CN204243050U - 一种快恢复二极管 - Google Patents

一种快恢复二极管 Download PDF

Info

Publication number
CN204243050U
CN204243050U CN201420765448.8U CN201420765448U CN204243050U CN 204243050 U CN204243050 U CN 204243050U CN 201420765448 U CN201420765448 U CN 201420765448U CN 204243050 U CN204243050 U CN 204243050U
Authority
CN
China
Prior art keywords
district
anode
diode
fast recovery
recovery diode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201420765448.8U
Other languages
English (en)
Inventor
刘钺杨
吴迪
何延强
金锐
温家良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Corp of China SGCC
State Grid Zhejiang Electric Power Co Ltd
Smart Grid Research Institute of SGCC
Original Assignee
State Grid Corp of China SGCC
State Grid Zhejiang Electric Power Co Ltd
Smart Grid Research Institute of SGCC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Corp of China SGCC, State Grid Zhejiang Electric Power Co Ltd, Smart Grid Research Institute of SGCC filed Critical State Grid Corp of China SGCC
Priority to CN201420765448.8U priority Critical patent/CN204243050U/zh
Application granted granted Critical
Publication of CN204243050U publication Critical patent/CN204243050U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Thyristors (AREA)

Abstract

本实用新型涉及一种快恢复二极管,该快恢复二极管结构包括N型本征区,缓变可控缓冲区,P型发射区,阳极P+区,阴阳极金属,氧化层;以及局域寿命控制区、全局寿命控制区,本实用新型采用“波浪型”有源区结构、缓变缓冲层结构和局域寿命控制方式提高FRD的性能,“波浪型”有源区结构可有效调节阳极注入效率,缓变缓冲层结构采用多次外延方式形成,工艺易控、一致性好,三者结合利于FRD性能的折中优化。

Description

一种快恢复二极管
技术领域
本实用新型涉及一种半导体功率器件,具体讲涉及一种快恢复二极管。
背景技术
快速恢复二极管(FRD)芯片一般作为整流和续流使用,本专利针对续流二极管性能进行研究。在半导体功率器件领域,续流二极管一般反并联于功率开关管(如绝缘栅双极晶体管(IGBT)、晶闸管等)起到反向续流的作用,这一器件统称为开关器件。开关器件用于逆变器、电力系统和机车牵引等领域,涉及电压从几十到几千伏。
FRD的性能优劣会直接影响开关器件的性能,好的FRD结构不仅要具有低导通压降、低开关损耗,同时要具有反向恢复速度快、反向恢复软度好、抗动态雪崩能力高和抗正向浪涌能力强的优点,如何实现这一技术目标,是目前国内外研究的难点和热点。
FRD的工作过程即是载流子(电子和空穴)注入和抽取的过程,如何控制载流子的数量和流动速度是关键。目前,国内外的研究均集中在采用器件结构设计和寿命控制的方式来控制载流子,例如英飞凌公司采用发射极控制结构(EMCON)进行器件结构优化以降低发射极载流子注入效率,以实现FRD的低导通压降和优开关性能;ABB公司采用软穿通结构(SPT)结构,即局域寿命控制方式进行寿命控制优化以实现器件内部载流子分布的优化,实现FRD的优性能。
实用新型内容
针对现有技术要求,本实用新型的目的是提供一种快恢复二极管,本实用新型的快恢复二级管器件采用“波浪型”有源区结构、缓变缓冲层结构和局域寿命控制方式以提高快恢复二极管FRD的性能,“波浪型”有源区结构可有效调节阳极注入效率,缓变缓冲层结构采用多次外延方式形成,工艺易控、一致性好,三者结合利于快恢复二极管FRD性能的折中优化。
本实用新型的目的是采用下述技术方案实现的:
本实用新型提供一种快恢复二极管,所述二极管包括衬底、缓冲区、P型发射区、阳极P+区、金属层和氧化层;所述P型发射区和缓冲区分别设置在衬底两侧;在所述衬底N-层上生长有氧化层;所述金属层位于二极管的两端;其改进之处在于,所述P型发射区采用波浪型有源区结构;所述缓冲区为缓变可控缓冲区;在所述P型发射区与阳极P+区之间设有局域寿命控制区,二极管设有包围其四周的全局寿命控制区。
进一步地,所述金属层包括位于阳极P+区和氧化层上的阳极金属层和位于缓变可控缓冲区下的阴极金属层。
进一步地,所述缓变可控缓冲区包括二层或二层以上的N型掺杂区,并通过多次外延的方式形成,其厚度为15~60um,所述缓变可控缓冲区随着掺杂浓度不断增加形成具有一定浓度梯度的渐变结构,掺杂浓度梯度相差1~5个数量级;最外层掺杂浓度满足低欧姆接触电阻要求。
进一步地,所述波浪型有源区结构包括高浓度P型掺杂区HP和低浓度P型掺杂区LP;所述高浓度P型掺杂区HP的载流子掺杂浓度高于低浓度P型掺杂区LP为1~4个数量级,高低浓度P型掺杂区的体积比例受控于P型注入的注入面积S、注入窗口间距L和P型发射区结深H,L和H满足0.4H<L<1.6H。
进一步地,所述阳极P+区的深度0.2-2um,其中硼离子的掺杂浓度为1×1017~5×1019cm-3.
进一步地,在阳极P+区的表面注入氢离子形成所述局域寿命控制区,其宽度为2-10um,少子寿命为10-1000ns;在所述整个二极管器件结构进行电子辐照形成所述全局寿命控制区。
与最接近现有技术比,本实用新型具有的有益效果是:
1、本实用新型的快恢复二级管通过外延方式形成缓变可控缓冲区02,可实现多层N型掺杂缓冲层,且掺杂浓度和厚度在工艺上易控制,工艺一致性和稳定性好,成本低,利于在生产中推广。
2、本实用新型的快恢复二级管结合采用缓变可控缓冲层02、“波浪型”P型发射区03和局域寿命控制区07实现FRD器件结构,可同时兼顾FRD的低导通压降、软恢复、减小电流电压震荡,并提高了FRD的安全工作区和抗动态雪崩能力。
3、本实用新型的快恢复二级管阳极P+区04结构的使用,不仅能够实现阳极的低欧姆接触电阻,同时可提高二极管的抗动态雪崩能力和正向浪涌能力,避免高压、大电流下的正向穿通,提高FRD的工作稳定性。
附图说明
图1是本实用新型提供的二极管器件横剖面结构示意图;
图2是本实用新型提供的二极管杂质浓度及寿命控制分布示意图;其中:虚线部分表示07-局域寿命控制区和08全局寿命控制区;实线表示二极管的掺杂浓度阶梯线;
图3是本实用新型提供的二极管正面俯视示意图;
其中:01-N型本征区,02-缓变可控缓冲区,03-P型发射区,04-阳极P+区,051-阳极金属层、052-阴极金属层,06-氧化层,07-局域寿命控制区,08全局寿命控制区;13-P型掺杂注入窗口,17-占据二极管芯片的部分区域。
具体实施方式
下面结合附图对本实用新型的具体实施方式作进一步的详细说明。
本实用新型提供的快恢复二极管FRD器件结构如图1所示,器件结构包括N型本征区01,缓变可控缓冲区02,P型发射区03,阳极P+区04,阴阳极金属051、052,氧化层06;以及局域寿命控制区07、全局寿命控制区08,所述P型发射区和缓冲区分别设置在N型本征区01两侧;在所述N型本征区N-层上生长有氧化层06;所述金属层位于二极管的两端;P型发射03区采用波浪型有源区结构;所述缓冲区为缓变可控缓冲区02;在所述P型发射区03与阳极P+区04之间设有局域寿命控制区07,二极管设有包围其四周的全局寿命控制区08;此结构采用“波浪型”有源区结构、缓变缓冲层结构和局域寿命控制方式以提高FRD的性能。
缓变可控缓冲区02是由二层或多层N型掺杂区组成,总厚度15~60um,自接近N型本征区01至阴极金属052方向,掺杂浓度不断增加形成具有一定浓度梯度的渐变结构,掺杂浓度梯度相差1~5个数量级,如图2所示。采用多次外延的方式实现N+层,控制掺杂浓度、厚度和工艺参数,控制每层的厚度约5-30um,满足低欧姆接触电阻要求的最外层掺杂浓度。此种结构利于调节在反向恢复后期的载流子存储量,提高FRD的软度,同时,可降低N型本征区01和缓变可控缓冲区02之间的最高电场强度,利于提高FRD的抗动态雪崩能力。
P型发射区03采用“波浪型”有源区结构,P型发射区通过等间距的正六边形注入窗口以局部注入硼,实现高低掺杂相间的P型掺杂波浪型有源区结构(HP和LP),高浓度P区HP的载流子掺杂浓度应高于低掺杂P区LP约1~4个数量级,高低浓度P区的体积比例受控于P型注入的注入面积S、注入窗口间距L和P型发射区结深H,如图3所示,L和H间应满足0.4H<L<1.6H,调节H、S、L三者之间的关系,可有效调节发射极注入效率。制造过程中,调节注入剂量、推结时间和推结温度等参数来来获得不同的结深H。此结构可以实现FRD发射极注入效率的自调节作用,有效降低IRRM和trr,并提高反向恢复的软度,降低FRD在反向恢复过程的di/dt,进而减少FRD反向工作过程中产生的震荡,提高FRD的安全工作区。
制备阳极P+区04,在开孔后通过注入硼、推结来实现,深度0.2-2um,掺杂浓度1e17~5e19cm-3。此层次的设计可以令FRD的P型发射区03的掺杂浓度进一步降低,以提高反向恢复特性。阳极P+区04不仅能够实现阳极的低欧姆接触电阻,同时可提高二极管的抗动态雪崩能力和抗正向浪涌能力,避免高压、大电流下的正向穿通,提高FRD的工作稳定性。
局域寿命控制区07位于FRD器件的P型发射区03以内、阳极P+区04以外,如图2所示,宽度2-10um,少子寿命约10-1000ns。工艺实现上,07可通过高能离子注入形成,离子类型采用氢离子(H+)。结合全局寿命控制区08的综合设计,以发挥局域寿命控制区07的优势,全局寿命控制区08是指通过电子辐照方式引入复合中心,降低整个芯片的少数载流子寿命,使得FRD的少数载流子在反向恢复快速的复合和抽取时,仍具有软恢复特性。
本实用新型还提供一种快恢复二极管的制造方法,包括下述步骤:
A、制造缓变可控缓冲区:将均匀掺杂的N型硅衬底抛光后,用多次外延的方式在其背面生长缓变可控缓冲区;控制外延生长的工艺参数,以控制多层N型区掺杂浓度和厚度,且工艺一致性和稳定性好,成本低,便于生产中推广。
B、初始氧化:对均匀掺杂的N型硅衬底清洗后,于H2和O2气氛及900℃-1100℃下,氧化1-10小时,在所述衬底硅片表面生长厚度1-2um的氧化层;
制造P型掺杂注入窗口:在均匀掺杂的N型硅衬底上经涂胶、曝光、显影、刻蚀和去胶后形成P型掺杂注入窗口;所述P型掺杂注入窗口为正六边形结构;
D、制造P型发射区:带胶注入P型杂质的P型掺杂注入窗口,经去胶、清洗和推结,形成一定结深的高、低浓度相间的P型掺杂区,其掺杂浓度在5e15~5e17cm-3之间;
E、制造阳极P+区:光刻阳极P+区的注入窗口,大面积刻蚀出金属接触孔的阳极接触孔后,并进行硼离子注入,激活后形成阳极P+区;
F、制造局域寿命控制区:在阳极P+区的表面注入氢离子并退火后形成所述局域寿命控制区;根据注入能量、剂量控制局域寿命控制区07的轴向位置,根据退火温度和时间控制07的缺陷形状、质量等。芯片正面俯视图示出了局域寿命控制区07的占据芯片的部分区域17,如图3所示,此区域位于有源区内,且不侵犯终端区部分。
G、用蒸发或者溅射金属铝形成P型发射表面,经光刻、刻蚀、去胶和合金形成阳极金属层;
H、制造全局寿命控制区:电子辐照二极管器件并退火形成全局寿命控制区;
I、制造钝化层:通过SiO2,聚酰亚胺PI薄膜形成表面钝化,经光刻,刻蚀形成发射极铝引线PAD区域;
J、对背面减薄、腐蚀和金属化,形成阴极金属层。
本实用新型提供的新型FRD结构,包括局域氢离子注入的波浪型有源区结构和缓变可控缓冲层结构。缓变可控缓冲层结构,通过多次外延的方式实现N型渐变的缓冲层结构,以优化器件折衷性能。波浪型有源区通过等间距的正六边形注入窗口进行局部硼注入,实现高低掺杂相间的P型有源区结构。为了增强FRD的抗动态雪崩能力和抗正向浪涌能力,在有源区表面注入硼,形成浅结、高浓度的P+层。局域注入氢离子及电子辐照以控制有源区的寿命,优化FRD体内的载流子分布,降低反向恢复损耗,提高反向恢复软度。
最后应当说明的是:以上实施例仅用以说明本实用新型的技术方案而非对其限制,尽管参照上述实施例对本实用新型进行了详细的说明,所属领域的普通技术人员依然可以对本实用新型的具体实施方式进行修改或者等同替换,这些未脱离本实用新型精神和范围的任何修改或者等同替换,均在申请待批的本实用新型的权利要求保护范围之内。

Claims (6)

1.一种快恢复二极管,所述二极管包括衬底、缓冲区、P型发射区、阳极P+区、金属层和氧化层;所述P型发射区和缓冲区分别设置在衬底两侧;在所述衬底N-层上生长有氧化层;所述金属层位于二极管的两端;其特征在于,所述P型发射区采用波浪型有源区结构;所述缓冲区为缓变可控缓冲区;在所述P型发射区与阳极P+区之间设有局域寿命控制区,二极管设有包围其四周的全局寿命控制区。
2.如权利要求1所述的快恢复二极管,其特征在于,所述金属层包括位于阳极P+区和氧化层上的阳极金属层和位于缓变可控缓冲区下的阴极金属层。
3.如权利要求1所述的快恢复二极管,其特征在于,所述缓变可控缓冲区包括二层或二层以上的N型掺杂区,并通过多次外延的方式形成,其厚度为15~60um。
4.如权利要求1所述的快恢复二极管,其特征在于,所述波浪型有源区结构包括高浓度P型掺杂区HP和低浓度P型掺杂区LP。
5.如权利要求1所述的快恢复二极管,其特征在于,所述阳极P+区的深度0.2-2um。
6.如权利要求1所述的快恢复二极管,其特征在于,在阳极P+区的表面注入氢离子形成所述局域寿命控制区,其宽度为2-10um,少子寿命为10-1000ns;在所述整个二极管器件结构进行电子辐照形成所述全局寿命控制区。
CN201420765448.8U 2014-12-05 2014-12-05 一种快恢复二极管 Active CN204243050U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201420765448.8U CN204243050U (zh) 2014-12-05 2014-12-05 一种快恢复二极管

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201420765448.8U CN204243050U (zh) 2014-12-05 2014-12-05 一种快恢复二极管

Publications (1)

Publication Number Publication Date
CN204243050U true CN204243050U (zh) 2015-04-01

Family

ID=52772506

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201420765448.8U Active CN204243050U (zh) 2014-12-05 2014-12-05 一种快恢复二极管

Country Status (1)

Country Link
CN (1) CN204243050U (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105405759A (zh) * 2015-12-18 2016-03-16 江苏宏微科技股份有限公司 由氢注入工艺控制恢复特性的快恢复二极管的制备方法
CN105720107A (zh) * 2014-12-05 2016-06-29 国家电网公司 一种快恢复二极管及其制造方法
CN107516681A (zh) * 2016-06-15 2017-12-26 全球能源互联网研究院有限公司 一种快速恢复二极管及其制造方法
CN109950325A (zh) * 2017-12-21 2019-06-28 南亚科技股份有限公司 二极管结构和其静电放电保护电路

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105720107A (zh) * 2014-12-05 2016-06-29 国家电网公司 一种快恢复二极管及其制造方法
CN105720107B (zh) * 2014-12-05 2018-12-18 国家电网公司 一种快恢复二极管及其制造方法
CN105405759A (zh) * 2015-12-18 2016-03-16 江苏宏微科技股份有限公司 由氢注入工艺控制恢复特性的快恢复二极管的制备方法
CN107516681A (zh) * 2016-06-15 2017-12-26 全球能源互联网研究院有限公司 一种快速恢复二极管及其制造方法
CN109950325A (zh) * 2017-12-21 2019-06-28 南亚科技股份有限公司 二极管结构和其静电放电保护电路
CN109950325B (zh) * 2017-12-21 2022-03-25 南亚科技股份有限公司 二极管结构和其静电放电保护电路

Similar Documents

Publication Publication Date Title
CN103618006B (zh) 一种快恢复二极管及其制造方法
CN102800591A (zh) 一种fs-igbt器件的制备方法
CN204243050U (zh) 一种快恢复二极管
CN105720107B (zh) 一种快恢复二极管及其制造方法
CN111244171A (zh) 一种沟槽rc-igbt器件结构及其制作方法
CN105826399A (zh) 一种多混合结构的软快恢复二极管及其制备方法
CN113571415B (zh) Igbt器件及其制作方法
CN104409485A (zh) 具有低反向传输电容抗闩锁结构的平面栅igbt及其制造方法
CN110649094A (zh) Gct芯片结构及其制备方法
CN102130153B (zh) 绝缘体上硅的n型横向绝缘栅双极晶体管及其制备方法
CN105702746A (zh) 一种快恢复二极管及其制作方法
CN103137679B (zh) 绝缘栅双极型晶体管器件结构及其制作方法
CN111490101B (zh) 一种GaN基HEMT器件
CN103367140B (zh) 一种基于碳化硅的脉冲功率半导体开关的制造方法
CN111129137B (zh) 具有NiO/SiC pn异质结的SiC绝缘栅双极晶体管
CN104934469A (zh) 一种igbt终端结构及其制造方法
CN204230250U (zh) 一种快恢复二极管
CN106098799A (zh) 一种积累型沟槽二极管
CN107452623B (zh) 一种快恢复二极管的制造方法及快恢复二极管
CN103531616B (zh) 一种沟槽型快恢复二极管及其制造方法
CN205177857U (zh) 一种快恢复二极管
CN205595336U (zh) 一种逆导型igbt背面结构
CN110534582B (zh) 一种具有复合结构的快恢复二极管及其制造方法
CN204332965U (zh) 一种平面栅igbt
CN103794645B (zh) Igbt器件及其制作方法

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant