CN203719870U - 并联六连杆式风洞天平复位机构 - Google Patents

并联六连杆式风洞天平复位机构 Download PDF

Info

Publication number
CN203719870U
CN203719870U CN201420002148.4U CN201420002148U CN203719870U CN 203719870 U CN203719870 U CN 203719870U CN 201420002148 U CN201420002148 U CN 201420002148U CN 203719870 U CN203719870 U CN 203719870U
Authority
CN
China
Prior art keywords
connecting rod
resetting
parallel
control
computing machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201420002148.4U
Other languages
English (en)
Inventor
陈景伟
陶爱华
那鑫晨
李福东
梁桂范
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AVIC Aerodynamics Research Institute
Original Assignee
AVIC Aerodynamics Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AVIC Aerodynamics Research Institute filed Critical AVIC Aerodynamics Research Institute
Priority to CN201420002148.4U priority Critical patent/CN203719870U/zh
Application granted granted Critical
Publication of CN203719870U publication Critical patent/CN203719870U/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

并联六连杆式风洞天平复位机构,取代了从前的塔式六电机控制六自由度,每台电机分别单独运动的复位方式,创新性的采用了并联六连杆式复位方式。并联六连杆式风洞天平复位机构,其组成包括:控制计算机,所述的控制计算机分别连接复位运动控制部分、变形及位置测量部分,所述的变形及位置测量部分包括测位传感器、所述的复位运动控制部分包括运动控制单元及复位保护单元、所述的复位运动控制部分连接复位运动执行部分、所述的控制计算机连接控制电机及复位保护单元,所述的测位传感器安装在测量天平即加载梁运动的位置,所述的测位传感器连接控制计算机;运动控制单元和控制电机,所述的测位传感器对应连接六个连杆机构,保护装置连接六个连杆机构及加载梁。本产品用于风洞天平复位。

Description

并联六连杆式风洞天平复位机构
技术领域
本实用新型涉及一种并联六连杆式风洞天平复位机构。
背景技术
随着飞行器的设计对风洞试验数据精准度的要求不断提高,风洞试验朝着精细化的方向发展。作为风洞试验中力/力矩最主要的测量装置,测力天平的性能直接影响试验数据的准确性。天平的精准度主要由天平的校准公式决定,而天平公式的精确度很大程度上依赖天平静校台的性能。另外随着科研型号任务的不断增多,对于天平校准的时间限制也越来越严格,因此又对天平校准设备高效性有了新的要求。
风洞天平校准设备的性能将直接影响天平静校的质量和效率,按加载坐标轴系的不同,可分为地轴系天平校准设备和体轴系天平校准设备。地轴系天平校准设备不进行天平复位调整,结构简单。而体轴系天平校准设备需要通过校准设备的自动调整系统保证天平加载状态不变,即保证施加载荷的方向始终与天平体轴系一致。原有的体轴系加载设备均为塔形结构,其运用六台电机进行六分量(X,Y,Z,Mx,My,Mz)变形复位,各复位电机间存在相互影响,复位精度低,速度慢。
发明内容
本实用新型的目的提供一种并联六连杆式风洞天平复位机构,以解决体轴系静校台复位精度低,速度慢的问题。
本实用新型通过下述技术方案实现的:
并联六连杆式风洞天平复位机构,其组成包括:控制计算机,所述的控制计算机分别连接复位运动控制部分、变形及位置测量部分,所述的变形及位置测量部分包括测位传感器、所述的复位运动控制部分包括运动控制单元及复位保护单元、所述的复位运动控制部分连接复位运动执行部分、所述的控制计算机连接控制电机及复位保护单元,所述的测位传感器安装在测量天平即加载梁运动的位置,所述的测位传感器连接控制计算机、运动控制单元和控制电机,所述的测位传感器对应连接六个连杆机构,保护装置连接六个连杆机构及加载梁。
所述的并联六连杆式风洞天平复位机构,所述的六个连杆机构为六台高精度伺服电机驱动的六根并联连杆,其中竖直方向三角形布置X,My,Mz三个自由度的X方向连杆:连杆X1,连杆X2和连杆X3,两根控制Z,Mx两个自由度Z方向连杆,即水平Z向平行布置两根连杆Z1,连杆Z2,一根控制Y一个自由度Y方向连杆即水平Y向中间布置一根连杆Y1,共六根连杆组成并联六连杆复位机构,推动台体的移动和转动,实现快速精确复位。
所述的并联六连杆式风洞天平复位机构,所述的复位运动控制部分包括与所述的控制机计算机连接的多轴运动控制卡,所述的多轴运动控制卡连接所述的复位运动执行部分,所述的复位运动执行部分包括六台谐波减速器、一一对应连接六个连杆机构的六根滚珠丝杠,6台所述的测位传感器一一对应连接六个连杆机构。
有益效果:
1、以上所述的并联六连杆式风洞天平复位机构包括分别由六台高精度伺服电机驱动的六根并联连杆,三根X方向连杆控制X,My,Mz三个自由度,两根Z方向连杆控制Z,Mx两个自由度,一根Y方向控制Y一个自由度。当其中一个或多个杆进行运动时,其它杆进行联动控制。六根连杆彼此独立,连杆与移动台体连接处用转动铰链连接。连杆的伸长与缩短由伺服电机驱动,计算机进行控制,实现台体各个方向的精确移动和转动。
以上所述的静校台台体姿态的计算机通过控制六套交流伺服。为了使台体能够平稳快速地复位,需对这六套交流伺服进行联动控制,因此在复位系统中采用了运动控制单元即多轴运动控制器,它能代替控制计算机完成六连杆的位置、速度的联动控制。
本实用新型通过并联六连杆进行天平复位的方式,通过反馈实现准确快速复位的要求;提高天平复位的精准度和速度。
本实用新型能够有效避免单元运动影响其它元复位的问题(如Mz复位影响Y复位),具有结构巧妙、复位速度快、精度高、干扰小等优点。天平复位位移精度小于0.01mm,角度精度小于5″。在使用本装置所进行的风洞天平静校中,天平准度指标小于4‰,精度指标小于1‰。本发明对于提高风洞天平校准精度和效率指标具有重要作用,其应用前景十分广阔。
本实用新型是基于我国大载荷风洞天平校准的需要,提供一种并联六连杆式风洞天平复位机构,本结构能够有效避免单元运动影响其它元复位的问题,具有结构巧妙、复位速度快、精度高、相互干扰小等优点。
本实用新型完全取代了从前的塔式六电机控制六自由度,每台电机分别单独运动的复位方式,创新性的采用了并联六连杆式复位方式。加载梁的变形通过激光跟踪仪传入控制计算机。控制计算机求出六根连杆的伸缩量传入多轴运动控制卡,多轴运动控制卡对六根连杆的伸缩量进行插补,驱动六根连杆的伸缩使加载梁复位偏移量减少。激光位移传感器再测得的加载梁偏移量,再次进行复位,当偏移量达到复位的精度要求复位结束。本套复位机构,能够准确快速安全实现天平复位,并且具有结构巧妙、复位速度快、精度高、相互干扰小等优点。
本实用新型加载梁的变形通过激光跟踪仪传入控制计算机。控制计算机求出六根连杆的伸缩量传入多轴运动控制卡,多轴运动控制卡对六根连杆的伸缩量进行插补,驱动六根连杆的伸缩使加载梁复位偏移量减少。激光位移传感器再测得的加载梁偏移量,再次进行复位,当偏移量达到复位的精度要求复位结束。本套复位机构,能够准确快速安全实现天平复位,并且具有结构巧妙、复位速度快、精度高、相互干扰小等优点。
风洞天平复位方法,当系统加载后加载梁产生偏移,激光位移传感器测得的加载梁偏移量,通过控制器USB口传入控制计算机。控制计算机根据六根连杆的伸缩量。传入多轴运动控制卡,多轴运动控制卡对六根连杆的伸缩量进行插补,再传入六台伺服电机的驱动控制器,控制六台交流伺服电机按比例同时转动。然后通过多轴运动控制卡,六台谐波减速器、六根滚珠丝杠、驱动六根连杆的伸缩使加载梁复位偏移量减少。激光位移传感器再测得的加载梁偏移量,再次进行复位,当偏移量达到复位的精度要求复位结束。
附图说明:
图1为本实用新型连杆部分的结构示意图。
图2为附图1的左视图。
图3为附图1的俯视图。
附图4为本实用新型工作流程图。
附图5为单个连杆的结构示意图,图中7为与活动的台体的链接铰链,8为连杆双向铰链,9为连杆的伸缩部分,10为伺服电机和减速器组件,11为连杆的双向铰链,12为与台体的基础连接的铰链。
附图6为本实用新型的总体连接结构的示意图。图中13为YI的位移传感器,14为x1的位移传感器,15为Z1的位移传感器,16为X2的位移传感器, 17为Z2的位移传感器,18为X3的位移传感器。
附图7是伺服驱动前端电原理图,图中:w3是伺服驱动器1、w4是伺服驱动器2、w5是伺服驱动器3、w6是伺服驱动器4、w7是伺服驱动器5、w8是伺服驱动器6。
附图8是伺服驱动后端电原理图,图中:M1为驱动电机。
具体实施方式:
实施例1:
并联六连杆式风洞天平复位机构,其组成包括:控制计算机,所述的控制计算机分别连接复位运动控制部分、变形及位置测量部分,所述的变形及位置测量部分包括测位传感器、所述的复位运动控制部分包括运动控制单元及复位保护单元、所述的复位运动控制部分连接复位运动执行部分、所述的控制计算机连接控制电机及复位保护单元,所述的测位传感器安装在测量天平即加载梁运动的位置,所述的测位传感器电连接控制计算机;运动控制单元和控制电机,所述的测位传感器对应连接六个连杆机构,保护装置连接六个连杆机构及加载梁。
实施例2:
实施例1所述的并联六连杆式风洞天平复位机构,所述的六个连杆机构包括安装在台体1上的六台高精度伺服电机驱动的六根各自独立工作的并联连杆,安装在其中竖直方向三角形布置X,My,Mz三个自由度的X方向连杆:连杆X1,连杆X2和连杆X3,连杆X1,连杆X2和连杆X3分别通过铰链4铰链5铰链6与活动的台体1连接。两根控制Z,Mx两个自由度Z方向连杆,即水平Z向平行布置两根连杆Z1,连杆Z2,一根控制Y一个自由度Y方向连杆即水平Y向中间布置一根连杆Y1,共六根连杆组成并联六连杆复位机构,6个连杆中两根连杆Z1,连杆Z2与台体分别通过铰链2、铰链3连接,推动台体的移动和转动,实现快速精确复位。当其中一个或多个杆进行运动时,其它连杆通过计算机在活动的台体的约束下实现联动控制,相对位置如图6所示。
实施例3:
实施例1或2所述的并联六连杆式风洞天平复位机构,所述的复位运动控制部分包括与所述的控制机计算机连接的多轴运动控制卡,所述的多轴运动控制卡连接所述的复位运动执行部分,所述的复位运动执行部分包括六台谐波减速器、一一对应连接六个连杆机构的六根滚珠丝杠,6台所述的测位传感器一一对应连接六个连杆机构。
利用本申请进行风洞天平复位方法,其步骤为:当系统加载后加载梁产生偏移,激光位移传感器测得的加载梁偏移量,通过加载梁的变形通过激光跟踪仪控制器USB口传入控制计算机,控制计算机根据六根连杆的伸缩量;传入多轴运动控制卡,多轴运动控制卡对六根连杆的伸缩量进行插补,再传入六台伺服电机的驱动控制器,控制六台交流伺服电机按比例同时转动,然后通过多轴运动控制卡,六台谐波减速器、六根滚珠丝杠、驱动六根连杆的伸缩使加载梁复位偏移量减少,激光位移传感器再测得的加载梁偏移量,再次进行复位,当偏移量达到复位的精度要求复位结束。
所述的控制六台交流伺服电机按比例同时转动过程中,六台高精度伺服电机驱动的六根并联连杆,三根X方向连杆控制X,My,Mz三个自由度,两根Z方向连杆控制Z,Mx两个自由度,一根Y方向控制Y一个自由度,当其中一个或多个杆进行运动时,其它杆进行联动控制。

Claims (3)

1.一种并联六连杆式风洞天平复位机构,其组成包括:控制计算机,其特征是:所述的控制计算机分别连接复位运动控制部分、变形及位置测量部分,所述的变形及位置测量部分包括测位传感器、所述的复位运动控制部分包括运动控制单元及复位保护单元、所述的复位运动控制部分连接复位运动执行部分、所述的控制计算机连接控制电机及复位保护单元,所述的测位传感器安装在测量天平即加载梁运动的位置,所述的测位传感器连接控制计算机、运动控制单元和控制电机,所述的测位传感器分别对应连接六个连杆机构,保护装置分别连接六个连杆机构及加载梁。
2.根据权利要求1所述的并联六连杆式风洞天平复位机构,其特征是:所述的六个连杆机构为六台高精度伺服电机驱动的六根并联连杆,其中竖直方向三角形布置X,My,Mz三个自由度的X方向连杆:连杆X1,连杆X2和连杆X3,两根控制Z,Mx两个自由度Z方向连杆,即水平Z向平行布置两根连杆Z1,连杆Z2,一根控制Y一个自由度Y方向连杆即水平Y向中间布置一根连杆Y1,共六根连杆组成并联六连杆复位机构。
3.根据权利要求1或者所述的并联六连杆式风洞天平复位机构,其特征是:所述的复位运动控制部分包括与所述的控制机计算机连接的多轴运动控制卡,所述的多轴运动控制卡连接所述的复位运动执行部分,所述的复位运动执行部分包括六台谐波减速器、一一对应连接六个连杆机构的六根滚珠丝杠,6台所述的测位传感器一一对应连接六个连杆机构。
CN201420002148.4U 2014-01-03 2014-01-03 并联六连杆式风洞天平复位机构 Expired - Fee Related CN203719870U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201420002148.4U CN203719870U (zh) 2014-01-03 2014-01-03 并联六连杆式风洞天平复位机构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201420002148.4U CN203719870U (zh) 2014-01-03 2014-01-03 并联六连杆式风洞天平复位机构

Publications (1)

Publication Number Publication Date
CN203719870U true CN203719870U (zh) 2014-07-16

Family

ID=51159009

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201420002148.4U Expired - Fee Related CN203719870U (zh) 2014-01-03 2014-01-03 并联六连杆式风洞天平复位机构

Country Status (1)

Country Link
CN (1) CN203719870U (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103837318A (zh) * 2014-01-03 2014-06-04 中国航空工业集团公司哈尔滨空气动力研究所 并联六连杆式风洞天平复位机构及复位方法
CN108827589A (zh) * 2018-08-17 2018-11-16 中国航天空气动力技术研究院 一种通用的风洞天平体轴静校架复位方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103837318A (zh) * 2014-01-03 2014-06-04 中国航空工业集团公司哈尔滨空气动力研究所 并联六连杆式风洞天平复位机构及复位方法
CN103837318B (zh) * 2014-01-03 2017-04-19 中国航空工业集团公司哈尔滨空气动力研究所 并联六连杆式风洞天平复位机构及复位方法
CN108827589A (zh) * 2018-08-17 2018-11-16 中国航天空气动力技术研究院 一种通用的风洞天平体轴静校架复位方法
CN108827589B (zh) * 2018-08-17 2020-09-18 中国航天空气动力技术研究院 一种通用的风洞天平体轴静校架复位方法

Similar Documents

Publication Publication Date Title
CN103837318A (zh) 并联六连杆式风洞天平复位机构及复位方法
CN108896271A (zh) 一种直升机旋翼气动试验五分量测力天平原位加载校准装置
CN102185546B (zh) 大口径望远镜弧线电机驱动控制方法及其系统
CN206263947U (zh) 六自由度机器人并联结构
CN102226705A (zh) 一种基于线性模组的移测装置
CN207697865U (zh) 一种机器人辅助行走机构
CN102778895B (zh) 超重环境下精确定位控制系统采用的控制方法
CN203719870U (zh) 并联六连杆式风洞天平复位机构
CN103192363A (zh) 平面三自由度柔性铰链并联机器人控制装置及方法
CN102998074A (zh) 基础平动柔性梁振动特性测试装置及方法
CN103984327B (zh) 一种基于模糊控制的小型数字舵机系统
CN104933232A (zh) 一类杆端浮动型六自由度并联机器人带角度补偿的运动学求解方法
CN205978318U (zh) 一种滚珠丝杆单轴多螺母联动控制装置
CN107860545B (zh) 大型跨声速风洞大载荷模型捕获轨迹试验的六自由度系统
CN108381521B (zh) 高马赫数高动压大升力模型捕获轨迹试验的六自由度机构
CN110549333A (zh) 一种用于TriMule卧式混联机器人的重力补偿方法
CN110757882B (zh) 一种基于无传感器伺服压力机全闭环控制系统及方法
CN102579137B (zh) 一种可实现三维平动一维转动的并联手术机械手
CN102175419A (zh) 大载荷腹撑机构
CN102778890A (zh) 四轴全电驱土工离心机器人
CN203965149U (zh) 一种风电传动系统的多向交变载荷模拟试验装置
CN206416155U (zh) 一种基于直线运动单元驱动的并联机构装置
CN104867394A (zh) 一种液压机械臂现实虚拟互动综合实验平台
CN102621910A (zh) 一种基于epics的四刀狭缝控制系统及其控制方法
CN103036474A (zh) 一种两自由度柔性并联微操作器

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140716

Termination date: 20160103