CN204314878U - 一种锂电池分数阶变阶等效电路模型 - Google Patents

一种锂电池分数阶变阶等效电路模型 Download PDF

Info

Publication number
CN204314878U
CN204314878U CN201420814965.XU CN201420814965U CN204314878U CN 204314878 U CN204314878 U CN 204314878U CN 201420814965 U CN201420814965 U CN 201420814965U CN 204314878 U CN204314878 U CN 204314878U
Authority
CN
China
Prior art keywords
fractional order
model
battery
foe
electric capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201420814965.XU
Other languages
English (en)
Inventor
张承慧
商云龙
张奇
崔纳新
李泽元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University
Original Assignee
Shandong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University filed Critical Shandong University
Priority to CN201420814965.XU priority Critical patent/CN204314878U/zh
Application granted granted Critical
Publication of CN204314878U publication Critical patent/CN204314878U/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

本实用新型公开了一种锂电池分数阶变阶等效电路模型,包括运行时间电路及电池I-V特性电路,电池I-V特性电路中的电容采用变阶的分数阶电容。本实用新型将二阶RC电路模型推广到非整数阶,并基于最小二乘法辨识不同SOC处的模型参数和分数阶阶数,从而获得一个根据SOC变阶的分数阶等效电路模型。分数阶的引入实现了模型阶数的连续变化,使得模型更加稳定、动态性能更优、精度更高;分数阶的变阶实现了模型更多的自由度、更大的柔性和新意。由于未增加RC网络的个数,本实用新型的分数阶模型有效解决了模型准确性和实用性之间的矛盾,适用于电池的各种工况,具有较高的实用价值,为SOC的精确估计提供了一个精确且易实现的电池模型。

Description

一种锂电池分数阶变阶等效电路模型
技术领域
本实用新型涉及一种锂电池分数阶变阶等效电路模型及其辨识方法。
背景技术
为了应对能源危机和环境污染,电动汽车应运而生并已成为全世界关注的焦点。车载动力电池作为电动汽车的关键部件,其性能对整车的动力性、经济性和安全性至关重要,是制约电动汽车规模发展的关键因素。锂电池具能量密度高、使用寿命长、性价比好和单体电压高等优点,逐步成为混合动力汽车或纯电动汽车的动力源之一。精确的电池模型对车载动力锂电池的合理设计和安全运行具有重要意义,是电池SOC(荷电状态)、SOH(健康状态)估算方法的基础。
然而,建立一个精确且结构简单的电池模型绝非易事,这是因为锂电池内部的化学反应涉及电能、化学能、热能的复杂转换,具有高度的非线性和不确定性。目前,常用的电池模型按建模机理的不同可为以下五类:①电化学模型、②分析模型、③随机模型、④神经网络模型和⑤等效电路模型。其中,等效电路模型因其简单直观的形式以及适宜于电气设计与仿真等优点已成为被广泛运用的一种新模型。在等效电路模型中,二阶RC模型相比其他等效电路模型物理意义清晰、模型参数辨识试验容易执行、参数辨识方法系统、模型精度较高,可以更加准确、直观地模拟电池的动态特性。但是,二阶RC模型在电池充放电初期和末期,由于模型阶数较低,存在较大的拟合误差,不能精确地模拟电池的动静态特性。增加RC的串联阶数虽然可以提高电池模型的准确性,能更好的模拟动力电池的充放电特性,但是如果动力电池模型的阶数过高,将不利于获取模型中的参数,并且也会大大增加模型的计算量,甚至会导致系统震荡,所以另一方面也应该限制RC的阶数。因此,定结构等效电路模型难以描述锂电池两端陡中间平的非线性电压特性,不能解决模型的准确性和实用性之间的矛盾。
为此,中国实用新型专利申请(申请号201410185885.7)和实用新型(专利号ZL201420226360.9)提出了一种基于AIC准则的变阶RC等效电路模型,通过略微增加模型的复杂度,能更加准确地描述锂电池两端陡中间平的非线性电压特性,误差在0.04V以内,有效解决了模型复杂度和实用性之间的矛盾,具有较高的实用价值。但是,该模型是整数阶的电池模型,模型的切换只能是整数阶的变化,因此模型阶数波动大,不符合自然界中渐变的发展规律,因此模型精度受到很大的限制。事实上,电池内部电化学反应过程极其复杂,包括导电离子转移、内部电化学反应、充放电迟滞效应以及浓差扩散效应等,表现出较强的非线 性特性,更适合用分数阶模型来模拟。对比整数阶模型,分数阶电池模型在设计上具有更多的自由度、更大的柔性和新意。同时,它们的引入也增加了许多新的现象和规律,具有常规整数阶电池模型无法实现的优越。
实用新型内容
为解决现有技术存在的不足,本实用新型公开了一种锂电池分数阶变阶等效电路模型及其辨识方法,根据锂离子电池的电化学反应原理,传统二阶RC等效电路模型使用两个整数阶的RC网络描述电池的极化效应和浓差效应,本实用新型将模型的两个整数阶RC网络推广到非整数阶(分数阶),并基于最小二乘法辨识不同SOC处的模型参数和阶次,从而获得了一个根据SOC变阶的分数阶等效电路模型。分数阶的引入实现了模型阶数的连续变化,使得模型更加稳定、动态性能更优、精度更高。由于增加了分数阶变阶参数,模型获得了更多的自由度、更大的柔性和新意。该模型是在传统二阶RC模型的基础上实现的,并未增加模型RC网络的个数,有效解决了模型精度和简便性之间的矛盾,具有较高的实用价值。
为实现上述目的,本实用新型的具体方案如下:
一种锂电池分数阶变阶等效电路模型,包括运行时间电路及电池I-V特性电路,所述运行时间电路及电池I-V特性电路通过电流控制电流源及电压控制电压源进行信号传输;所述运行时间电路包括电池的自放电电阻Rd及电容CQ,电阻Rd与电容CQ并联在电流控制电流源的两端,电流控制电流源的一端接地;所述电池I-V特性电路的电压控制电压源的正极端与两个相并联的RC网络支路的一端相连,负极端与电池模型的负极端相连,所述两个相并联的RC网络支路的每一个支路均包括两个相串联的分数阶RC回路和一个内阻Ro,所述两个相并联的RC网络支路的另一端与电池模型的正极端相连。
所述电池I-V特性电路中两个相并联的RC网络支路中,放电支路包括依次串联的二极管Dd、分数阶电容FOE1d与电阻R1d组成的分数阶RC回路、分数阶电容FOE2d与电阻R2d组成的分数阶RC回路及电阻Rod
充电支路包括依次串联的反接二极管Dd、分数阶电容FOE1c与电阻R1c组成的分数阶RC回路、分数阶电容FOE2c与电阻R2c组成的分数阶RC回路及电阻Roc
所述运行时间电路和I-V特性电路通过一个电流控制电流源及电压控制电压源建立联系,当对电池进行充放电时,负载电流ibat通过电流控制电流源对电容CQ进行充放电,改变CQ存储的电量,表征电池SOC的变化,CQ两端电压OCV也随之变化,I-V特性电路的受控电压源OCV随SOC的变化而变化。
所述电容CQ表示电池的可用容量,CQ=3600·CAh·f1·f2,其中,CAh为用安时为单位的电池容量,f1和f2分别是电池循环寿命和温度的修正因子。
所述电流控制电流源的电流为电池的端电流ibat,当电池进行充放电时负载电流ibat通过电流控制电流源对电容CQ进行充放电,改变电容CQ中存储的电量,从而表征电池SOC的变化。
所述电流控制电流源的两端的电压为电池开路电压OCV。
两个相并联的RC网络支路分别是RC网络放电支路和RC网络充电支路,两个RC网络支路中的电容均为分数阶电容。
所述RC网络放电支路分数阶元件FOE1d和FOE2d的阶数α,β随电池SOC状态不同而变化,且满足0≤αd,βd≤1。当αd,βd=0时,分数阶元件FOE等效为一电阻,当αd,βd=1时,分数阶元件FOE等效为一整数阶电容;当0<αd,βd<1时,分数阶元件FOE为一分数阶电容;
所述RC网络充电支路分数阶元件FOE1c和FOE2c的阶数α,β随电池SOC状态不同而变化,且满足0≤αc,βc≤1。当αc,βc=0时,分数阶元件FOE等效为一电阻,当αc,βc=1时,分数阶元件FOE等效为一整数阶电容;当0<αc,βc<1时,分数阶元件FOE为一分数阶电容。
一种锂电池分数阶变阶等效电路模型的辨识方法,包括以下步骤:
步骤一:写出锂电池的放电过程和静置状态的分数阶数学模型表达式;
步骤二:对锂电池进行恒流充放电,得到电池模型的可用容量CQ和自放电电阻Rd
步骤三:对锂电池进行脉冲放电测试,获取不同SOC处电池开始放电时的电池端电压的瞬间下降值、放电结束后电池端电压的瞬间跃升值、放电电流以及电池端电压的零输入响应等数据;
步骤四:根据步骤三获得的数据,基于最小二乘法辨识模型的参数和阶数;
步骤五:根据步骤四计算得到的电池模型参数计算不同SOC处的开路电压OCV、欧姆内阻R0d、电化学极化内阻R1d、电化学极化分数阶电容FOE1d、浓差极化内阻R2d和浓差极化分数阶电容FOE2d
步骤六:根据步骤五得到的模型参数,基于最小二乘法辨识开路电压OCV、欧姆内阻R0d、电化学极化内阻R1d、电化学极化分数阶电容FOE1d、浓差极化内阻R2d和浓差极化分数阶电容FOE2d与SOC间的关系;
步骤七:根据步骤二至六获得的参数,在Matlab中搭建锂电池分数阶变阶等效电路模型。
放电过程中锂电池的端电压可表示为:
U bat = OCV d - i dis &CenterDot; R 0 d - U 1 d ( 0 + ) &CenterDot; ( 1 - e - t &alpha; / &tau; 1 d ) - U 2 d ( 0 + ) &CenterDot; ( 1 - e t &beta; / &tau; 2 d ) - - - ( 1 )
式中,Ubat为电池端电压;R0d为欧姆内阻;OCVd为放电开路电压;α,β为分数阶元件FOE1d和FOE2d的阶数,满足0<α,β≤1;idis为放电电流;τ1d2d分别为两个RC网络的时间常数。
当α,β=0时,分数阶元件FOE等效为一电阻,当α,β=1时,分数阶元件FOE等效为一电容;
U1d(0+)和U2d(0+)为电池放电结束瞬间两个分数阶RC支路的端电压初值,其值可表述为:
U1d(0+)=idis·R1d  (2) 
U2d(0+)=idis·R2d  (3) 
电池放电结束后,电池的端电压可表示为:
U bat = OCV d - U 1 d ( 0 + ) &CenterDot; e - t &alpha; / &tau; 1 d - U 2 d ( 0 + ) &CenterDot; e t &beta; / &tau; 2 d - - - ( 4 )
式中,电池的极化电压随着时间的增长而逐渐减小,当t→∞时,趋于0,此时电池端电压Ubat等于电池的开路电压OCV。
所述步骤五的具体过程为:由于电池欧姆内阻的存在,当电池放电时,电池端电压会瞬间跌落,其值记为ΔU1;当电池停止放电时,电池端电压会瞬间跃升,其值记为ΔU2,因此,电池的欧姆内阻R0可由下式得到:
R 0 = &Delta; U 1 + &Delta; U 2 2 i bat - - - ( 5 )
电化学极化内阻R1d可由下式得到:
R 1 d = U 1 d ( 0 + ) i dis - - - ( 6 )
浓差极化内阻R2d可由下式得到:
R 2 d = U 2 d ( 0 + ) i dis - - - ( 7 )
电化学极化分数阶电容FOE1d可由下式得到:
FOE 1 d = &tau; 1 d R 1 d - - - ( 8 )
浓差极化分数阶电容FOE2d可由下式得到:
FOE 2 d = &tau; 2 d R 2 d - - - ( 9 )
所述步骤六中:开路电压OCV与SOC存在非线性关系,具体关系式为:
OCV = a 0 + a 1 &CenterDot; ln SOC + a 2 &CenterDot; ln ( 1 - SOC ) + a 3 SOC + a 4 &CenterDot; SOC - - - ( 10 )
式中,a0-a4为常数,由实验数据基于最小二乘法辨识得到。
电池欧姆内阻Rod与SOC的关系式为:
Ro(SOC)=b0·e-SOC+b1+b2·SOC-b3·SOC2+b4·SOC3   (11) 
式中,b0-b4为常数,由实验数据基于最小二乘法辨识得到。
电化学极化内阻R1d与SOC的关系式为:
R1d(SOC)=c0·e-SOC+c1+c2·SOC-c3·SOC2+c4·SOC3   (12) 
式中,c0-c4为常数,由实验数据基于最小二乘法辨识得到。
电化学极化分数阶电容FOE1d与SOC的关系式为:
FOE1d(SOC)=d0·SOC5+d1·SOC4+d2·SOC3+d3·SOC2+d4·SOC+d5   (13) 
式中,d0-d5为常数,由实验数据基于最小二乘法辨识得到。
浓差极化内阻R2d与SOC的关系式为:
R2d(SOC)=e0·e-SOC+e1+e2·SOC-e3·SOC2+e4·SOC3   (14) 
式中,e0-e4为常数,由实验数据基于最小二乘法辨识得到。
浓差极化分数阶电容FOE2d与SOC的关系式为:
FOE2d(SOC)=f0·SOC5+f1·SOC4+f2·SOC3+f3·SOC2+f4·SOC+f5   (15) 
式中,f0-f5为常数,由实验数据基于最小二乘法辨识得到。
电化学极化分数阶电容FOE1d阶数与SOC的关系式为:
α(SOC)=g0·SOC4+g1·SOC3+g2·SOC2+g3·SOC+g4   (16) 
式中,g0-g4为常数,由实验数据基于最小二乘法辨识得到。
浓差极化分数阶电容FOE2d阶数与SOC的关系式为:
β(SOC)=h0·SOC4+h1·SOC3+h2·SOC2+h3·SOC+h4   (17) 
式中,h0-h4为常数,由实验数据基于最小二乘法辨识得到。
本实用新型的有益效果:
1.将传统的二阶RC等效电路模型推广到分数阶,并基于最小二乘法辨识不同SOC处的模型参数和阶次,获得了一个根据SOC变阶的分数阶等效电路模型;
2.锂电池因其特殊的材料和化学特性,展现出了分数阶动力学行为,用整数阶描述电池特性其精度受到很大的限制,而釆用分数阶微积分描述那些本身带有分数阶特性的对象时,能更好地描述对象的本质特性及其行为;
3.由于增加了分数阶阶数这一未知参数,模型获得了更多的自由度、更大的柔性和新意;
4.由于分数阶微积分具有一定的记忆功能,且更符合自然界普遍连续的朴素哲学观点,分数阶变阶等效电路模型从而获得了更高的精度、更好的动态性能和稳定性;
5.对比与传统二阶RC模型,由于未增加RC网络的个数,本实用新型有效解决了模型准确性和实用性之间的矛盾,具有较高的实用价值,并适用于电池的恒流充放电、脉冲充放电和UDDS循环工况,为SOC的精确估计提供了一个精确且易实现的电池模型。
附图说明
图1为本实用新型锂电池分数阶变阶等效电路模型结构示意图,其中c标识表示充电,d标识表示放电;
图2为本实用新型的脉冲充电下电池单体电压的响应过程图;
图3为本实用新型的脉冲放电下电池单体电压的响应过程图;
图4为本实用新型的变阶分数阶、整数阶和固定分数阶模型模拟脉冲放电后电池端电压的恢复响应对比图,其中(a)为整体图,(b)为局部放大图;
图5为本实用新型的脉冲充电下开路电压OCV与SOC的关系图;
图6为本实用新型的脉冲充电下欧姆内阻R0与SOC的关系图;
图7为本实用新型的脉冲充电下电化学极化内阻R1c与SOC的关系图;
图8为本实用新型的脉冲充电下电化学极化分数阶电容FOE1c与SOC的关系图;
图9为本实用新型的脉冲充电下浓差极化内阻R2d与SOC的关系图;
图10为本实用新型的脉冲充电下浓差极化分数阶电容FOE2c与SOC的关系图;
图11为本实用新型的脉冲充电下电化学极化分数阶电容FOE1c阶数与SOC的关系图;
图12为本实用新型的脉冲充电下浓差极化分数阶电容FOE2c阶数与SOC的关系图;
图13为本实用新型的脉冲放电下开路电压OCV与SOC的关系图;
图14为本实用新型的脉冲放电下欧姆内阻R0与SOC的关系图;
图15为本实用新型的脉冲放电下电化学极化内阻R1d与SOC的关系图;
图16为本实用新型的脉冲放电下电化学极化分数阶电容FOE1d与SOC的关系图;
图17为本实用新型的脉冲放电下浓差极化内阻R2d与SOC的关系图;
图18为本实用新型的脉冲放电下浓差极化分数阶电容FOE2d与SOC的关系图;
图19为本实用新型的脉冲放电下电化学极化分数阶电容FOE1d阶数与SOC的关系图;
图20为本实用新型的脉冲放电下浓差极化分数阶电容FOE2d阶数与SOC的关系图;
图21为本实用新型的脉冲放电下变阶分数阶单体电池等效电路模型电压输出图;
图22为本实用新型的脉冲充电下变阶分数阶单体电池等效电路模型电压输出图;
图23为本实用新型的恒流放电下变阶分数阶单体电池等效电路模型电压输出图;
图24为本实用新型的恒流充电下变阶分数阶单体电池等效电路模型电压输出图。
具体实施方式:
下面结合附图对本实用新型进行详细说明:
搭建电池模型是指应用数学理论尽量全面地去描述实际电池的响应特性和内部特性。所谓响应特性是指电池的端电压与负载电流的对应关系;内部特性是指电池的内部变量欧姆内阻、极化内阻和极化电压与SOC、温度间的关系。
如图1所示为本实用新型公开的锂电池分数阶变阶等效电路模型,包括运行时间电路和I-V特性电路,其中,I-V特性电路包括两路支路,每个支路包括两组一个分数阶电容FOE与一个电阻并联组成的分数阶RC回路。所述运行时间电路包括电池的自放电电阻Rd、电容CQ和电流控制电流源电路,电阻Rd与电容CQ并联在电流控制电流源的受控源两端,独立电源的一端接地。
I-V特性电路包括欧姆内阻R0、电化学极化内阻R1、电化学极化分数阶电容FOE1、浓差极化内阻R2、浓差极化分数阶电容FOE2和电流控制电流源、电压控制电压源电路,其中:
电压控制电压源电路的受控源的正极连接两路,一路连接二极管Dd后连接电阻R1d、电阻R2d、电阻Rod后连接电池模型的正极,一路反接二极管Dc后连接电阻R1c、电阻R2c、电阻Roc后连接电池模型的正极。分数阶电容FOE1d并联在电阻R1d的两端;分数阶电容FOE1c并联在电阻R1c的两端;分数阶电容FOE2d并联在电阻R2d的两端;分数阶电容FOE2c并联在电阻R2c的两端;电压控制电压源电路的受控源正、负极之间的电压为电池开路电压OCV。
运行时间电路和I-V特性电路通过一个流控电流源和一个压控电压源建立联系,当对电 池进行充放电时,负载电流ibat通过流控电流源对电容CQ进行充放电,改变CQ存储的电量,表征电池SOC的变化,CQ两端电压OCV也随之变化,I-V特性电路的受控电压源OCV随SOC的变化而变化。
电容CQ表示电池的可用容量,CQ=3600·CAh·f1·f2,其中,CAh为用安时为单位的电池容量,f1和f2分别是电池循环寿命和温度的修正因子。
电流控制电流源的受控源的电流为电池的端电流ibat,当电池进行充放电时负载电流ibat通过电流控制电流源对电容CQ进行充放电,改变电容CQ中存储的电量,从而表征电池SOC的变化。
所述电流控制电流源的受控源两端的电压为电池开路电压OCV。
一种应用上述锂电池分数阶变阶等效电路模型的辨识方法,以电池放电为例,充电辨识方法与放电相同,在此不再赘述。包括以下步骤:
步骤一:写出锂电池的放电过程和静置状态的分数阶数学模型表达式;
步骤二:对锂电池进行恒流充放电,得到电池模型的可用容量CQ和自放电电阻Rd
步骤三:对锂电池进行脉冲放电测试,获取不同SOC处电池开始放电时的电池端电压的瞬间下降值、放电结束后电池端电压的瞬间跃升值、放电电流以及电池端电压的零输入响应等数据;
步骤四:根据步骤三获得的数据,基于最小二乘法辨识模型的参数和阶数;
步骤五:根据步骤四计算得到的电池模型参数计算不同SOC处的开路电压OCV、欧姆内阻R0d、电化学极化内阻R1d、电化学极化分数阶电容FOE1d、浓差极化内阻R2d和浓差极化分数阶电容FOE2d
步骤六:根据步骤五得到的模型参数,基于最小二乘法辨识开路电压OCV、欧姆内阻R0d、电化学极化内阻R1d、电化学极化分数阶电容FOE1d、浓差极化内阻R2d和浓差极化分数阶电容FOE2d与SOC间的关系;
步骤七:根据步骤二至六获得的参数,在Matlab中搭建锂电池分数阶变阶等效电路模型。
如图2所示为本实用新型的脉冲充电下电池单体电压的响应过程图;如图3所示为本实用新型的脉冲放电下电池单体电压的响应过程图;脉冲放电过程中电池的端电压可表示为:
U bat = OCV d - i dis &CenterDot; R 0 d - U 1 d ( 0 + ) &CenterDot; ( 1 - e - t &alpha; / &tau; 1 d ) - U 2 d ( 0 + ) &CenterDot; ( 1 - e t &beta; / &tau; 2 d ) - - - ( 1 )
式中,Ubat为电池端电压;R0d为欧姆内阻;OCVd为放电开路电压;α,β为分数阶元件FOE1d和FOE2d的阶数,满足0<α,β≤1。当α,β=0时,分数阶元件FOE等效为一电阻,当α,β=1时, 分数阶元件FOE等效为一电容。U1d(0+)和U2d(0+)为电池放电结束瞬间两个分数阶RC支路的端电压初值,其值可表述为:
U1d(0+)=idis·R1d  (2) 
U2d(0+)=idis·R2d  (3) 
电池放电结束后,电池的端电压可表示为:
U bat = OCV d - U 1 d ( 0 + ) &CenterDot; e - t &alpha; / &tau; 1 d - U 2 d ( 0 + ) &CenterDot; e t &beta; / &tau; 2 d - - - ( 4 )
式中,电池的极化电压随着时间的增长而逐渐减小,当t→∞时,趋于0,此时电池端电压Ubat等于电池的开路电压OCV。
所述步骤5的具体方法为:由于电池欧姆内阻的存在,当电池放电时,电池端电压会瞬间跌落,其值记为ΔU1;当电池停止放电时,电池端电压会瞬间跃升,其值记为ΔU2。因此,电池的欧姆内阻R0可由下式得到:
R 0 = &Delta; U 1 + &Delta; U 2 2 i bat - - - ( 5 )
电化学极化内阻R1d可由下式得到:
R 1 d = U 1 d ( 0 + ) i dis - - - ( 6 )
浓差极化内阻R2d可由下式得到:
R 2 d = U 2 d ( 0 + ) i dis - - - ( 7 )
电化学极化分数阶电容FOE1d可由下式得到:
FOE 1 d = &tau; 1 d R 1 d - - - ( 8 )
浓差极化分数阶电容FOE2d可由下式得到:
FOE 2 d = &tau; 2 d R 2 d - - - ( 9 )
所述步骤6的具体方法为:开路电压OCV与SOC存在非线性关系,具体关系式为:
OCV = a 0 + a 1 &CenterDot; ln SOC + a 2 &CenterDot; ln ( 1 - SOC ) + a 3 SOC + a 4 &CenterDot; SOC - - - ( 10 )
式中,a0-a4为常数,由实验数据基于最小二乘法辨识得到。
电池欧姆内阻Rod与SOC的关系式为:
Ro(SOC)=b0·e-SOC+b1+b2·SOC-b3·SOC2+b4·SOC3   (11) 
式中,b0-b4为常数,由实验数据基于最小二乘法辨识得到。
电化学极化内阻R1d与SOC的关系式为:
R1d(SOC)=c0·e-SOC+c1+c2·SOC-c3·SOC2+c4·SOC3   (12) 
式中,c0-c4为常数,由实验数据基于最小二乘法辨识得到。
电化学极化分数阶电容FOE1d与SOC的关系式为:
FOE1d(SOC)=d0·SOC5+d1·SOC4+d2·SOC3+d3·SOC2+d4·SOC+d5   (13) 
式中,d0-d5为常数,由实验数据基于最小二乘法辨识得到。
浓差极化内阻R2d与SOC的关系式为:
R2d(SOC)=e0·e-SOC+e1+e2·SOC-e3·SOC2+e4·SOC3   (14) 
式中,e0-e4为常数,由实验数据基于最小二乘法辨识得到。
浓差极化分数阶电容FOE2d与SOC的关系式为:
FOE2d(SOC)=f0·SOC5+f1·SOC4+f2·SOC3+f3·SOC2+f4·SOC+f5   (15) 
式中,f0-f5为常数,由实验数据基于最小二乘法辨识得到。
电化学极化分数阶电容FOE1d阶数与SOC的关系式为:
α(SOC)=g0·SOC4+g1·SOC3+g2·SOC2+g3·SOC+g4   (16) 
式中,g0-g4为常数,由实验数据基于最小二乘法辨识得到。
浓差极化分数阶电容FOE2d阶数与SOC的关系式为:
β(SOC)=h0·SOC4+h1·SOC3+h2·SOC2+h3·SOC+h4  (17) 
式中,h0-h4为常数,由实验数据基于最小二乘法辨识得到。
1.实验建立
针对海特10并16串圆柱型26650磷酸铁锂动力电池进行实验和仿真,标称容量为23Ah,标称电压为51.2V。电池测试平台由先进的AVL电池模拟/测试柜、AVL InMotion硬件在环测试平台、AVL控制柜、温控箱和以及AVL Lynx控制软件组成。实验记录电池的电压、电流和SOC等工况值,采样频率设置为1Hz。
考虑到充放电参数的差异,将HPPC混合脉冲试验(Hybrid Pulse Power CharacterizationTest,HPPC)中的混合脉冲试验改成单向脉冲试验,即动力电池脉冲充电试验和脉冲放电试验。所谓脉冲放电,即在室温25度下,将充满电的电池以0.2C的电流放电至SOC为95%,停止放电静置45min,接着以同样电流放电至SOC为90%,以此类推,直至SOC为0%时结束。脉冲充电过程与脉冲放电过程类似,在此不再赘述。
2.模型阶数和参数辨识
如图4所示,为本实用新型的变阶分数阶、整数阶和固定分数阶模型模拟脉冲放电后电池端电压的恢复响应对比图。从图中可以看出,分数阶变阶等效电路模型模拟精度最高。
(1)开路电压OCV模型
根据不同SOC(3.45%、5%、10%…90%、95%、98.89%)处测得的电池开路电压,可以分别拟合得到电池的充电开路电压和放电开路电压OCV,如图5和图13所示。并根据式(10),应用Matlab cftool工具箱可辨识出参数a0-a4,如表1所示。
表1应用Matlab cftool工具箱拟合得到的开路电压OCV参数
参数 a0 a1 a2 a3 a4
充电辨识值 -1.015 1.915 -0.02047 -0.006009 0.03582
放电辨识值 2.588 -1.499 -0.007343 -0.01424 0.04207
(2)欧姆内阻R0模型
根据不同SOC(3.45%、5%、10%…90%、95%、98.89%)处测得的电池欧姆内阻,可以分别拟合得到电池的充电欧姆内阻和放电欧姆内阻R0,如图6和图14所示。并根据式(11),应用Matlab cftool工具箱可辨识出参数b0-b4,如表2所示。
表2应用Matlab cftool工具箱拟合得到的欧姆内阻R0参数
参数 b0 b1 b2 b3 b4
充电辨识值 0.5612 -0.5588 0.5546 -0.2568 0.05642
放电辨识值 -0.638 0.6397 -0.634 0.2967 -0.0663
(3)电化学极化内阻R1模型
根据不同SOC(3.45%、5%、10%、15%…、95%)处测得的电池电化学极化内阻,可以分别拟合得到的电池的充电电化学极化内阻和放电电化学极化内阻R1,如图7和图15所示。并根据式(12),应用Matlab cftool工具箱可辨识出参数c0-c4,如表3所示。
表3应用Matlab cftool工具箱拟合得到的电化学极化内阻R1参数
参数 c0 c1 c2 c3 c4
充电辨识值 3.891 -3.887 3.87 -1.835 0.4279
放电辨识值 10.26 -10.24 10.1 -4.607 0.9788
(4)电化学极化分数阶电容FOE1模型
根据不同SOC(3.45%、5%、10%…90%、95%、98.89%)处测得的电化学极化分数阶电容,可以分别拟合得到电池的充电电化学极化分数阶电容和放电电化学极化分数阶电容FOE1,如图8和图16所示。并根据式(13),应用Matlab cftool工具箱可辨识出参数d0-d5,如表4所示。
表4应用Matlab cftool工具箱拟合得到的电化学极化分数阶电容FOE1参数
参数 d0 d1 d2 d3 d4 d5
充电辨识值 -3.775e6 8.913e6 -7.623e6 2.976e6 -5.542e5 9.351e4
放电辨识值 1.387e8 -5.26e8 7.008e8 -4.023e8 9.138e7 -3.683e6
(5)浓差极化内阻R2模型
根据不同SOC(3.45%、5%、10%、15%…、95%)处测得的电池浓差极化内阻,可以分别拟合得到的电池的充电浓差极化内阻和放电浓差极化内阻R2,如图9和图17所示。并根据式(14),应用Matlab cftool工具箱可辨识出参数e0-e4,如表5所示。
表5应用Matlab cftool工具箱拟合得到的浓差极化内阻R2参数
参数 e0 e1 e2 e3 e4
充电辨识值 3.267 -3.265 3.271 -1.594 0.3971
放电辨识值 -4.582 4.584 -4.535 2.102 -0.4632
(6)浓差极化分数阶电容FOE2模型
根据不同SOC(3.45%、5%、10%、15%…、95%)处测得的电池浓差极化分数阶电容,可以分别拟合得到的电池的充电浓差极化分数阶电容和放电浓差极化分数阶电容FOE2,如图10和图18所示。并根据式(12),应用Matlab cftool工具箱可辨识出参数f0-f5,如表6所示。
表6应用Matlab cftool工具箱拟合得到的浓差极化分数阶电容FOE2参数
参数 f0 f1 f2 f3 f4 f5
充电辨识值 -1.842e5 4.507e5 -4.116e5 1.704e5 -2.857e4 4.572e4
放电辨识值 -4.529e5 1.188e6 -1.153e6 5.072e5 -9.649e4 8.68e4
(7)电化学极化分数阶电容FOE1阶数模型
根据不同SOC(3.45%、5%、10%、15%…、95%)处测得的电池电化学极化分数阶电容阶数,可以分别拟合得到的电池的充电电化学极化分数阶电容FOE1阶数和放电电化学极化分数阶电容FOE1阶数,如图11和图19所示。并根据式(16),应用Matlab cftool工具箱可辨识出参数g0-g4,如表7所示。
表7应用Matlabcftool工具箱拟合得到的电化学极化分数阶电容FOE1阶数参数
参数 g0 g1 g2 g3 g4
充电辨识值 21.24 -46.26 33.74 -8.854 0.9861
放电辨识值 -15.45 27.57 -14.44 1.862 0.6595
(8)浓差极化分数阶电容FOE2阶数模型
为据不同SOC(3.45%、5%、10%、15%…、95%)处测得的电池浓差极化分数阶电容阶数,可以分别拟合得到的电池的充电浓差极化分数阶电容FOE2阶数和放电浓差极化分数阶电容FOE2阶数,如图12和图20所示。并根据式(17),应用Matlabcftool工具箱可辨识出参数h0-h4,如表8所示。
表8应用Matlab cftool工具箱拟合得到的浓差极化分数阶电容FOE2阶数参数
参数 h0 h1 h2 h3 h4
充电辨识值 2.752 -6.434 5.085 -1.319 0.4986
放电辨识值 4.813 -10.91 8.4 -2.468 0.6779
3.仿真及实验验证
为了验证电池模型的准确性,对电池进行恒流充放电和脉冲充放电实验。如图21-22所示,为在脉冲充、放电下获得的电池端电压实验结果与模型仿真结果的对比。从图中可以看出,本实用新型提出的分数阶变阶等效电路模型能较好地反应电池的脉冲充放电过程,说明该模型是准确的。其中,在静止阶段产生的误差比在恒流充放电阶段产生的误差要大一些。
如图23-24所示,为在恒流充、放电下获得的电池端电压实验结果与模型仿真结果的对比。从图中可以看出,在充、放电的初期和末期,模型误差较大;而在充、放电的中期,模型输出值与实验值几乎重合。这与锂电池的两端陡中间平的非线性电压特性完全吻合。
综上所述,本实用新型公开的变阶分数阶等效电路模型所得到的仿真结果基本符合实验数据,模型最大误差在0.05V以内,并且适用于电动汽车的脉冲充放电和恒流充放电等工况。证明了变阶分数阶模型的有效性。
上述虽然结合附图对本实用新型的具体实施方式进行了描述,但并非对本实用新型保护范围的限制,所属领域技术人员应该明白,在本实用新型的技术方案的基础上,本领域技术 人员不需要付出创造性劳动即可做出的各种修改或变形仍在本实用新型的保护范围以内。

Claims (6)

1.一种锂电池分数阶变阶等效电路模型,其特征是,包括运行时间电路及电池I-V特性电路,所述运行时间电路及电池I-V特性电路通过电流控制电流源及电压控制电压源进行信号传输;所述运行时间电路包括电池的自放电电阻Rd及电容CQ,电阻Rd与电容CQ并联在电流控制电流源的两端,电流控制电流源的一端接地;所述电池I-V特性电路的电压控制电压源的正极端与两个相并联的RC网络支路的一端相连,负极端与电池模型的负极端相连,所述两个相并联的RC网络支路的每一个支路均包括两个相串联的分数阶RC回路和一个内阻Ro,所述两个相并联的RC网络支路的另一端与电池模型的正极端相连。
2.如权利要求1所述的一种锂电池分数阶变阶等效电路模型,其特征是,两个相并联的RC网络支路分别是RC网络放电支路和RC网络充电支路,两个RC网络支路中的电容均为分数阶电容。
3.如权利要求2所述的一种锂电池分数阶变阶等效电路模型,其特征是,所述RC网络放电支路分数阶元件FOE1d和FOE2d的阶数α,β随电池SOC状态不同而变化,且满足0≤αd,βd≤1,当αd,βd=0时,分数阶元件FOE等效为一电阻,当αd,βd=1时,分数阶元件FOE等效为一整数阶电容;当0<αd,βd<1时,分数阶元件FOE为一分数阶电容;
所述RC网络充电支路分数阶元件FOE1c和FOE2c的阶数α,β随电池SOC状态不同而变化,且满足0≤αc,βc≤1,当αc,βc=0时,分数阶元件FOE等效为一电阻,当αc,βc=1时,分数阶元件FOE等效为一整数阶电容;当0<αc,βc<1时,分数阶元件FOE为一分数阶电容。
4.如权利要求1所述的一种锂电池分数阶变阶等效电路模型,其特征是,所述电池I-V特性电路中两个相并联的RC网络支路中,放电支路包括依次串联的二极管Dd、分数阶电容FOE1d与电阻R1d组成的分数阶RC回路、分数阶电容FOE2d与电阻R2d组成的分数阶RC回路及电阻Rod
充电支路包括依次串联的反接二极管Dc、分数阶电容FOE1c与电阻R1c组成的分数阶RC回路、分数阶电容FOE2c与电阻R2c组成的分数阶RC回路及电阻Roc
5.如权利要求1所述的一种锂电池分数阶变阶等效电路模型,其特征是,所述运行时间电路和电池I-V特性电路通过一个电流控制电流源及电压控制电压源建立联系,当对电池进行充放电时,负载电流ibat通过电流控制电流源对电容CQ进行充放电,改变CQ存储的电量,表征电池SOC的变化,CQ两端电压OCV也随之变化,I-V特性电路的受控电压源OCV随SOC的变化而变化。
6.如权利要求1所述的一种锂电池分数阶变阶等效电路模型,其特征是,所述电流控制电流源的两端的电压为电池开路电压OCV。
CN201420814965.XU 2014-12-19 2014-12-19 一种锂电池分数阶变阶等效电路模型 Expired - Fee Related CN204314878U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201420814965.XU CN204314878U (zh) 2014-12-19 2014-12-19 一种锂电池分数阶变阶等效电路模型

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201420814965.XU CN204314878U (zh) 2014-12-19 2014-12-19 一种锂电池分数阶变阶等效电路模型

Publications (1)

Publication Number Publication Date
CN204314878U true CN204314878U (zh) 2015-05-06

Family

ID=53137182

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201420814965.XU Expired - Fee Related CN204314878U (zh) 2014-12-19 2014-12-19 一种锂电池分数阶变阶等效电路模型

Country Status (1)

Country Link
CN (1) CN204314878U (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104392080A (zh) * 2014-12-19 2015-03-04 山东大学 一种锂电池分数阶变阶等效电路模型及其辨识方法
CN110728103A (zh) * 2019-10-11 2020-01-24 湖南科技大学 一种分段优化的超级电容模组等电路模型参数辨识方法
CN114114021A (zh) * 2021-11-12 2022-03-01 山东大学 考虑非线性固相扩散的锂离子电池模型及参数辨识方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104392080A (zh) * 2014-12-19 2015-03-04 山东大学 一种锂电池分数阶变阶等效电路模型及其辨识方法
CN104392080B (zh) * 2014-12-19 2017-07-11 山东大学 一种锂电池分数阶变阶等效电路模型及其辨识方法
CN110728103A (zh) * 2019-10-11 2020-01-24 湖南科技大学 一种分段优化的超级电容模组等电路模型参数辨识方法
CN114114021A (zh) * 2021-11-12 2022-03-01 山东大学 考虑非线性固相扩散的锂离子电池模型及参数辨识方法
CN114114021B (zh) * 2021-11-12 2022-09-09 山东大学 考虑非线性固相扩散的锂离子电池模型及参数辨识方法

Similar Documents

Publication Publication Date Title
CN104392080A (zh) 一种锂电池分数阶变阶等效电路模型及其辨识方法
CN103926538B (zh) 基于aic准则的变阶数rc等效电路模型及实现方法
Yao et al. Modeling of lithium-ion battery using MATLAB/simulink
Cittanti et al. Modeling Li-ion batteries for automotive application: A trade-off between accuracy and complexity
CN107861075B (zh) 一种确定动力电池sop的方法
CN106909716A (zh) 计及容量损耗的磷酸铁锂电池建模及soc估计方法
Baronti et al. Experimental analysis of open-circuit voltage hysteresis in lithium-iron-phosphate batteries
CN106250576A (zh) 一种基于动态阻抗的锂电池模型的建模方法
CN104537166B (zh) 一种动力电池的等效电路模型的构建方法
CN106896327A (zh) 分数阶KiBaM‑等效电路综合特征电池模型及其参数辨识方法
CN110795851A (zh) 一种考虑环境温度影响的锂离子电池建模方法
CN104965179A (zh) 一种锂离子蓄电池的温度组合电路模型及其参数识别方法
CN106021738A (zh) 非均一多个体混联的电池组分布式模型建立系统及方法
CN106872901B (zh) KiBaM-分数阶等效电路综合特征电池模型及参数辨识方法
Shah et al. Improved method for characterization of ultracapacitor by constant current charging
CN105116338A (zh) 一种基于soc补偿器的并联型电池系统建模方法
CN203825171U (zh) 基于aic准则的变阶数rc等效电路模型
Plakhtii et al. The analysis of mathematical models of charge-discharge characteristics in lithium-ion batteries
CN204314878U (zh) 一种锂电池分数阶变阶等效电路模型
Wang et al. Third-order dynamic model of a lead acid battery for use in fuel cell vehicle simulation
CN103616644A (zh) 一种评价不同体系蓄电池性能的方法
Arumugam et al. Comparative analysis and validation of basic battery models for electric vehicles applications
Han et al. Modeling for lithium-ion battery used in electric vehicles
Li et al. Evaluation and analysis of circuit model for lithium batteries
Wang et al. Impact of sensor accuracy of battery management system on SOC estimation of electric vehicle based on EKF algorithm

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150506

Termination date: 20151219

EXPY Termination of patent right or utility model