformer
KR101887208B1 (en) * 2016-09-13 2018-08-09 삼일변압기 주식회사 A Cooling Apparatus for Transformer
KR102108119B1 (en) * 2018-12-18 2020-05-07 송암시스콤 주식회사 A Dry Air Transformer Using Mixed Air

Similar Documents

Publication Publication Date Title
WO2016201877A1 (en) Radial ventilation cooling structure for motor
JP2008108802A (en) Gas insulated transformer
TWI391963B (en) Transformer device
JP2011071190A (en) Multiple transformer device
EP2662959A2 (en) Rotating electric machine
CN108092426A (en) stator punching and stator core
CN207852445U (en) Phase-shifting rectifier transformer
CN108364762A (en) Phase-shifting rectifier transformer
US20080309176A1 (en) Method and apparatus for cooling generators
US20180053593A1 (en) Transformer embedded with thermally conductive member
KR20230070766A (en) Cooling assembly and device including same
JP5448185B2 (en) Transformer
CN2870100Y (en) Axial-feeding-air transformer
JP4764292B2 (en) Static induction machine
CN116667601B (en) Motor inner air path design with axial flow inner fan
JP2998407B2 (en) Cooling structure of electromagnetic induction disk winding
JP3516412B2 (en) Gas insulated stationary induction device
JP2000068127A (en) Oil-immersed electric apparatus
CN216599176U (en) Radial multi-parallel wind path inner-cooling type pumped storage generator motor rotor
CN219457316U (en) Square vertical winding coil with air duct
US20170047806A1 (en) Rotor assembly
JP2000077236A (en) Stationary induction device
KR200378055Y1 (en) Cooling structure for the transformer winding
JP2016082073A (en) Induction electric device winding apparatus
CN110838765A (en) Stator cooling system of synchronous phase modulator