CN202793993U - Nano particle measuring device - Google Patents

Nano particle measuring device Download PDF

Info

Publication number
CN202793993U
CN202793993U CN 201220525172 CN201220525172U CN202793993U CN 202793993 U CN202793993 U CN 202793993U CN 201220525172 CN201220525172 CN 201220525172 CN 201220525172 U CN201220525172 U CN 201220525172U CN 202793993 U CN202793993 U CN 202793993U
Authority
CN
China
Prior art keywords
nano particle
sample cell
microscope
semiconductor laser
ccd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CN 201220525172
Other languages
Chinese (zh)
Inventor
彭志平
彭旸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Longbow Institute Of Science & Teaching Apparatus
Original Assignee
Nanjing Longbow Institute Of Science & Teaching Apparatus
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Longbow Institute Of Science & Teaching Apparatus filed Critical Nanjing Longbow Institute Of Science & Teaching Apparatus
Priority to CN 201220525172 priority Critical patent/CN202793993U/en
Application granted granted Critical
Publication of CN202793993U publication Critical patent/CN202793993U/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

The utility model discloses a nano particle measuring device which comprises a horizontally arranged sample pool, wherein a CCD (Charge Coupled Device) microscope is arranged above the sample pool, the CCD microscope is connected with a computer, a semiconductor laser is arranged below the sample pool, and the semiconductor laser and the sample pool are arranged at an inclined angle of 10-80 DEG. According to the nano particle measuring device provided by the utility model, the semiconductor laser is additionally arranged on the CCD microscope, the semiconductor laser and the sample pool are arranged at a certain inclined angle, a nano particle in the sample pool generates a dynamic scattering light spot under the irradiation of a laser beam, and thus the particle diameter from dozen nanometers to several nanometers and the particle size distribution are measured according to an Einstein Brownian motion equation. The nano particle measuring device ensures the measurement accuracy and stability, is capable of greatly lowering the production cost, has a simple structure and is easily popularized and applied.

Description

A kind of nano particle measurement mechanism
Technical field
The present invention relates to a kind of measurement mechanism, relate in particular to a kind of nano particle measurement mechanism.
Background technology
Nano particles is measured, at present instrument commonly used have amplifying power be hundreds of thousands doubly electron microscope and based on the photon correlation spectroscopy nano particle size instrument of (being called for short PCS).These two kinds of instruments are mainly by import, exist expensively, the problem such as are difficult for popularizing.Such as, the nano particle size instrument adopts dynamic light scattering principle and photon correlation spectroscopy technology, according to the velocity determination grain size of particle Brownian movement in liquid.For authenticity and the validity that has guaranteed test result, the detector of nano particle size instrument need to adopt professional high-performance photoelectricity multiplier tube (PMT), and photon signal is had high sensitivity and signal to noise ratio (S/N ratio), thereby has guaranteed the accuracy of test result.In addition, use the PCS technology to measure the nano-scale particle size, must can differentiate nanosecond signal fluctuation, therefore, the core digital correlator of nano particle size instrument need to have the very high-resolution ability of identification 8ns and high conversion speed.
Along with technical progress, the microscope of visual type has been loaded onto CCD camera or digital camera, is combined " digit microscope " (CCD microscope) that composition function is powerful with computing machine.The CCD microscope, also can be called microscopy imaging system, microscope image pick-up is first-class, it is one of most important accessory of digit microscope, mainly be to take and be transferred on the computing machine to displaing micro picture, can make the image of observing on the microscope output to computing machine, these displaing micro pictures are compared, analyzed.CCD, English full name: Charge-coupled Device, Chinese full name: charge coupled cell can be called ccd image sensor.CCD is a kind of semiconductor devices, can be converted into digital signal to optical image.The small photoactive substance of the upper implantation of CCD is called pixel (Pixel).The pixel count that comprises on CCD is more, and its screen resolution that provides is also just higher.The effect of CCD is just as film, but it is that image pixel is converted to digital signal.The electric capacity that many marshallings are arranged on the CCD can be responded to light, and image is transformed into digital signal.Via the control of external circuit, each little electric capacity can with its with electric charge be given to its adjacent electric capacity.But its imaging mode is still in geometric optical imaging principle category, and amplifying power still only has thousand times of 1-2, so still can only observe micron-sized object.Therefore, be necessary to improve existing CCD microscope and measuring method thereof, the measurement range of common digit microscope is widened to the sodium meter level from grade, micron order, guarantee measuring accuracy and stability, reduce production costs.
Summary of the invention
Technical matters to be solved by this invention provides a kind of nano particle measurement mechanism, can guarantee measuring accuracy and stability, can greatly reduce production costs again, and simple in structure, be easy to promote the use of.
The present invention solves the problems of the technologies described above the technical scheme that adopts to provide a kind of nano particle measurement mechanism, comprise horizontally disposed sample cell, the top of described sample cell is provided with the CCD microscope, described CCD microscope links to each other with computing machine, wherein, described sample cell below is provided with semiconductor laser, and the optical axis of described semiconductor laser and sample cell are 10 °~80 ° angle of inclination setting.
Further, the red copper piece of described sample cell nestles up the semiconductor temperature device, described semiconductor temperature device comprises the semiconductor cooler of hollow, the cold junction ceramic plane of described semiconductor cooler abuts against the red copper piece bottom of sample cell, and described semiconductor cooler hot junction ceramic plane is provided with thermal-arrest ring and heating radiator.
Further, the power of described semiconductor laser is 3~5mw, and wavelength is 400nm~650nm.
Further, described heating radiator, thermal-arrest ring, semiconductor cooler and sample cell are arranged on the microscopical objective table of CCD.
Further, described CCD vertically is provided with the microscope illumination light source under microscopical.
The present invention contrasts prior art following beneficial effect: nano particle measurement mechanism provided by the invention, increase semiconductor laser at CCD microscope (digit microscope), described semiconductor laser and sample cell are certain angle of inclination and are arranged so that nano particle produces the dynamic light scattering luminous point in the sample cell, according to Einsteinian Brownian movement equation, thereby measure tens nanometers to grain diameter and the particle diameter distribution thereof of several nanometers, with the measurement range of common digit microscope from grade, micron order is widened to the sodium meter level, can guarantee measuring accuracy and stability, can greatly reduce production costs again, and simple in structure, be easy to promote the use of.
Description of drawings
Fig. 1 is nano particle measurement mechanism structural representation of the present invention;
Fig. 2 is the structural representation of sample cell in the nano particle measurement mechanism of the present invention;
Fig. 3 is hollow semiconductor cooler structural representation in the nano particle measurement mechanism of the present invention;
Fig. 4 is hollow semiconductor cooler vertical view in the nano particle measurement mechanism of the present invention;
Fig. 5 is nano particle measurement procedure synoptic diagram of the present invention.
Among the figure:
1 semiconductor laser, 2 heating radiators, 3 thermal-arrest rings
4 semiconductor coolers, 5 sample cells, 6 CCD microscopes
7 computing machines, 8 microscope illumination light sources, 9 quartz windows
10 red copper pieces, 11 light holes, 12 hot junction ceramic wafers
13 cold junction ceramic wafers, 14 semiconductor elements, 15 light holes
16 power leads
Embodiment
The invention will be further described below in conjunction with drawings and Examples.
Fig. 1 is nano particle measurement mechanism structural representation of the present invention.
See also Fig. 1, nano particle measurement mechanism provided by the invention comprises horizontally disposed sample cell 5, the top of described sample cell 5 is provided with CCD microscope 6, described CCD microscope 6 links to each other with computing machine 7, wherein, described sample cell 5 belows are provided with semiconductor laser 1, and described semiconductor laser 1 and sample cell 5 are certain angle of inclination and are arranged so that sample cell 5 interior nano particles produce the scattering luminous point.The below of described sample cell 5 nestles up the semiconductor temperature device, described semiconductor temperature device comprises the semiconductor cooler 4 of hollow, the cold junction ceramic plane of described semiconductor cooler abuts against the red copper piece of sample cell, and described semiconductor cooler hot junction ceramic plane is provided with thermal-arrest ring 3 and heating radiator 2.
Measurement mechanism provided by the invention is to increase semiconductor laser 1 on existing CCD microscope (digit microscope) 6 bases, semiconductor laser 1 is a kind of coherent source, and be upwards to shine sideling sample cell 5, the main axis of semiconductor laser 1 and the sample cell of horizontal positioned 5 are 10 °~80 °, do measurement, demonstration etc. so that the dynamic light scattering luminous point (hot spot) that sample cell 5 interior fine particles produce is received and be sent to computing machine 7 by the CCD microscope, realize the nano particle measurement.The structure of sample cell 5 can remove by upper objective table or from objective table as shown in Figure 2 very easily.Red copper piece 10 is centered around around the light hole 11 of sample cell 5 as the collection cooler, lays in the light hole 11 and contains the liquid that will measure particle, sample cell 5 is provided with quartz window 9 so that the luminous energy that the light beam of laser instrument 1 or light source 8 send throws light on liquid in it.
In addition, measurement mechanism provided by the invention still can keep original microscope illumination light source 8, microscope illumination light source 8 is a kind of incoherent lights, sample cell 5 vertically upward throws light on, read the shape characteristic of sample cell 5 interior objects and be sent to computing machine 7 do measurements, demonstration etc. by CCD microscope 6, realize grade, micron particles measurement.
The concrete division of labor of this measurement yarn system is as follows: when measuring grade, micron order larger object, with microscope illumination light source 8 incoherent light vertical illumination sample cells 5; When measuring the nanoscale small objects, shine sideling sample cell 5 with semiconductor laser 1 coherent light.
When measuring nano particle, cause nano particle to produce convection current in order to prevent sample cell 5 interior small temperature difference, drift phenomenon, the stability of raising measuring accuracy and instrument is preferably selected by semiconductor cooler 4 and setting thermal-arrest ring 3 and heating radiator 2 thereunder to form temperature regulating device.Semiconductor cooler 4 (Thermoelectric cooler): utilize semi-conductive heat-electrical effect to produce the device of cold, claim again heat-electric refrigerator.The characteristics such as semiconductor cooler 4 has noiseless, friction, do not need cold-producing medium, volume is little, lightweight, and reliable operation, easy and simple to handle, be easy to carry out cold regulation.Semiconductor cooler 4 is hollow structure, which is provided with power lead 16 and light hole 15, the cold junction ceramic plane of semiconductor cooler 4 is near the red copper piece 10 of sample cell 5, and the hot junction ceramic wafer of semiconductor cooler 4 is provided with thermal-arrest ring 3 and heating radiator 2, as shown in Figure 3 and Figure 4.
CCD microscope 6 has one or more microcobjectives, follows according to measuring the picture difference, matches different object lens, such as LB-12 type or TS3 type CCD microscope.Main task is to obtain shape characteristic or the dynamic light scattering luminous point (hot spot) of object in the sample cell.
Computing machine 7 is general purpose computer, and in-built Survey Software when the above object of micron order is measured, mainly is to do some figure image intensifyings, edge sharpening, and size is measured, the routine works such as area calculating.When nanometer measurement, computing machine 7 is followed the tracks of certain or follow the tracks of simultaneously the movement locus of the dynamic light scattering luminous point of some nano particles, concrete steps as shown in Figure 5:
Step S501: the liquid that contains nano particle to be measured in sample cell 5 interior placements;
Step S502: the luffing angle of control semiconductor laser 1,10 °-80 ° of pitching adjustable extents are so that sample cell 5 interior nano particles produce the field range that the dynamic light scattering luminous point enters CCD microscope 6; The power regulating range of semiconductor laser 1 is the 3-5 milliwatt, cooperates temperature regulating device that the liquid in the sample cell 5 are controlled in 15 degree-25 degree certain a bit to prevent that sample cell 5 interior nano particles from producing convection current and drift phenomenons; Generally temperature is controlled near 20 degree, temperature-controlled precision requires to be not more than positive and negative 0.1 degree.Heating radiator 2, thermal-arrest ring 3, semiconductor cooler 4 and sample cell 5 are arranged on the objective table of CCD microscope 6, can move up and down with objective table, thereby be convenient to seek the upward scattering luminous point of nano particle of sample cell 5 interior different depths (different aspects);
Step S503:CCD microscope 6 reads the dynamic light scattering luminous point of sample cell 5 interior nano particles and is sent to computing machine 7;
Step S504: computing machine 7 is followed the tracks of the movement locus of the dynamic light scattering luminous point of nano particle, according to Einsteinian Brownian movement equation, calculates the particle diameter of nano particle; Repeatedly measure the particle diameter distribution plan that calculates at last this batch sample.
In sum, nano particle measurement mechanism provided by the invention, at 6 times increase semiconductor lasers 1 of CCD microscope, and semiconductor laser 1 and sample cell 5 are certain angle of inclination and are arranged so that nano particle produces the dynamic light scattering luminous point in the sample cell, thereby measure tens nanometers to grain diameter and the particle diameter distribution thereof of several nanometers, the measurement range of common digit microscope is widened to the sodium meter level from grade, micron order, can guarantee measuring accuracy and stability, can greatly reduce production costs again, and simple in structure, be easy to promote the use of.
Although the present invention discloses as above with preferred embodiment; so it is not to limit the present invention, any those skilled in the art, without departing from the spirit and scope of the present invention; when can doing a little modification and perfect, so protection scope of the present invention is when with being as the criterion that claims were defined.

Claims (5)

1. nano particle measurement mechanism, comprise horizontally disposed sample cell (5), the top of described sample cell (5) is provided with CCD microscope (6), described CCD microscope (6) links to each other with computing machine (7), it is characterized in that, described sample cell (5) below is provided with semiconductor laser (1), and the optical axis of described semiconductor laser (1) and sample cell (5) are 10 °~80 ° angle of inclination setting.
2. nano particle measurement mechanism as claimed in claim 1, it is characterized in that, described sample cell (5) below nestles up the semiconductor temperature device, described semiconductor temperature device comprises the semiconductor cooler (4) of hollow, cold junction ceramic plane above the described semiconductor cooler (4) abuts against the red copper piece bottom surface of sample cell (5), and the following hot junction ceramic plane of described semiconductor cooler (4) is provided with thermal-arrest ring (3) and heating radiator (2).
3. nano particle measurement mechanism as claimed in claim 2 is characterized in that, the power of described semiconductor laser (1) is 3~5mw, and wavelength coverage is 400nm~650nm.
4. nano particle measurement mechanism as claimed in claim 1 is characterized in that, described heating radiator (2), thermal-arrest ring (3), semiconductor cooler (4) and sample cell (5) are arranged on the objective table of CCD microscope (6).
5. such as each described nano particle measurement mechanism of claim 1~4, it is characterized in that, vertically be provided with microscope illumination light source (8) under the described CCD microscope (6).
CN 201220525172 2012-10-15 2012-10-15 Nano particle measuring device Expired - Lifetime CN202793993U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201220525172 CN202793993U (en) 2012-10-15 2012-10-15 Nano particle measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201220525172 CN202793993U (en) 2012-10-15 2012-10-15 Nano particle measuring device

Publications (1)

Publication Number Publication Date
CN202793993U true CN202793993U (en) 2013-03-13

Family

ID=47821237

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201220525172 Expired - Lifetime CN202793993U (en) 2012-10-15 2012-10-15 Nano particle measuring device

Country Status (1)

Country Link
CN (1) CN202793993U (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102879318A (en) * 2012-10-15 2013-01-16 南京浪博科教仪器研究所 Nanoparticle measurement device and method
CN105259081A (en) * 2015-10-22 2016-01-20 河海大学 Brownian motion measuring instrument and measuring method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102879318A (en) * 2012-10-15 2013-01-16 南京浪博科教仪器研究所 Nanoparticle measurement device and method
CN105259081A (en) * 2015-10-22 2016-01-20 河海大学 Brownian motion measuring instrument and measuring method
CN105259081B (en) * 2015-10-22 2018-05-29 河海大学 A kind of Brownian movement measuring method

Similar Documents

Publication Publication Date Title
CN106645236B (en) A kind of ultrafast transmission electron microscope system and its application method
CN104089858A (en) Particle size analyzer
Delamarre et al. Characterization of solar cells using electroluminescence and photoluminescence hyperspectral images
CN110006905A (en) A kind of ultra-clean smooth surface defect detecting device of heavy caliber that line area array cameras combines
CN102879318A (en) Nanoparticle measurement device and method
CN104181131B (en) Infrared modulated luminescence generated by light two-dimensional imaging light path is automatically positioned calibrating installation
JP2007206005A (en) Method and device for inspecting pattern defect
CN104502315A (en) Micro-region fluorescent scanning measurement system
CN103163069B (en) Method and system for measuring solid material surface adhesion force
TWI757795B (en) Methods for maintaining gap spacing between an optical probe of a probe system and an optical device of a device under test, and probe systems that perform the methods
CN105115864B (en) The measuring method of single nanoparticle particle diameter
Vo et al. Extended the linear measurement range of four-quadrant detector by using modified polynomial fitting algorithm in micro-displacement measuring system
CN109116041B (en) Method for measuring and calculating cell density in physiological environment
CN202793993U (en) Nano particle measuring device
CN104777077A (en) Liquid viscous coefficient measuring device and measuring method based on optical trap effect
TW201416660A (en) Method for analyzing the crystalline structure of a poly-crystalline semi-conductor material
CN107153079A (en) A kind of method for measuring film coefficient of heat transfer
CN104614078A (en) Piezoelectric swing mirror micro scanning thermal microscope imaging system
CN208155792U (en) A kind of dusty material detection device
CN104034266B (en) Surface microstructure based high-accuracy length detection method
US8830458B2 (en) Measurement systems and measurement methods
CN104406537A (en) Method for measuring micron-order depths of pits of component
Bitzer et al. A new adaptive light beam focusing principle for scanning light stimulation systems
CN207074147U (en) A kind of experimental system that Young's modulus of elasticity is measured using line array CCD imaging method
CN110108604A (en) High-altitude particle device for identifying and method based on micro- amplification and visual angle sensing

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term

Granted publication date: 20130313

CX01 Expiry of patent term