CN204517793U - 一种提高晶振长期稳定度的装置 - Google Patents

一种提高晶振长期稳定度的装置 Download PDF

Info

Publication number
CN204517793U
CN204517793U CN201520337192.5U CN201520337192U CN204517793U CN 204517793 U CN204517793 U CN 204517793U CN 201520337192 U CN201520337192 U CN 201520337192U CN 204517793 U CN204517793 U CN 204517793U
Authority
CN
China
Prior art keywords
crystal oscillator
frequency
voltage
output
constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201520337192.5U
Other languages
English (en)
Inventor
吴成林
张泉
王崔州
杨晓东
吴洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu Xi Meng Electron Technology Co Ltd
Chengdu Simon Electronic Technology Co Ltd
Original Assignee
Chengdu Xi Meng Electron Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu Xi Meng Electron Technology Co Ltd filed Critical Chengdu Xi Meng Electron Technology Co Ltd
Priority to CN201520337192.5U priority Critical patent/CN204517793U/zh
Application granted granted Critical
Publication of CN204517793U publication Critical patent/CN204517793U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)

Abstract

本实用新型涉及一种提高晶振长期稳定度的装置,所述装置包括恒温晶体振荡器、分频器、鉴相器、基准电压源和比较器,其中,恒温晶体振荡器与分频器连接,鉴相器的输入端与分频器的输出端连接,比较器的反向输入端、同向输入端和输出端分别连接鉴相器的输出端、基准电压源和恒温晶体振荡器的压控电压端;本实用新型通过鉴相器对两个不同倍数的分频信号进行异频鉴频,再由比较器将鉴相器的鉴频电压与基准电压比较,产生误差信号电压并将误差信号电压作用于恒温晶体振荡器的压控电压端进行反馈调节,从而完成对恒温晶体振荡器的输出频率自动调节,使恒温晶体振荡器输出频率保持在一个固定的频率,以达到提升频率长期稳定度的目的。

Description

一种提高晶振长期稳定度的装置
技术领域
本实用新型涉及一种提高晶振长期稳定度的装置,特别设计一种应用了微波锁相环技术的提高晶振长期稳定度的装置。
背景技术
现代社会,在卫星导航、通讯、广播、雷达、精确制导、电子对抗、遥控遥测等各种领域,晶体振荡器都是必不可少的部件,而且对于晶体振荡器的频率准确度要求越来越高。
业界已经利用温度补偿技术设计了恒温晶体振荡器(OCXO),其频率稳定度有了极大的改善。但是随着时间的推移,即使是恒温晶体振荡器,其频率准确度也会逐渐恶化,其主要原因包括老化、外界环境变化、压控电压的失调等。晶体振荡器老化的主要原因是质量效应和应力效应,是不可避免的误差项,而外界环境变化、压控电压失调,同样也是不可避免的。因此在晶体谐振器使用一段时间后,其频率准确度必然恶化。但不管是老化、外界环境变化、压控电压的失调中哪一种因素,或是共同作用造成的频率准确度恶化,都可以通过调整晶体谐振器的压控端电压来校准补偿其频率偏移。
目前晶体振荡器为了获得更高的长期频率稳定性,采用的技术方法主要有:
(1)基于GPS与北斗双模授时的压控晶体振荡器校准
利用GPS或北斗系统中稳定度较高的1pps(Pulse Per Second)信号与晶体振荡器分频后得到1pps的修正信号,对修正信号进行鉴频、滤波、EFC(Electrical Frequency Control)等处理,然后将得到的误差信号电压数值送入D/A转换器转换为电压值,将该电压值送入晶体振荡器调谐端,来修正晶体振荡器的频率偏移。
基于GPS与北斗双模授时的压控晶体振荡器的校准方法对于专门的晶体振荡器校准系统来说十分有效,但应用在频率计数器、脉冲调制域分析仪等测试仪器上的晶体振荡器需要校准时。该方法集成度有限,不利于集成到空间有限的印制板上。
(2)数字稳频补偿
通过对晶振工作时的输出频率进行长期测量,拟合出晶振的老化曲线,利用图形解析处理方法根据老化率曲线生成一组时间对频率值的数组,通过控制系统计算出对应的老化率DAC数组,从而对晶体振荡器的频率进行数字稳频补偿。
数字稳频补偿是对晶振的老化曲线进行的拟合补偿,而且相同工艺下的每只晶振的老化曲线也是不尽相同的,这种补偿的方法也只能是大致近似,不适用于准确度要求高的应用领域。
(3)BVA晶体振荡器
通过严密的工艺制作BVA石英谐振器(无电极式谐振器),由于BVA石英谐振器不存在电极膜应力老化影响,其表面损耗大大地降低了。采用SC切制作的BVA石英谐振器,其晶振的频率稳定度达10-14/s、日频率稳定度达5×10-12/d,其性能指标非常接近原子钟的性能指标。
但由于BVA振荡器制作的工艺条件要求极其苛刻,其制作成本昂贵,其工艺流程复杂,不适合批量生产和广泛地使用。
因此存在开发一种结构简单、制作成本低廉且提高晶振输出频率长期稳定度的装置的需要。
实用新型内容
为提供一种结构简单、制作成本低廉且提高晶振输出频率长期稳定度的装置,本实用新型采用以下技术方案。
本实用新型中的提高晶振长期稳定度的装置,其包括恒温晶体振荡器、分频器、鉴相器、基准电压源和比较器;
所述恒温晶体振荡器与所述分频器连接,所述分频器对所述恒温晶体振荡器的输出频率进行两个具有不同分频比的分频;
所述鉴相器的输入端与所述分频器的输出端连接,所述鉴相器对由所述分频器输出的第一分频信号和第二分频信号进行鉴频;
所述比较器的反向输入端和同向输入端分别连接所述鉴相器的输出端和所述基准电压源,其输出端连接所述恒温晶体振荡器的压控电压端,所述比较器比较所述鉴相器的鉴频电压和所述基准电压源提供的基准电压而输出误差信号电压至所述恒温晶体振荡器的压控电压端,以调节所述恒温晶体振荡器的输出频率。
根据一种优选的实施方式,所述装置还包括滤波器,所述滤波器设置在所述比较器的输出端与所述恒温晶体振荡器的压控电压端之间。
根据一种优选的实施方式,所述装置还包括微处理器、开关、AD/DA转换器;
其中,所述微处理器通过AD/DA转换器的AD电路与所述滤波器的输出端连接,通过AD/DA转换器的DA电路与开关的一个输入端连接;所述开关的控制端与所述微处理器连接,其另一个输入端与所述滤波器的输出端连接,其输出端与所述恒温晶体振荡器的压控电压端连接;以使所述微处理器定时地控制开关切换锁相电路接入和撤出。
根据一种优选的实施方式,所述鉴相器的鉴频区间始终包括第一分频信号和第二分频信号的频率,并且所述鉴相器的死区始终小于所述第一分频信号和第二分频信号的等效鉴相周期之差。
本实用新型的有益效果在于:本实用新型通过异频锁相电路及其锁相环的负反馈作用完成对恒温晶体振荡器频率准确度的自我调节,并将其输出频率的稳定度锁定在基准电压源上,大大提高了恒温晶体振荡器的长期稳定度,并且结构简单,成本低廉,能够满足许多领域的应用需求。
附图说明
图1是本实用新型提高晶振长期稳定度装置的原理图;
图2是本实用新型装置第一实施例示意图;
图3是本实用新型装置第一实施例的传递函数框图;
图4是本实用新型装置第二实施例示意图;
图5是本实用新型中分频信号的波形示意图;
图6是本实用新型中鉴频电压的波形示意图;
图7是本实用新型中误差信号电压的波形示意图。
附图标记列表
1:恒温晶体振荡器 2:分频器  3:鉴相器
4:基准电压源     5:比较器  6:滤波器
7:微处理器       8:开关    9:AD/DA转换器
具体实施方式
下面结合附图进行详细说明。
图1是本实用新型提高晶振长期稳定度装置的原理图,其包括恒温晶体振荡器1、分频器2、鉴相器3、基准电压源4和比较器5;恒温晶体振荡器1与分频器2的输入端连接,鉴相器3的输入端与分频器2的输出端连接,鉴相器3接收分频器2传输的分频信号;比较器5的反向输入端和同向输入端分别连接鉴相器3的输出端和基准电压源4,比较器5的输出端连接恒温晶体振荡器1的压控电压端。
本实用新型的提高晶振长期稳定度装置的工作原理:分频器2对恒温晶体振荡器1输出频率进行具有不同分频比的分频,并输出第一分频信号和第二分频信号至鉴相器3;鉴相器3根据第一分频信号与第二分频信号的频率差而输出相应的鉴频电压至比较器5;比较器5比较基准电压源4的基准电压和鉴相器3输出的鉴频电压并输出相应的误差信号电压至恒温晶体振荡器1的压控电压端,以调节所述恒温晶体振荡器的输出频率。
图2是本实用新型装置第一实施例的原理图,本实施例在本实用新型装置的基础结构上增加滤波器6,将滤波器6设置在比较器5的输出端与恒温晶体振荡器1的压控电压端之间,通过滤波器6对比较器5输出的误差信号电压进行滤波,可减少误差信号电压的交流分量,有助于提高误差信号电压的准确度。
图3是本实用新型装置第一实施例的传递函数框图,其中,Vref为基准电压源4提供的基准电压,Vd为鉴相器3输出的鉴频电压,Ve为比较器5输出的误差信号电压,Vt为经滤波器6滤波后与误差信号电压相关的调谐电压,K为比较器5的放大增益,F(S)为滤波器6的传递函数,fout为恒温晶体振荡器1的输出频率,θ0为恒温晶体振荡器1的输出相位,θ1和θ2分别为分频器2输出的分频比为M和N的分频信号的相位。
根据经典锁相环的拉普拉斯变换理论,有如下关系。
θ0=K0*Vt(s)/s    (1)
Vt(s)=K*F(s)*Ve(s)    (2)
Ve(s)=Vref(s)-Vd(s)    (3)
Vd(s)=Kd*(θ1(s)-θ2(s))=Kd0(s)*(1/M-1/N)   (4)
其中,K0为恒温晶振的增益因子,Kd为鉴相器鉴频增益。
因此,在比较器5的输入端得到的开环传递函数G(s)为:
G(s)=Vd(s)/Ve(s)=[Kd*(1/M-1/N)*K0*K*F(s)]/s   (5)
根据上述等式对锁相电路的闭环传递函数进行定性分析,其中,当fout增大时,根据数学关系相位是频率的积分,则θ0增大;由于θ0增大,根据等式4,Vd增大;由于Vd增大,根据等式3,Ve减小;由于Ve减小,根据等式2,Vt减小;由于Vt减小,根据恒温晶体振荡器1的压控电压端电压与其输出频率的正相关性,fout减小。
同理,当fout减小时,经过闭环传递函数传递后的结果是fout增大。所以,本实用新型的异频锁相电路的锁相环具有负反馈作用,同时由于锁相环的负反馈作用,恒温晶体振荡器1的输出频率就只与Vref相关,从而达到fout自我稳定的目的。
当本实用新型的异频锁相电路中的元件确定时,即K0,Kd,K的值都确定,只需要选择M和N的值,即可提供恒温晶体振荡器1的长期稳定度。因此,本实用新型的异频锁相电路结构简单,根据需要选择合适的元件,可在一定程度上降低成本。
图4是本实用新型装置第二实施例的原理图,本实施例在第一实施例的基础上增加微处理器7、开关8、AD/DA转换器9,以实现锁相电路的定时接入和撤除。
其中,微处理器7的I/O端口与AD/DA转换器9的数据端口对应相连,微处理器7的D11~D15的I/O端口通过AD/DA转换器9的AD电路与滤波器6的输出端连接,微处理器7的D21~D25的I/O端口通过AD/DA转换器9的DA电路与开关8的一个输入端连接;开关8的控制端与微处理器7连接,开关8的另一个输入端与滤波器6的输出端连接,开关8的输出端与恒温晶体振荡器1的压控电压端连接;以使微处理器7定时地控制开关8切换锁相电路接入和撤出。从而降低异频锁相电路对恒温晶体振荡器1的相噪影响。
具体的,微处理器7开始按照设定时间计时,锁相电路为接入状态,滤波器6的输出端和恒温晶体振荡器1的压控电压端连接,实现误差信号电压对恒温晶体振荡器1的输出频率的调控。在自我调节完成后,微处理器7通过AD/DA转换器9的AD电路读取此次的调谐电压Vt并储存,再通过AD/DA转换器9的DA电路输出VO(VO=Vt)来保持恒温晶体振荡器1的压控电压端处于校准后的状态,当微处理器7的达到设定时间时,微处理器7输出一个控制信号至开关8的控制端,开关8状态切换,使AD/DA转换器9的DA电路与恒温晶体振荡器1的压控电压端连接,即将锁相环电路撤除。本实施例中的微处理器7可采用ARM9系列微处理器。
本实用新型中的鉴相器3可采用ADF4002,分频器2可以是整数分频器,也可以是小数分频器或者DDS(直接数字频率合成)器件等。比较器5可采用OP184。滤波器6可采用二阶低通滤波器。
其中,通常由于鉴相器3会存在死区,即当两个输入信号的等效鉴相周期之差小于死区时,鉴相器3将会丢失这部分鉴相脉冲的输出,导致不能完整地反应输入信号的频差或者相差信息。
如图5所示,在异频鉴相过程中,第一分频信号和第二分频信号的频率为f1和f2,且f1≠f2,f1=A*fc,f2=B*fc,fc为f1和f2的最大公因子频率,f0=A*B*fc,T0=1/A*B*fc,f0为等效鉴相频率,T0为等效鉴相周期。
本实用新型装置在异频锁定的过程会使f1*B=f2*A等式成立,即f1和f2的等效鉴相周期相等且等于T0,鉴相器3输出的鉴相电压Vd是一个固定的交流波形,经过滤波器6后得到一个固定的调谐电压Vt
若在锁定过程中,f1*B=f2*A等式不成立,等效鉴相频率f0的交流波形会发生变化,调谐电压Vt的大小也相应地变化并调节恒温晶体振荡器1的输出频率大小,使得f1*B=f2*A等式成立,完成异频锁定;而在鉴相时,由于第一分频信号和第二分频信号的等效鉴相周期T01和T02非常接近,会存在上升沿同时到达的情况而使鉴相器3在死区的时间范围内没有鉴相电压的输出,造成恒温晶体振荡器1的输出频率误差。
因此,为保证鉴相器3能反应第一分频信号和第二分频信号的频率差的微小变化,鉴相器3的死区应始终小于第一分频信号与第二分频信号的等效鉴相周期之差。从而保证鉴相器3输出的鉴频电压的准确度。
结合图1中本实用新型提高晶振长期稳定度装置的基本原理图,本实用新型的工作原理如下:
通过分频器2按照其设置的两个不同的分频比,对恒温晶体振荡器1的输出频率进行两个分频,并输出第一分频信号和第二分频信号至鉴相器3。
由鉴相器3根据第一分频信号与第二分频信号的频差而输出相应的鉴频电压至比较器5;再通过比较器5比较由基准电压源4输入的同相输入端电压和由鉴相器3输入的反向输入端电压,并输出相应的误差信号电压至恒温晶体振荡器1的压控电压端;通过误差信号电压来调节恒温晶体振荡器1的输出频率并将恒温晶体振荡器1的稳定度锁定在基准电压源4的基准电压上。
具体的,如图5,其中,分频器2输出的第一分频信号和第二分频信号的频率分别为f1和f2。由于鉴相器3是通过f1和f2的上升沿比对进行误差输出,鉴相器3在第一分频信号的上升沿时,鉴相器输出信号置1,在第二分频信号的上升沿时,鉴相器输出信号置0,最终得到等效鉴频频率f0
如图6,其中,Um为鉴频电压的最低电压,Vpp为鉴频电压的峰值电压。鉴相器3无论采用脉冲平均的方法或者是脉冲取样的方法,鉴相器3输出的鉴频电压Vd将是一个呈现周期变化的一组锯齿波形。
如图7,其中,在比较器5通过比较鉴频电压Vd和基准电压Vref后,而相应地输出误差信号电压Ve,其过程为通过基准电压Vref将鉴频电压Vd的锯齿波形下移Um电压,而得到的误差信号电压Ve是以零电压为最低电压的周期性变化的锯齿波形,即Ve=Vd-Vref=Vd-Um;因此,误差信号电压Ve也是呈周期变化的一组锯齿波形。
结合本实用新型的第一实施例,在比较器5的输出端与恒温晶体振荡器1的压控电压端之间对误差信号电压Ve进行滤波,误差信号电压Ve经过滤波器6后得到调谐电压Vt,其中,调谐电压Vt为误差信号电压Ve滤除高频成分和误差分量后得到的更平滑的直流电压,该电压的大小与Ve周期和峰值相关的,相当于是误差信号电压Ve的有效值电压的作用。
进一步地,当锁相电路没有完全锁定时,f1和f2不是严格按照设定的比例关系,会存在微小的相位偏差,则会使误差信号电压Ve的周期和峰值产生变化,从而通过Vt控制恒温晶体振荡器的输出频率趋于锁定;而当锁相电路锁定后,系统就形成负反馈回路,f1和f2严格满足所设定的比例关系,恒温晶体振荡器1的输出频率受误差信号电压Vt稳定的控制,相当于恒温晶体振荡器1的输出的频率锁定在基准电压Vref上,因此,可选择具有较高稳定度的基准电压源4来保证恒温晶体振荡器1的长期稳定度。
精密的基准电压源的长期稳定度一般为几十至几百PPM/年,较好的能做到几个PPM/年,以50PPM/年的普通基准电压源为例,假设基准电压Vref为2V,其年老化波动电压为:2*50*10-6*103=0.1V,其中103为比较器5的放大增益;恒温晶体振荡器1在12V的调谐范围内,其频率调谐范围为2PPM;由于基准电压Vref带来的恒温晶体振荡器1输出频率漂移为2*0.1/12=0.02PPM/年,达到了10-8/年(10-11/天)量级的长期稳定度。
本实用新型只要选择具有较高稳定度的基准电压源4以及选用合适的环路参数,便可提高恒温晶体振荡器1的长期稳定度。
结合本实用新型的第二实施例,通过微处理器7定时地控制开关8的切换,实现锁相回路的接入或撤除,在撤除锁相回路时,保持撤除锁相回路前一刻的调谐电压Vt,使恒温晶体振荡器1的输出频率保持短期稳定,同时降低异频锁相电路对恒温晶体振荡器1的相噪影响;在接入锁相回路时,则重新相应的产生调谐电压Vt来调节恒温晶体振荡器1的输出频率。
在本实用新型中,是通过在分频器2上设置的两个不同的分频比而输出两个频率不一样的信号,设置两个信号的分频比与恒温晶体振荡器的输出频率及稳定度、基准电压源的稳定度,鉴相器的死区都有关,设第一分频信号的分频比为M,第二分频信号的分频比为N,M和N值的确定方法如下:
假设第一分频信号和第二分频信号的频率分别为f1和f2,对应周期为t1和t2,根据鉴相器3死区的定义,设死区为1ps,那么在|t1—t2|≤1ps时,鉴相器将没有反应而不能响应频差或相差变化。
由于最小的可检测频差是由鉴相器死区决定的,所以有:
Δ f = f 1 - f 2 = 1 t 1 - 1 t 2 = t 2 - t 1 t 1 * t 2 - - - ( 6 )
△f=f1*f2*1*10-12≈f1*f1*1*10-12   (7)
其中,1ps=1*10-12s;f1=fout/N,fout是恒温晶体振荡器1的输出频率,根据等式7:
△f=f12*10-12=(fout/N)2*10-12   (8)
△f/(fout/N)=(fout/N)*10-12   (9)
其中△f/(fout/N)为恒温晶体振荡器1的频率稳定度,根据本实用新型的工作原理,在锁相电路中恒温晶体振荡器1的稳定度锁定在基准电压源4上,当基准电压源4的选型确定,恒温晶体振荡器1的稳定度应不低于基准电压4的稳定度,本实用新型中假设恒温晶体振荡器1要求达到的稳定度为10-8/年,根据等式9:
10-8=(fout/N)*10-12   (10)
根据等式10可知,当恒温晶体振荡器1的输出频率fout确定时,分频比N的最小值是可以确定的。本实用新型选择的恒温晶体振荡器1输出频率fout为100MHz,则N≥104
设恒温晶体振荡器1的输出频率fout变化1Hz时,此时鉴频信号f0的频率为:
(fout+1)*(1/N-1/M)=fout*(1/N-1/M)+(1/N-1/M)   (11)
其中,fout*(1/N-1/M)为初始的鉴频频差,(1/N-1/M)为鉴相器3能够有鉴频输出的最小频差。设N=104,即f1=10KHz。根据等式(6):
1/N-1/M≥10-4   (12)
设M=X*N,则X-1≥1;即X≥2;取X的最小值,则M=2*104
即输入鉴相器3的异第一分频信号和第二分频信号的频率分别为10KHz和5KHz。因此,本实用新型在在满足特定输出频率、特定要求的长期稳定度和特定鉴相器死区条件下确定了M和N的取值范围。
需要注意的是,上述具体实施例是示例性的,本领域技术人员可以在本实用新型公开内容的启发下想出各种解决方案,而这些解决方案也都属于本实用新型的公开范围并落入本实用新型的保护范围之内。本领域技术人员应该明白,本实用新型说明书及其附图均为说明性而并非构成对权利要求的限制。本实用新型的保护范围由权利要求及其等同物限定。

Claims (4)

1.一种提高晶振长期稳定度的装置,其特征在于,所述装置包括恒温晶体振荡器(1)、分频器(2)、鉴相器(3)、基准电压源(4)和比较器(5);
所述恒温晶体振荡器(1)与所述分频器(2)连接,所述分频器(2)对所述恒温晶体振荡器(1)的输出频率进行两个具有不同分频比的分频;
所述鉴相器(3)的输入端与所述分频器(2)的输出端连接,所述鉴相器(3)对由所述分频器(2)输出的第一分频信号和第二分频信号进行鉴频;
所述比较器(5)的反向输入端和同向输入端分别连接所述鉴相器(3)的输出端和所述基准电压源(4),其输出端连接所述恒温晶体振荡器(1)的压控电压端,所述比较器(5)比较所述鉴相器(3)的鉴频电压和所述基准电压源(4)提供的基准电压而输出误差信号电压至所述恒温晶体振荡器(1)的压控电压端,以调节所述恒温晶体振荡器(1)的输出频率。
2.根据权利要求1所述的提高晶振长期稳定度的装置,其特征在于,所述装置还包括滤波器(6),所述滤波器(6)设置在所述比较器(5)的输出端与所述恒温晶体振荡器(1)的压控电压端之间。
3.根据权利要求2所述的提高晶振长期稳定度的装置,其特征在于,所述装置还包括微处理器(7)、开关(8)、AD/DA转换器(9);
其中,所述微处理器(7)通过AD/DA转换器(9)的AD电路与所述滤波器(6)的输出端连接,通过AD/DA转换器(9)的DA电路与开关(8)的一个输入端连接;所述开关(8)的控制端与所述微处理器(7)连接,其另一个输入端与所述滤波器(6)的输出端连接,其输出端与所述恒温晶体振荡器(1)的压控电压端连接;以使所述微处理器(7)定时地控制开关(8)切换锁相电路接入和撤出。
4.根据权利要求1所述的提高晶振长期稳定度的装置,其特征在于,所述鉴相器(3)的鉴频区间始终包括第一分频信号和第二分频信号的频率,并且所述鉴相器(3)的死区始终小于所述第一分频信号和第二分频信号的等效鉴相周期之差。
CN201520337192.5U 2015-05-22 2015-05-22 一种提高晶振长期稳定度的装置 Active CN204517793U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201520337192.5U CN204517793U (zh) 2015-05-22 2015-05-22 一种提高晶振长期稳定度的装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201520337192.5U CN204517793U (zh) 2015-05-22 2015-05-22 一种提高晶振长期稳定度的装置

Publications (1)

Publication Number Publication Date
CN204517793U true CN204517793U (zh) 2015-07-29

Family

ID=53715721

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201520337192.5U Active CN204517793U (zh) 2015-05-22 2015-05-22 一种提高晶振长期稳定度的装置

Country Status (1)

Country Link
CN (1) CN204517793U (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016188008A1 (zh) * 2015-05-22 2016-12-01 成都西蒙电子技术有限公司 一种提高晶振长期稳定度的装置和方法
WO2022252614A1 (zh) * 2021-06-01 2022-12-08 中国科学院地质与地球物理研究所 一种恒温晶振的实时校正方法和电磁接收机
US11545933B2 (en) 2021-06-01 2023-01-03 Institute Of Geology And Geophysics, Chinese Academy Of Sciences Real-time correction method for oven controlled crystal oscillator and electromagnetic receiver

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016188008A1 (zh) * 2015-05-22 2016-12-01 成都西蒙电子技术有限公司 一种提高晶振长期稳定度的装置和方法
WO2022252614A1 (zh) * 2021-06-01 2022-12-08 中国科学院地质与地球物理研究所 一种恒温晶振的实时校正方法和电磁接收机
US11545933B2 (en) 2021-06-01 2023-01-03 Institute Of Geology And Geophysics, Chinese Academy Of Sciences Real-time correction method for oven controlled crystal oscillator and electromagnetic receiver

Similar Documents

Publication Publication Date Title
CN104836578A (zh) 一种提高晶振长期稳定度的装置和方法
US8237482B2 (en) Circuit and method for generating a clock signal
CN101091316B (zh) 用于vco中心频率调谐和限制增益变化的方法和设备
CN204517793U (zh) 一种提高晶振长期稳定度的装置
CN100587504C (zh) 一种数字同步采样方法
CN105049040B (zh) 一种利用gnss校正相干布居囚禁原子钟输出频率的方法
CN107257240B (zh) 一种晶体振荡器的数字温度补偿方法
CN103490774B (zh) 振荡器的校准装置及校准方法
CN102299711B (zh) 基于充电泵的频率调变器
CN207218667U (zh) 一种卫星导航时间修正装置
CN102075181B (zh) 频率合成器及锁频环
CN109104187B (zh) 一种全数字宽带频率综合器
US4931749A (en) Phase locked loop sweep frequency synthesizer
CN102082658B (zh) 一种提高目的时钟频率稳定度的方法及装置
CN106199184A (zh) 一种具有快速锁相功能的频谱分析仪
CN115694413A (zh) 恒温晶体振荡器的频率校准方法和系统
CN203366002U (zh) 一种原子钟
CN103746953B (zh) 一种产生调频波基带信号的方法及装置
US9800251B2 (en) Loop parameter sensor using repetitive phase errors
CN103326719A (zh) 一种用于原子频标的压控晶振装置
CN105577185B (zh) Osc频率自动校准电路及自动校准方法
Helsby GPS disciplined offset-frequency quartz oscillator
CN202841100U (zh) 一种消除原子频标频率跳变的装置和原子频标
CN102751987B (zh) 提高原子频标短期稳定度指标的方法、装置及原子频标
CN105577177A (zh) 一种局部频偏相位噪声可控的频率源

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant