CN204237893U - Indium phosphide single crystal stove thermocouple lifting device - Google Patents
Indium phosphide single crystal stove thermocouple lifting device Download PDFInfo
- Publication number
- CN204237893U CN204237893U CN201420718402.0U CN201420718402U CN204237893U CN 204237893 U CN204237893 U CN 204237893U CN 201420718402 U CN201420718402 U CN 201420718402U CN 204237893 U CN204237893 U CN 204237893U
- Authority
- CN
- China
- Prior art keywords
- single crystal
- indium phosphide
- lifting device
- stationary platen
- growing furnace
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
The utility model discloses a kind of indium phosphide single crystal stove thermocouple lifting device, relate to single crystal growing furnace technical field.Described lifting device comprises: stationary platen, position indicator pointer, scale, thermocouples tube, seal assembly, leading screw, lifting support, transmission component, propulsion source and thermocouple wire.Described lifting device is used for liquid encapsulate Czochralski technique indium phosphide single crystal growth technique, the temperature of different positions in furnace chamber and melt when can monitor and measure indium phosphide single crystal growth, carry out online accurately measurement, obtain the actual temperature of furnace chamber and melt, thus improve the structure of well heater and heat-insulation system, regulate heater power, set up good thermal field, make thermograde in melt more reasonable, grow unrelieved stress little, dislocation desity is low, the uniform high quality indium phosphide crystal of electrical parameter, and measuring tempeature can be utilized to contrast to the analog temperature of relevant analogue simulation software.
Description
Technical field
The utility model relates to single crystal growing furnace technical field, particularly relates to a kind of indium phosphide single crystal stove thermocouple lifting device.
Background technology
Indium phosphide has excellent performance, and application prospect is extensive.But it is larger to prepare high-quality indium phosphide single crystal difficulty.At present, the indium phosphide single crystal growth technique generally applied in the world mainly contains VGF (VGF), vertical bridgman method (VB), vapour pressure control vertical pulling method (VCz) and liquid encapsulate Czochralski technique (LEC).No matter which kind of indium phosphide single crystal growth technique, thermal field is all the key factor of growing single-crystal quality.Thermal field adjustment result directly affects thermograde during indium phosphide crystal growth, thus the thermal stresses in change material, affect size and the distribution of dislocation desity, solid-liquid interface shape during crystal growth also can change thereupon, and the wafer electric mathematic(al) parameter finally processed, the homogeneity of optical parametric also can be affected.
Indium phosphide single crystal growth temperature is 1062 DEG C, and single crystal growing furnace internal gas pressure reaches about 4MPa, and it is large that thermal field controls difficulty.General control method is around well heater, arrange 1 or multiple fixing thermocouple, by the temperature of feedback, relies on the experience of operator, regulates heater power, carry out single crystal growing.The temperature results of this measurement is not the actual temperature in indium phosphide single crystal growth, generally all can lower than temperature in melt.Meanwhile, in melt, the temperature of different positions is also different, and the thermograde that the monocrystalline growing process of different diameter is suitable for also is different.One or more thermocouples that are fixing and well heater outside existing cannot be measured.Heater power regulates can only rely on temperature value and personnel's experience not too accurately.Thermal field during this problem extreme influence indium phosphide single crystal, thus thermal stresses, dislocation desity, defect, solid-liquid interface shape etc. all can be affected, the monocrystalline grown is of low quality.In addition, accurately can not understand the temperature of each position in furnace chamber and melt, also cannot be analyzed crystal simulation results, and then impact adjusts heater structure and heat-insulation system structure.
Utility model content
Technical problem to be solved in the utility model is to provide a kind of indium phosphide single crystal stove thermocouple lifting device, described lifting device can realize the actual temperature of different positions in on-line measurement furnace chamber and melt in liquid encapsulate Czochralski technique indium phosphide single crystal stove, carry out online accurately measurement, obtain the actual temperature of furnace chamber and melt, thus improve structure, the adjustment heater power of well heater and heat-insulation system, set up good thermal field.
For solving the problems of the technologies described above, technical solution adopted in the utility model is: a kind of indium phosphide single crystal stove thermocouple lifting device, it is characterized in that: described lifting device comprises stationary platen, position indicator pointer, scale, thermocouples tube, seal assembly, leading screw, lifting support, transmission component, propulsion source and thermocouple wire, described stationary platen is hollow part, be fixed on single crystal growing furnace top cover, leading screw is positioned at stationary platen, one end of leading screw is connected with single crystal growing furnace top cover axle, described transmission component is fixed on described leading screw, described propulsion source is positioned at the outside of stationary platen, the clutch end of propulsion source is meshed with transmission component, described lifting support is coordinated with leading screw by screw, one end of thermocouples tube is fixedly connected with lifting support, the other end of thermocouples tube extends in single crystal growing furnace, the intersection of thermocouples tube and described single crystal growing furnace top cover is provided with seal assembly, described position indicator pointer is fixed on described lifting support, described scale is fixed on described stationary platen, described scale and described position indicator pointer are oppositely arranged, described thermocouple wire is positioned at described thermocouples tube and extends to single crystal growing furnace.
Further technical scheme is: described propulsion source is regulating handle or electric motor.
Further technical scheme is: described stationary platen is fixed on above single crystal growing furnace top cover, vertical in 90 °, stationary platen is furnished with stop means, and side is open by design, is provided with porthole.
Preferred technical scheme is further: described stationary platen, position indicator pointer, scale and lifting support are stainless steel, and described thermocouples tube is that corundum material is made.
The beneficial effect adopting technique scheme to produce is: described lifting device is used for liquid encapsulate Czochralski technique indium phosphide single crystal growth technique, the temperature of different positions in furnace chamber and melt when can monitor and measure indium phosphide single crystal growth, carry out online accurately measurement, obtain the actual temperature of furnace chamber and melt, thus improve the structure of well heater and heat-insulation system, regulate heater power, set up good thermal field, make thermograde in melt more reasonable, grow unrelieved stress little, dislocation desity is low, the uniform high quality indium phosphide crystal of electrical parameter, and measuring tempeature can be utilized to contrast to the analog temperature of relevant analogue simulation software.
Accompanying drawing explanation
Below in conjunction with the drawings and specific embodiments, the utility model is described in further detail.
Fig. 1 is structural representation of the present utility model;
Wherein: 1, stationary platen 2, position indicator pointer 3, scale 4, thermocouples tube 5, seal assembly 6, leading screw 7, lifting support 8, transmission component 9, propulsion source 10, single crystal growing furnace top cover 11, thermocouple wire.
Embodiment
Below in conjunction with the accompanying drawing in the utility model embodiment, be clearly and completely described the technical scheme in the utility model embodiment, obviously, described embodiment is only a part of embodiment of the present utility model, instead of whole embodiments.Based on the embodiment in the utility model, those of ordinary skill in the art are not making the every other embodiment obtained under creative work prerequisite, all belong to the scope of the utility model protection.
Set forth a lot of detail in the following description so that fully understand the utility model, but the utility model can also adopt other to be different from alternate manner described here to implement, those skilled in the art can when doing similar popularization without prejudice to when the utility model intension, and therefore the utility model is by the restriction of following public specific embodiment.
As shown in Figure 1, the utility model is specifically related to a kind of indium phosphide single crystal stove thermocouple lifting device, specifically comprises: stationary platen 1, position indicator pointer 2, scale 3, thermocouples tube 4, seal assembly 5, leading screw 6, lifting support 7, transmission component 8, propulsion source 9 and thermocouple wire 11.Described stationary platen 1 is fixed on above single crystal growing furnace top cover 10, thermocouples tube 4 is fixed on lifting support 7, one end of leading screw 6 is connected with single crystal growing furnace top cover 10 axle, described lifting support 7 is coordinated with leading screw 6 by screw, by regulating propulsion source 9, driving transmission component 8, leading screw 6 is rotated, thus realize lifting support 7 and rise or decline, finally make thermocouples tube 4 move in single crystal growing furnace.Lifting support 7 has position indicator pointer 2, position indicator pointer 2 points to scale 3, and Observable thermocouples tube 4 moves rear position.There is seal group 5 between thermocouples tube 3 and single crystal growing furnace top cover 10, prevent high pressure gas leakage.Temperature parameter, in thermocouples tube 4, spreads out of by thermocouple wire 11.
On the basis of said structure, further stationary platen 1 is fixed on above single crystal growing furnace top cover 10, and vertical in 90 °, inner hollow, circular hole is arranged at top, rises rear extensible stationary platen 1 for thermocouples tube 4.Stationary platen 1 actual angle of inclination can according to indium phosphide single crystal stove size and melt position adjustments.Stationary platen 1 is furnished with stop means, prevents the harm that mishandle brings.Stationary platen side can be open by design, is beneficial to and safeguards and observe seal assembly place whether to have gas leak phenomenon.
Thermocouple wire 11 is equipped with in described thermocouples tube 4 inside, and thermocouples tube 4 protects thermocouple wire 11 in furnace chamber and high temperature melting physical efficiency Normal Feedback parameter.What thermocouple wire was measured is thermocouples tube inner wall temperature, substantially can be consistent with furnace chamber and melt actual temperature, and observed value is very accurate.Thermocouples tube 4 is the right cylinder of elongated hollow, and thermocouple wire 11 is at the middle part of thermocouples tube, and length can according to actual single crystal growing furnace size and the design of melt position adjustments.Thermocouples tube 4 is fixed on lifting support 7, is elevated along with the displacement of lifting support 7, reaches the actual temperature measuring indium phosphide melt different positions.Thermocouples tube 4 is preferably corundum material and makes, and has high temperature resistant, and the advantage that intensity is high is applicable to high temperature and high pressure environment during indium phosphide single crystal.Temperature during indium phosphide crystal growth is 1062 DEG C, and pressure is about 4MPa, and the thermocouples tube 4 of high strength can protect thermocouple wire 11.Meanwhile, avoid thermocouples tube 4 cracked at high temperature under high pressure, furnace high-temperature gas leaks in a large number, causes security incident.
Described propulsion source 9 can be regulating handle or electric motor, the clutch end connection for transmission assembly of joint handle or electric motor, and joint handle or electric motor can positive and negative both direction rotate.By hand or electronic, drive leading screw 6 both forward and reverse directions to rotate, thus lifting support 7 is moved up and down along leading screw 6, the final thermocouples tube that drives is elevated.Leading screw 6 placement parallel with thermocouples tube 4, lifting support 7 maximum moving distance, by leading screw limitation of length, can regulate according to actual body of heater dimensional requirement.
Described lifting support 7 is equipped with position indicator pointer 2, point to the scale 3 of side, along with the lifting of thermocouples tube 4, the reading that position indicator pointer 2 points to scale 3 changes, the display position of thermocouples tube 4 in furnace chamber and melt, thus measure the temperature of different positions, scale 3 length range can regulate according to actual requirement.
Described seal assembly 5, between thermocouples tube 4 and single crystal growing furnace top cover 10, plays sealing function.During crystal growth, pressure is generally about 4MPa, and thermocouples tube 4 is very easily leaking gas with bell junction in lifting process, adopts seal assembly 5 to seal, and can effectively prevent indium phosphide single crystal from synthesizing and high pressure gas leakage during growth.Seal assembly 5 also can be used for the locating device of thermocouple bar lifting.Described stationary platen 1, position indicator pointer 2, scale 3, lifting support 7 and single crystal growing furnace top cover 10 etc. are stainless steel, prevent acidic substance from corroding, increase the service life.
Described lifting device is used for liquid encapsulate Czochralski technique indium phosphide single crystal growth technique, the temperature of different positions in furnace chamber and melt when can monitor and measure indium phosphide single crystal growth, carry out online accurately measurement, obtain the actual temperature of furnace chamber and melt, thus improve the structure of well heater and heat-insulation system, regulate heater power, set up good thermal field, make thermograde in melt more reasonable, grow unrelieved stress little, dislocation desity is low, the uniform high quality indium phosphide crystal of electrical parameter, and measuring tempeature can be utilized to contrast to the analog temperature of relevant analogue simulation software.
Claims (4)
1. an indium phosphide single crystal stove thermocouple lifting device, it is characterized in that: described lifting device comprises stationary platen (1), position indicator pointer (2), scale (3), thermocouples tube (4), seal assembly (5), leading screw (6), lifting support (7), transmission component (8), propulsion source (9) and thermocouple wire (11), described stationary platen (1) is hollow part, be fixed on single crystal growing furnace top cover (10), leading screw (6) is positioned at stationary platen (1), one end of leading screw (6) is connected with single crystal growing furnace top cover (10) axle, described transmission component (8) is fixed on described leading screw (6), described propulsion source (9) is positioned at the outside of stationary platen (1), the clutch end of propulsion source (9) is meshed with transmission component (8), described lifting support (7) is coordinated with leading screw (6) by screw, one end of thermocouples tube (4) is fixedly connected with lifting support (7), the other end of thermocouples tube (4) extends in single crystal growing furnace, thermocouples tube (4) is provided with seal assembly (5) with the intersection of described single crystal growing furnace top cover (10), described position indicator pointer (2) is fixed on described lifting support (7), described scale (3) is fixed on described stationary platen (1), described scale (3) and described position indicator pointer (2) are oppositely arranged, described thermocouple wire (11) is positioned at described thermocouples tube (4) and extends to single crystal growing furnace.
2. indium phosphide single crystal stove thermocouple lifting device according to claim 1, is characterized in that: described propulsion source (9) is regulating handle or electric motor.
3. indium phosphide single crystal stove thermocouple lifting device according to claim 1, it is characterized in that: described stationary platen (1) is fixed on single crystal growing furnace top cover (10) top, vertical in 90 °, and stationary platen is furnished with stop means, and side is open by design, is provided with porthole.
4. according to the indium phosphide single crystal stove thermocouple lifting device in claim 1-3 described in any one, it is characterized in that described stationary platen (1), position indicator pointer (2), scale (3) and lifting support (7) are stainless steel, described thermocouples tube (4) is made for corundum material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201420718402.0U CN204237893U (en) | 2014-11-26 | 2014-11-26 | Indium phosphide single crystal stove thermocouple lifting device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201420718402.0U CN204237893U (en) | 2014-11-26 | 2014-11-26 | Indium phosphide single crystal stove thermocouple lifting device |
Publications (1)
Publication Number | Publication Date |
---|---|
CN204237893U true CN204237893U (en) | 2015-04-01 |
Family
ID=52767409
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201420718402.0U Active CN204237893U (en) | 2014-11-26 | 2014-11-26 | Indium phosphide single crystal stove thermocouple lifting device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN204237893U (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104404622A (en) * | 2014-11-26 | 2015-03-11 | 中国电子科技集团公司第十三研究所 | Thermocouple lifting device for indium phosphide single-crystal furnace |
CN108221045A (en) * | 2018-01-24 | 2018-06-29 | 新疆工程学院 | A kind of crystal growing furnace temperature control system |
-
2014
- 2014-11-26 CN CN201420718402.0U patent/CN204237893U/en active Active
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104404622A (en) * | 2014-11-26 | 2015-03-11 | 中国电子科技集团公司第十三研究所 | Thermocouple lifting device for indium phosphide single-crystal furnace |
CN108221045A (en) * | 2018-01-24 | 2018-06-29 | 新疆工程学院 | A kind of crystal growing furnace temperature control system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104404622A (en) | Thermocouple lifting device for indium phosphide single-crystal furnace | |
US11851783B2 (en) | Open Czochralski furnace for single crystal growth | |
CN103103604B (en) | Large size C is to sapphire crystal manufacture method | |
CN204237893U (en) | Indium phosphide single crystal stove thermocouple lifting device | |
CN102383187B (en) | Growth method of sapphire single crystal | |
CN101168848A (en) | Method for controlling fused silicon liquid level position of czochralski silicon mono-crystal furnace | |
CN104499045A (en) | Kyropoulos-method sapphire crystal growth furnace | |
CN102877120B (en) | Automatic seeding technique for growing sapphire crystal by Kyropoulos method | |
CN112466407A (en) | Method for obtaining large-size chalcopyrite single crystals based on CGSim software simulation | |
CN215404651U (en) | Calibration assembly for crystal growth furnace and crystal growth furnace assembly | |
JP2018150219A (en) | Apparatus and method for growing large diameter cz single crystal | |
CN214572356U (en) | CZ single crystal growing furnace static thermal field measuring device | |
CN104562202A (en) | Crystal transformation mechanism for sapphire crystal growth equipment | |
CN111826708A (en) | Upper lifting vacuum furnace | |
CN112941621A (en) | CZ single crystal furnace static thermal field measuring device and measuring method of static thermal field | |
CN206593774U (en) | A kind of carborundum thermometric crystal caliberating device | |
CN110158149B (en) | Single crystal furnace for processing raw materials of solar cell | |
CN103695997A (en) | Crystal growth combined weighing device and crystal growing furnace using same | |
CN106687625B (en) | The manufacturing method of monocrystalline | |
CN204151455U (en) | The seed rod hoisting appliance of absolute location information can be obtained | |
CN211820932U (en) | Monocrystalline furnace control ball valve for monocrystalline silicon production | |
CN204455355U (en) | A kind of kyropoulos sapphire crystal furnace of carrying out remote observation | |
CN219526863U (en) | Crystal growth furnace by floating zone method | |
CN103046115B (en) | Descending device of crystal growing furnace of Bridgman-Stockbarger method | |
CN202786499U (en) | High temperature furnace suitable for growing titanium-doped sapphire crystal through kyropoulos method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |