CN202997296U - Double KTP frequency-multiplication and electro-optic Q-switching integration device - Google Patents
Double KTP frequency-multiplication and electro-optic Q-switching integration device Download PDFInfo
- Publication number
- CN202997296U CN202997296U CN 201220658086 CN201220658086U CN202997296U CN 202997296 U CN202997296 U CN 202997296U CN 201220658086 CN201220658086 CN 201220658086 CN 201220658086 U CN201220658086 U CN 201220658086U CN 202997296 U CN202997296 U CN 202997296U
- Authority
- CN
- China
- Prior art keywords
- ktp crystal
- ktp
- gold
- crystal
- electro
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000010354 integration Effects 0.000 title 1
- 239000013078 crystal Substances 0.000 claims abstract description 132
- 230000003287 optical effect Effects 0.000 claims description 7
- 238000000034 method Methods 0.000 claims description 6
- 238000005520 cutting process Methods 0.000 claims description 2
- 241000218202 Coptis Species 0.000 claims 2
- 235000002991 Coptis groenlandica Nutrition 0.000 claims 2
- 239000004568 cement Substances 0.000 claims 1
- 238000009413 insulation Methods 0.000 claims 1
- 238000007747 plating Methods 0.000 claims 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 abstract description 12
- 230000003068 static effect Effects 0.000 abstract description 5
- 230000009977 dual effect Effects 0.000 abstract description 3
- 239000010931 gold Substances 0.000 description 9
- 229910052737 gold Inorganic materials 0.000 description 9
- 238000000576 coating method Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 239000003292 glue Substances 0.000 description 2
- 230000009022 nonlinear effect Effects 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
Images
Landscapes
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
Abstract
本实用新型涉及一种双KTP倍频和电光调Q集成器件,包括外壳、电极、电光晶体,电光晶体包括从左到右依次设置的两块低电导率、非临界温度相位匹配切割的KTP晶体,依次旋转90°放置;在第一块KTP晶体的上、下通电面镀金膜,在第二块KTP晶体的前、后通电面镀金膜;从第一块KTP晶体的上通电面镀金膜和第二块KTP晶体的前通电面镀金膜引出金线,连接到正电极;从第一块KTP晶体的下通电面镀金膜和第二块KTP晶体的后通电面镀金膜引出金线,连接到负电极;器件电光调Q作用时采用退压工作方式。本实用新型实现倍频和电光调Q两种功能的同时消除了走离角、补偿了静态双折射相位延迟,消除了晶体加压时对相位匹配角的影响。
The utility model relates to a dual KTP frequency doubling and electro-optic Q-switching integrated device, which includes a shell, electrodes, and electro-optic crystals. The electro-optic crystals include two low-conductivity, non-critical temperature phase-matched KTP crystals arranged in sequence from left to right. , rotated 90° in sequence; gold-plated on the upper and lower energized surfaces of the first KTP crystal, gold-plated on the front and rear energized surfaces of the second KTP crystal; gold-plated on the upper energized surface of the first KTP crystal and The gold-plated film on the front energized surface of the second KTP crystal draws the gold wire and is connected to the positive electrode; the gold-plated film on the lower energized surface of the first KTP crystal and the gold-plated film on the back energized surface of the second KTP crystal lead out the gold wire and connect to Negative electrode; when the electro-optical Q-switching function of the device adopts the back-voltage working mode. The utility model realizes two functions of frequency doubling and electro-optic Q-switching, and at the same time eliminates the walk-off angle, compensates the static birefringence phase delay, and eliminates the influence on the phase matching angle when the crystal is pressurized.
Description
技术领域: Technical field :
本发明涉及一种电光Q开关器件,具体为一种在激光器中能实现倍频非线性效应并能进行电光调Q的器件。 The invention relates to an electro-optic Q-switching device, in particular to a device capable of realizing frequency multiplication nonlinear effect and electro-optic Q-switching in a laser.
背景技术:Background technique:
KTP类晶体具有大的有效非线性系数和良好的电光性能,因此利用该类晶体研制光倍频和电光复用器件的研究引起了人们极大的兴趣。1994年,日本T. Takunori等用一块1×3×5mm3 的KTP晶体,对Nd:YVO4输出的1064nm激光实现了同时倍频和调Q。在重复频率100Hz时,调制得到脉宽为18ns的532nm脉冲激光输出,峰值功率为15.4W (Takunori Taira, Takao Kobayashi. Q-switching and frequency doubling of solid-state laser by a single intracavity KTP crystal [J], IEEE. J. Quantum Eleronies, 1994, 30(3): 800-804)。1995年,他们又实现了峰值功率230W的绿光输出(Takunori Taira, Takao Kobayashi. Intraeavity frequency doubling and Q-switching in diode laser pumped Nd:YVO4 laser [J], Applied Optics 1995, 34(21): 4298-4301)。1997年,姚建铨等对KTP晶体倍频调Q时的匹配角和外加电压进行了计算 (J. Q. Yao, X. W. Sun, H. S. Kwok. Analysis of simultaneous Q-switching and frequency doubling in KTP [J], Journal of modern optics, 1997, 44(5): 997-1004)。2000年,陈飞等采用2×4×10mm3的KTP晶体,在重复频率为1kHz,l/4电压647V,泵浦功率1W时,实现了脉宽12ns、峰值功率762W的TEM00模输出,并实现了器件化,整个体积只有半个彩色胶卷大小(陈飞,霍玉晶,新型电光调Q内腔绿光激光器[J],中国工程科学,2000,2(4): 39-42)。以上方案中以KTP作为倍频和电光Q开关器件,都用了一块KTP晶体,按照相位匹配角度切割,在激光器中电光调Q时采用加压工作方式。但KTP晶体存在静态双折射相位延迟,影响到电光调Q的关门效果;而且按照常温下的相位匹配角度切割,在倍频时存在走离角,影响到倍频转换效率和输出光的光束质量;采用加压工作方式,电光调Q和倍频作用在同一时间发生,电压改变晶体折射率,从而影响到倍频效果。 KTP-like crystals have large effective nonlinear coefficients and good electro-optical properties, so the research on using this type of crystals to develop optical frequency doubling and electro-optic multiplexing devices has aroused great interest. In 1994, Japan's T. Takunori et al. used a 1×3×5mm 3 KTP crystal to achieve simultaneous frequency doubling and Q-switching for the 1064nm laser output by Nd:YVO 4 . When the repetition frequency is 100Hz, the modulated 532nm pulse laser output with a pulse width of 18ns and a peak power of 15.4W (Takunori Taira, Takao Kobayashi. Q-switching and frequency doubling of solid-state laser by a single intracavity KTP crystal [J] , IEEE. J. Quantum Eleronies, 1994, 30(3): 800-804). In 1995, they achieved a green light output with a peak power of 230W (Takunori Taira, Takao Kobayashi. Intraeavity frequency doubling and Q-switching in diode laser pumped Nd:YVO 4 laser [J], Applied Optics 1995, 34(21): 4298-4301). In 1997, Yao Jianquan and others calculated the matching angle and applied voltage when KTP crystal frequency doubling Q-switching (J. Q. Yao, X. W. Sun, H. S. Kwok. Analysis of simultaneous Q-switching and frequency doubling in KTP [J], Journal of modern Optics, 1997, 44(5): 997-1004). In 2000, Chen Fei and others used KTP crystals of 2×4×10mm 3 to achieve TEM 00 mode output with a pulse width of 12ns and a peak power of 762W when the repetition frequency was 1kHz, the l/4 voltage was 647V, and the pump power was 1W. And realized the device, the whole volume is only half the size of color film (Chen Fei, Huo Yujing, new electro-optic Q-switched intracavity green laser [J], Chinese Engineering Science, 2000, 2(4): 39-42). In the above schemes, KTP is used as the frequency doubling and electro-optic Q-switching device, and a KTP crystal is used, which is cut according to the phase matching angle, and the pressurized working method is used when electro-optic Q-switching in the laser. However, there is a static birefringent phase delay in the KTP crystal, which affects the closing effect of electro-optic Q-switching; and cut according to the phase matching angle at room temperature, there is a walk-off angle during frequency doubling, which affects the frequency doubling conversion efficiency and the beam quality of the output light ;Using pressurized working mode, the electro-optic Q-switching and frequency doubling effect occur at the same time, and the voltage changes the crystal refractive index, thereby affecting the frequency doubling effect.
发明内容: Invention content :
本发明针对现有技术的不足,提供一种无走离角且能消除静态双折射相位延迟的双KTP倍频和电光调Q集成器件。 The invention aims at the deficiencies of the prior art, and provides a double KTP frequency multiplication and electro-optical Q-switching integrated device which has no walk-off angle and can eliminate static birefringence phase delay.
本发明实现以上目的采取的方案为:一种双KTP倍频和电光调Q集成器件,包括外壳、电极、电光晶体,电光晶体包括两块非临界温度相位匹配切割的KTP晶体,从左到右依次设置第一块KTP晶体和相对第一块KTP晶体旋转90°放置的第二块KTP晶体;在第一块KTP晶体的上通电面镀金膜,下通电面镀金膜,在相对第一块KTP晶体旋转90°放置的第二块KTP晶体的前通电面镀金膜,后通电面镀金膜;从第一块KTP晶体的上通电面镀金膜和第二块KTP晶体的前通电面镀金膜引出金线,连接到正电极;从第一块KTP晶体的下通电面镀金膜和第二块KTP晶体的后通电面镀金膜引出金线,连接到负电极;器件电光调Q作用时采用退压工作方式。 The solution adopted by the present invention to achieve the above object is: a dual KTP frequency multiplication and electro-optic Q-switching integrated device, including a shell, electrodes, and electro-optic crystals. The electro-optic crystals include two non-critical temperature phase-matching cut KTP crystals, from left to right Set the first KTP crystal and the second KTP crystal rotated 90° relative to the first KTP crystal in sequence; the upper energized surface of the first KTP crystal is plated with gold film, the lower energized surface is plated with gold film, and the first KTP crystal is opposite to the first KTP crystal. The second KTP crystal rotated by 90° has a gold-plated front surface and a gold-plated rear surface; gold is drawn from the gold-plated upper surface of the first KTP crystal and the gold-plated front surface of the second KTP crystal. The wire is connected to the positive electrode; the gold wire is drawn from the gold-plated film on the lower energized surface of the first KTP crystal and the gold-plated film on the rear energized surface of the second KTP crystal, and connected to the negative electrode; when the device is electro-optical Q-switched, it uses back-voltage work Way.
作为本实用新型的进一步改进,第一块KTP晶体和相对第一块KTP晶体旋转90°放置的KTP晶体为低电导率的KTP晶体。 As a further improvement of the utility model, the first KTP crystal and the KTP crystal rotated 90° relative to the first KTP crystal are low-conductivity KTP crystals.
作为本实用新型的进一步改进,第一块KTP晶体和相对第一块KTP晶体旋转90°放置的KTP晶体用温度控制实现倍频相位匹配。 As a further improvement of the utility model, the first KTP crystal and the KTP crystal rotated 90° relative to the first KTP crystal are controlled by temperature to realize frequency doubling phase matching.
作为本实用新型的进一步改进,第一块KTP晶体和相对第一块KTP晶体旋转90°放置的KTP晶体的通光面为正方形。 As a further improvement of the utility model, the light-transmitting surfaces of the first KTP crystal and the KTP crystal rotated 90° relative to the first KTP crystal are square.
作为本实用新型的进一步改进,第一块KTP晶体和相对第一块KTP晶体旋转90°放置的KTP晶体相对的内通光面用绝缘透明的光胶相连,外通光面镀1064nm和532nm双色增透膜。 As a further improvement of the utility model, the first KTP crystal and the inner optical surface of the KTP crystal rotated 90° relative to the first KTP crystal are connected with insulating and transparent optical glue, and the outer optical surface is coated with 1064nm and 532nm two-color AR coating.
作为本实用新型的进一步改进,第一块KTP晶体和相对第一块KTP晶体旋转90°放置的KTP晶体依次放置,内通光面和外通光面镀1064nm和532nm双色增透膜。 As a further improvement of the utility model, the first KTP crystal and the KTP crystal rotated 90° relative to the first KTP crystal are placed in sequence, and the inner and outer smooth surfaces are coated with 1064nm and 532nm double-color anti-reflection coatings.
本发明实现以上目的原理为: The present invention realizes above object principle and is:
KTP晶体倍频非临界相位匹配的切割角度为q=90°,j=0°,80℃时KTP晶体能够实现倍频非临界相位匹配,所以晶体的控制温度应保持在80℃。非临界相位匹配切割时,KTP晶体倍频无走离角,因此,这种切割的晶体消除了走离角。 The cutting angle of frequency doubling non-critical phase matching of KTP crystal is q=90°, j=0°, KTP crystal can realize frequency doubling non-critical phase matching at 80°C, so the control temperature of the crystal should be kept at 80°C. When non-critical phase-matching cut, KTP crystal frequency doubling has no walk-off angle, therefore, this kind of cut crystal eliminates the walk-off angle.
偏振光通过单块KTP晶体时产生的相位延迟为: The phase delay generated when polarized light passes through a single KTP crystal is:
上式中,第一项Γs为自然双折射引起的相位延迟,与外加电场无关;第二项ΓE是由外加电场作用产生的相位延迟。 In the above formula, the first term Γs is the phase delay caused by natural birefringence, which has nothing to do with the applied electric field; the second term Γ E is the phase delay caused by the applied electric field.
若在此块KTP晶体之后在串接一块旋转了90°的完全相同的KTP晶体,则偏振光通过串接的KTP晶体时产生的相位延迟为: If an identical KTP crystal rotated by 90° is connected in series after this KTP crystal, the phase delay generated when the polarized light passes through the series-connected KTP crystal is:
此时,自然双折射(nz - nx )项被补偿。因此,我们所设计的结构能够很好的补偿KTP晶体的自然双折射。根据上述推导,两块相对旋转90°串接的KTP晶体的相位延迟为: At this point, the natural birefringence ( nz - n x ) term is compensated. Therefore, the structure we designed can well compensate the natural birefringence of KTP crystals. According to the above derivation, the phase delay of two KTP crystals connected in series with a relative rotation of 90° is:
V是沿z方向所加的电压,由此可以计算出所需要的半波电压Vπ。电光调Q工作方式采用退压式,这样电光调Q和倍频作用从时间上是分离的,可以不考虑晶体加压时对相位匹配角的影响。另外,两块KTP晶体光学上串联、电学上并联, 产生相位延迟所需的半波电压是单块KTP电光Q开关的1/2。 V is the voltage applied along the z direction, from which the required half-wave voltage Vπ can be calculated. The working method of electro-optic Q-switching adopts back-pressure type, so that electro-optic Q-switching and frequency doubling are separated in time, and the influence on the phase matching angle when the crystal is pressurized can be ignored. In addition, two KTP crystals are optically connected in series and electrically connected in parallel, resulting in The half-wave voltage required for phase delay is 1/2 of that of a single KTP electro-optical Q switch.
设通光面边长d=4mm,通光长度为L,d/L取值不同时,对应的半波电压如下表所示: Assuming that the side length of the light-passing surface is d=4mm, the length of the light-passing surface is L, and when the value of d/L is different, the corresponding half-wave voltage is shown in the table below:
表一 不同纵横比所需半波电压 Table 1 Half-wave voltage required for different aspect ratios
本发明的有益效果: Beneficial effects of the present invention:
本发明以KTP作为倍频和电光Q开关器件,一个器件同时实现了倍频和电光调Q两种功能,KTP晶体按照非临界相位匹配切割,消除了走离角;两块KTP晶体相对旋转90°放置,消除了静态双折射引起的静态相位延迟,采用退压工作方式消除了晶体加压时对相位匹配角的影响。 The present invention uses KTP as the frequency doubling and electro-optic Q switching device, and one device simultaneously realizes two functions of frequency doubling and electro-optic Q-switching. The KTP crystal is cut according to non-critical phase matching, eliminating the walk-off angle; two KTP crystals are relatively rotated by 90° ° placement eliminates the static phase delay caused by static birefringence, and adopts the depressurization working method to eliminate the influence on the phase matching angle when the crystal is pressurized.
附图说明: Description of drawings :
图1. KTP晶体由光胶相连接的器件原理图 Figure 1. Schematic diagram of the device where KTP crystals are connected by optical glue
图2. KTP晶体内通光面镀增透膜的器件原理图 Figure 2. Schematic diagram of the device with antireflection coating coated on the light-passing surface of the KTP crystal
图面说明: Graphic description:
(1)第一开KTP晶体; (1) First open KTP crystal;
(2)相对第一开KTP晶体旋转90°放置的第二块KTP晶体; (2) The second KTP crystal rotated 90° relative to the first KTP crystal;
(3)第一开KTP晶体的上通电面镀金膜; (3) Gold-plated film on the upper energized surface of the first KTP crystal;
(4)第一开KTP晶体的下通电面镀金膜; (4) The lower conductive surface of the first KTP crystal is plated with gold film;
(5)第二块KTP晶体的前通电面镀金膜; (5) The front electrified surface of the second KTP crystal is plated with gold;
(6)第二块KTP晶体的后通电面镀金膜; (6) Gold-plated film on the rear electrified surface of the second KTP crystal;
(7)正电极; (7) Positive electrode;
(8)负电极。 (8) Negative electrode.
具体实施方式: Specific implementation methods :
以下结合附图和实施例对本发明作进一步的详细说明。 The present invention will be further described in detail below in conjunction with the accompanying drawings and embodiments.
实施例1参见图1,一种双KTP倍频和电光调Q集成器件,包括外壳、电极、电光晶体,电光晶体包括两块非临界温度相位匹配切割的KTP晶体,从左到右依次设置第一块KTP晶体1和相对第一块KTP晶体1旋转90°放置的第二块KTP晶体2;在第一块KTP晶体1的上通电面镀金膜3,下通电面镀金膜4,在相对第一块KTP晶体旋转90°放置的第二块KTP晶体2的前通电面镀金膜5,后通电面镀金膜6;从第一块KTP晶体的上通电面镀金膜3和第二块KTP晶体的前通电面镀金膜5引出金线,连接到正电极7;从第一块KTP晶体的下通电面镀金膜4和第二块KTP晶体的后通电面镀金膜6引出金线,连接到负电极8。
第一块KTP晶体1和相对第一块KTP晶体旋转90°放置的KTP晶体2为低电导率的KTP晶体。
The
第一块KTP晶体1和相对第一块KTP晶体旋转90°放置的KTP晶体2用温度控制实现倍频相位匹配;温度为80℃。
The
第一块KTP晶体1和相对第一块KTP晶体旋转90°放置的KTP晶体2的通光面为正方形。
The light-transmitting surfaces of the
第一块KTP晶体1和相对第一块KTP晶体旋转90°放置的KTP晶体2相对的内通光面用绝缘透明的光胶相连,外通光面镀1064nm和532nm双色增透膜。
The
实施例2与实施例1基本相同,不同之处在于第一块KTP晶体1和相对第一块KTP晶体旋转90°放置的KTP晶体2依次放置,中间间隔1mm左右,内通光面和外通光面都镀1064nm和532nm双色增透膜。
本发明作为激光器调Q和倍频器件用于激光器中。1064nm激光通过KTP晶体,发生倍频非线性作用,出射532nm激光,通过电光调Q获得高峰值功率的脉冲激光。电光调Q工作时采用退压工作方式以消除晶体加压时对相位匹配角的影响。晶体的边界温度通过温控炉控制。 The invention is used in the laser as a Q-switching and frequency doubling device of the laser. The 1064nm laser passes through the KTP crystal, and the nonlinear effect of frequency doubling occurs, and the 532nm laser is emitted, and the pulsed laser with high peak power is obtained through electro-optic Q-switching. When the electro-optic Q-switching works, it adopts the devoltage working mode to eliminate the influence on the phase matching angle when the crystal is pressurized. The boundary temperature of the crystal is controlled by a temperature-controlled furnace.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201220658086 CN202997296U (en) | 2012-12-04 | 2012-12-04 | Double KTP frequency-multiplication and electro-optic Q-switching integration device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201220658086 CN202997296U (en) | 2012-12-04 | 2012-12-04 | Double KTP frequency-multiplication and electro-optic Q-switching integration device |
Publications (1)
Publication Number | Publication Date |
---|---|
CN202997296U true CN202997296U (en) | 2013-06-12 |
Family
ID=48568428
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 201220658086 Expired - Fee Related CN202997296U (en) | 2012-12-04 | 2012-12-04 | Double KTP frequency-multiplication and electro-optic Q-switching integration device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN202997296U (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104283105A (en) * | 2014-10-17 | 2015-01-14 | 中国科学院上海光学精密机械研究所 | Compensation method for phase mismatch caused by temperature change in harmonic conversion device |
CN105655862A (en) * | 2016-04-20 | 2016-06-08 | 福建福晶科技股份有限公司 | F-P electro-optic Q-switching frequency-doubled laser |
CN107465105A (en) * | 2017-07-31 | 2017-12-12 | 北京中材人工晶体研究院有限公司 | A kind of biaxal crystal electro-optic Q switch and preparation method thereof |
CN107946892A (en) * | 2017-12-29 | 2018-04-20 | 中国科学院福建物质结构研究所 | Non-linear laser device and non-linear laser modulator approach |
CN114441478A (en) * | 2022-04-08 | 2022-05-06 | 南京理工大学 | A Crystal Birefringence Measurement System Based on Tunable Broadband Laser |
-
2012
- 2012-12-04 CN CN 201220658086 patent/CN202997296U/en not_active Expired - Fee Related
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104283105A (en) * | 2014-10-17 | 2015-01-14 | 中国科学院上海光学精密机械研究所 | Compensation method for phase mismatch caused by temperature change in harmonic conversion device |
CN104283105B (en) * | 2014-10-17 | 2017-06-06 | 中国科学院上海光学精密机械研究所 | Cause the compensation method of phase mismatch to temperature change for harmonic conversion device |
CN105655862A (en) * | 2016-04-20 | 2016-06-08 | 福建福晶科技股份有限公司 | F-P electro-optic Q-switching frequency-doubled laser |
CN105655862B (en) * | 2016-04-20 | 2019-01-11 | 福建福晶科技股份有限公司 | A kind of electric-optically Q-switched double-frequency laser of F-P |
CN107465105A (en) * | 2017-07-31 | 2017-12-12 | 北京中材人工晶体研究院有限公司 | A kind of biaxal crystal electro-optic Q switch and preparation method thereof |
CN107465105B (en) * | 2017-07-31 | 2019-12-06 | 北京中材人工晶体研究院有限公司 | double-crystal electro-optic Q-switch and preparation method thereof |
CN107946892A (en) * | 2017-12-29 | 2018-04-20 | 中国科学院福建物质结构研究所 | Non-linear laser device and non-linear laser modulator approach |
CN107946892B (en) * | 2017-12-29 | 2019-09-20 | 中国科学院福建物质结构研究所 | Nonlinear laser and nonlinear laser modulation method |
CN114441478A (en) * | 2022-04-08 | 2022-05-06 | 南京理工大学 | A Crystal Birefringence Measurement System Based on Tunable Broadband Laser |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN202997296U (en) | Double KTP frequency-multiplication and electro-optic Q-switching integration device | |
CN103605248B (en) | Based on the Enhancement Method of the frequency multiplication of periodic polarized lithium niobate | |
CN103368056B (en) | Multi-wave-length laser switching and outputting device | |
RU2011143858A (en) | LIQUID CRYSTAL PANEL AND LIQUID CRYSTAL DISPLAY DEVICE | |
CN103199429A (en) | All-solid-state short-wave ultraviolet laser source | |
CN102169244A (en) | Low-voltage driven electro-optical switch | |
CN102983490B (en) | KTP (potassium titanium phosphate) Q-switching and parameter dual-function device capable of compensating walk-off and static birefringence | |
CN204666993U (en) | The online electro-optic Q switch of a kind of low-voltage pressor reflex formula optical fiber | |
CN101308311B (en) | Difference-frequency mixing cascaded Mg-doped lithium niobate near chemical ratio all-optical wavelength converter | |
CN103259182B (en) | General electro-optical Q-switching switch and Q-switching laser for broadband passing through optical rotation crystal for single or odd times | |
CN108767650B (en) | Function composite electro-optical Q switch | |
CN201965369U (en) | Electro-optic crystal modulating device | |
CN202997297U (en) | Double KTP crystal light parameter and electro-optic Q switching multiplexing device | |
CN203119286U (en) | KTP electro-optic Q-switching device capable of carrying out frequency multiplication | |
Li | Electrooptic switcher based on dual transverse Pockels effect and lithium niobate crystal | |
CN201398010Y (en) | Electro-optical Q-switch | |
CN102983491B (en) | Frequency-doubling KTP (potassium titanium phosphate) electro-optics Q-switching device | |
CN105470801A (en) | KDP Q-modulation switch | |
CN102928999B (en) | Double electro-optic switching devices of High Extinction Ratio can be achieved | |
CN203300948U (en) | Electro-optic Q-switching device | |
CN204650104U (en) | A kind of drives structure of electrochomeric glass | |
CN202444176U (en) | LD (laser disc) end pumping electro-optical Q-switching green laser | |
CN112421372B (en) | A Transverse Modulation KDP Type Electro-optical Q Switch | |
CN108761851A (en) | A kind of polarization maintaining optical fibre high speed electro-optical device | |
CN203119287U (en) | KTP Q-switching and parameter dual-function device capable of compensating walk-off and static birefringence |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20130612 Termination date: 20181204 |