CN202662295U - Device for changing route range of micro-positioning stage - Google Patents
Device for changing route range of micro-positioning stage Download PDFInfo
- Publication number
- CN202662295U CN202662295U CN 201220215143 CN201220215143U CN202662295U CN 202662295 U CN202662295 U CN 202662295U CN 201220215143 CN201220215143 CN 201220215143 CN 201220215143 U CN201220215143 U CN 201220215143U CN 202662295 U CN202662295 U CN 202662295U
- Authority
- CN
- China
- Prior art keywords
- group
- hinge
- flexible
- parallel
- hinged
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000919 ceramic Substances 0.000 claims abstract description 33
- 238000006073 displacement reaction Methods 0.000 claims abstract description 31
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 claims description 33
- 150000001875 compounds Chemical class 0.000 claims description 9
- 239000002131 composite material Substances 0.000 abstract 2
- 238000005516 engineering process Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 2
- 230000003321 amplification Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
Landscapes
- General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
Abstract
The utility model discloses a device for changing a route range of a micro-positioning stage. The device is composed of a base, a variable magnification time lever, a composite parallel four-rod guiding mechanism and a movable platform. Two parallel grooves are arranged below the base and two piezoelectric ceramic drivers are respectively placed in the respective grooves. The variable magnification time lever is downwards arranged in the middle of the base. Output hinges arranged in the upper part of the variable magnification time lever are hinged with the middle parts of two parallel flexible hinge parts and respectively enable two input hinges in the lower part of the variable magnification time lever to be contacted with the two piezoelectric ceramic drivers through pre-fastening screws. The variable magnification time lever is provided with a fixed hinge to be connected with the base. The two input hinges can independently receive input displacements of the piezoelectric ceramic drivers to transmit the amplified displacements to the movable platform so as to make an output displacement of the platform have two route ranges, thereby realizing a composite route range function for small routes and high precision or for slightly low precision requirements but relatively large route requirements.
Description
Technical field
The utility model relates to positioning device for microscopic motion, and particularly a kind of micro-positioning platform changes the device of stroke range.
Background technology
Along with the development of science and technology, in fields such as ultraprecise processing, microelectronic engineering, bioengineering, nanometer technologies all in the urgent need to submicron order even nano level precision positioning technology.Existing micro-positioning platform all only has a kind of displacement output area of stroke, when stroke is larger, and the output displacement precision that very difficult acquisition is higher; In order to obtain higher micro-positioning platform output displacement precision, the output displacement stroke of locating platform is often less.
Summary of the invention
The purpose of this utility model provides the device that a kind of micro-positioning platform changes stroke range.
The technical scheme that its technical matters that solves the utility model adopts is:
The utility model comprises pedestal, becomes enlargement factor lever, compound parallel four-bar guiding mechanism and motion platform; Motion platform is installed in the pedestal middle part, second group of two parallel flexible hinge of compound parallel four-bar guiding mechanism, the 4th group of two parallel flexible hinges, the 5th group of two parallel flexible hinge and the 8th group of two parallel flexible hinge be distributed in motion platform around; Wherein:
1) end of first group of two flexible hinge is hinged with the two ends of pedestal first side respectively, the other end of first group of two a flexible hinge respectively end of the flexible hinge parallel with second group two is hinged, and the other end of second group of two parallel flexible hinge is hinged with the first side of motion platform respectively;
2) end of the 3rd group of two flexible hinges is hinged with the two ends of pedestal Second Edge respectively, the other end of the 3rd group of two a flexible hinges respectively end of the flexible hinge parallel with second group two is hinged, and the other end of second group of two parallel flexible hinge is hinged with the Second Edge of motion platform respectively;
3) end of the 6th group of two flexible hinges is hinged with the two ends on pedestal the 3rd limit respectively, the other end of the 6th group of two a flexible hinges respectively end of the flexible hinge parallel with the 5th group two is hinged, and the other end of the 5th group of two parallel flexible hinges is hinged with the 3rd limit of motion platform respectively;
4) end of the 7th group of two flexible hinges is hinged with the two ends on pedestal the 4th limit respectively, the other end of the 7th group of two a flexible hinges respectively end of the flexible hinge parallel with the 8th group two is hinged, and the other end of the 8th group of two parallel flexible hinges is hinged with the 4th limit of motion platform respectively;
Pedestal the 3rd limit one side-lower also has and the 6th group of two grooves that two flexible hinges are parallel, II piezoelectric ceramic actuator and I piezoelectric ceramic actuator place respectively groove separately, change enlargement factor lever is set downwards at pedestal Second Edge middle part, the output hinge flexible hinge middle part parallel with second group two that becomes enlargement factor lever top is hinged, and the spring pre-tightening screw of tightening by the side contacts respectively one group two input hinges that become enlargement factor lever bottom with II piezoelectric ceramic actuator and I piezoelectric ceramic actuator respectively.
The input hinge place that described I drives piezoelectric ceramic actuator produces displacement Y1, the output hinge place that becomes the enlargement factor lever produces displacement Y, this moment lever enlargement factor K=Y/Y1=L/L1, in the formula: L is hinged to the distance of fixed hinge for output, and L1 is hinged to the distance of fixed hinge for input; When the input hinge place that only drives the II piezoelectric ceramic actuator produces displacement Y2, the output hinge place that becomes the enlargement factor lever produces displacement Y, this moment lever enlargement factor K=Y/Y2=L/L2, in the formula: L is hinged to the distance of fixed hinge for output, L2 is hinged to the distance of fixed hinge for input; Change thus the enlargement factor of lever by driving two piezoelectric ceramic actuators, make micro-positioning platform have different displacement delivery strokes.
The fixed hinge of described change enlargement factor lever, one group two the input hinges and output hinge be circular-arc flexible hinge; First group of two flexible hinge of compound parallel four-bar guiding mechanism, second group of two flexible hinge, the 3rd group of two flexible hinges, the 4th group of two flexible hinges, the 5th group of two flexible hinges, the 6th group of two flexible hinges, the 7th group of two flexible hinges and the 8th group of two flexible hinges are lobate flexible hinge.
The beneficial effect that the utlity model has is:
Comprise two input hinges owing to becoming the enlargement factor lever, drive near lever fixed hinge piezoelectric ceramic actuator, this moment, lever had larger enlargement factor, and the output displacement at output hinge place is larger, and micro-positioning platform has larger output displacement stroke; Drive near lever output hinge piezoelectric ceramic actuator, this moment, lever had less enlargement factor, and the output displacement at output hinge place is less.Reach the purpose of the enlargement factor that changes lever by driving different piezoelectric ceramic actuators, make micro-positioning platform have different output displacement strokes.When requiring micro-positioning platform to have larger output displacement, and when not high to accuracy requirement, can select than the larger displacement output stroke; When requiring micromotion platform to have higher displacement output accuracy, and output displacement hour, can select less displacement delivery stroke.
Description of drawings
Fig. 1 is integrated model schematic diagram of the present utility model.
Fig. 2 becomes enlargement factor leverage schematic diagram.
Among the figure: 1-1, first group of two flexible hinge of 1-2-, 2-1, second group of two parallel-flexible-hinge of 2-2-, 3-1, the 3rd group of two flexible hinges of 3-2-, the 9-pedestal, 4-1, the 4th group of two parallel-flexible-hinges of 4-2-, 10-exports hinge, and 11-becomes enlargement factor lever, 5-1, the 5th group of two parallel-flexible-hinges of 5-2-, 12-1, one group of input of 12-2-hinge, the 13-fixed hinge, I, the II-piezoelectric ceramic actuator, 14-1,14-2-spring pre-tightening screw, 6-1, the 6th group of two flexible hinges of 6-2-, 7-1, the 7th group of two flexible hinges of 7-2-, 8-1, the 8th group of two parallel-flexible-hinges of 8-2-, 15-motion platform.
Embodiment
Below in conjunction with drawings and Examples, the utility model is further specified:
As shown in Figure 1, the utility model comprises pedestal 9, becomes enlargement factor lever 11, compound parallel four-bar guiding mechanism and motion platform 15; Motion platform 15 is installed in pedestal 9 middle parts, second group two parallel flexible hinge 2-1,2-2 of compound parallel four-bar guiding mechanism, the 4th group two parallel flexible hinge 4-1,4-2, the 5th group two parallel flexible hinge 5-1,5-2 and the 8th group two parallel flexible hinge 8-1,8-2 be distributed in motion platform around; Wherein:
1) end of first group of two flexible hinge 1-1,1-2 is hinged with the two ends of pedestal 9 first sides respectively, the other end of first group of two flexible hinge 1-1,1-2 respectively end of flexible hinge 2-1, the 2-2 parallel with second group two is hinged, and the other end of second group two parallel flexible hinge 2-1,2-2 is hinged with the first side of motion platform (15) respectively;
2) end of the 3rd group of two flexible hinge 3-1,3-2 is hinged with the two ends of pedestal 9 Second Edges respectively, the other end of the 3rd group of two flexible hinge 3-1, the 3-2 respectively end of flexible hinge 4-1, the 4-2 parallel with second group two is hinged, and the other end of second group two parallel flexible hinge 4-1,4-2 is hinged with the Second Edge of motion platform 15 respectively;
3) end of the 6th group of two flexible hinge 6-1,6-2 is hinged with the two ends on pedestal 9 the 3rd limit respectively, the other end of the 6th group of two flexible hinge 6-1, the 6-2 respectively end of flexible hinge 5-1, the 5-2 parallel with the 5th group two is hinged, and the other end of the 5th group two parallel flexible hinge 5-1,5-2 is hinged with the 3rd limit of motion platform (15) respectively;
4) end of the 7th group of two flexible hinge 7-1,7-2 is hinged with the two ends on pedestal 9 the 4th limit respectively, the other end of the 7th group of two flexible hinge 7-1, the 7-2 respectively end of flexible hinge 8-1, the 8-2 parallel with the 8th group two is hinged, and the other end of the 8th group two parallel flexible hinge 8-1,8-2 is hinged with the 4th limit of motion platform 15 respectively;
Pedestal 9 the 3rd limit one side-lower also has and the 6th group of two flexible hinge 6-1, two grooves that 6-2 is parallel, II piezoelectric ceramic actuator and I piezoelectric ceramic actuator place respectively groove separately, change enlargement factor lever 11 is set downwards at pedestal 9 Second Edges middle part, become the output hinge 13 flexible hinge 4-1 parallel with second group two on enlargement factor lever 11 tops, 4-2 middle part is hinged, and tightens spring pre-tightening screw 14-1 by the side respectively, 14-2 makes one group two input hinge 12-1 that become enlargement factor lever 11 bottoms, 12-2 contacts with II piezoelectric ceramic actuator and I piezoelectric ceramic actuator respectively.
The fixed hinge 13 of described change enlargement factor lever, one group two input hinge 12-1,12-2 and output hinge 10 are circular-arc flexible hinge; First group of two flexible hinge 1-1,1-2 of compound parallel four-bar guiding mechanism, second group of two flexible hinge 2-1,2-2, the 3rd group of two flexible hinge 3-1,3-2, the 4th group of two flexible hinge 4-1,4-2, the 5th group of two flexible hinge 5-1,5-2, the 6th group of two flexible hinge 6-1,6-2, the 7th group of two flexible hinge 7-1,7-2 and the 8th group of two flexible hinge 8-1,8-2 are lobate flexible hinge.
As shown in Figure 1 and Figure 2, the I piezoelectric ceramic actuator is positioned in the groove of pedestal, makes the I piezoelectric ceramic actuator abut against amplification lever input hinge 12-2 place by tightening spring pre-tightening screw 14-1.The II piezoelectric ceramic actuator is parallel in another groove that the I piezoelectric ceramic actuator is positioned over pedestal, the II piezoelectric ceramic actuator is abutted against amplify lever input hinge 12-1 place by tightening spring pre-tightening screw 14-2.The input hinge 12-2 place that described I drives piezoelectric ceramic actuator produces displacement Y1, output hinge 10 places that become the enlargement factor lever produce displacement Y, this moment lever enlargement factor K=Y/Y1=L/L1, in the formula: L is the distance of output hinge 10 to fixed hinge 13, and L1 is the distance of input hinge 12-2 to fixed hinge 13; Drive the input hinge 12-1 place generation displacement Y2 of piezoelectric ceramic actuator when II only, output hinge 10 places that become the enlargement factor lever produce displacement Y, this moment lever enlargement factor K=Y/Y2=L/L2, in the formula: L is the distance of output hinge 10 to fixed hinge 13, and L2 is the distance of input hinge 12-1 to fixed hinge 13; Change thus the enlargement factor of lever by driving two piezoelectric ceramic actuators, make micro-positioning platform have different displacement delivery strokes.
Claims (3)
1. the device of a micro-positioning platform change stroke range comprises pedestal (9), becomes enlargement factor lever (11), compound parallel four-bar guiding mechanism and motion platform (15); Motion platform (15) is installed in pedestal (9) middle part, second group of two parallel flexible hinge (2-1,2-2) of compound parallel four-bar guiding mechanism, the 4th group of two parallel flexible hinges (4-1,4-2), the 5th group of two parallel flexible hinges (5-1,5-2) and the 8th group of two parallel flexible hinges (8-1,8-2) be distributed in motion platform around; Wherein:
1) end of first group of two flexible hinge (1-1,1-2) is hinged with the two ends of pedestal (9) first side respectively, the other end of first group of two flexible hinge (1-1, a 1-2) respectively end of the flexible hinge (2-1,2-2) parallel with second group two is hinged, and the other end of second group of two parallel flexible hinge (2-1,2-2) is hinged with the first side of motion platform (15) respectively;
2) end of the 3rd group of two flexible hinges (3-1,3-2) is hinged with the two ends of pedestal (9) Second Edge respectively, the other end of the 3rd group of two flexible hinges (3-1, a 3-2) respectively end of the flexible hinge (4-1,4-2) parallel with second group two is hinged, and the other end of second group of two parallel flexible hinge (4-1,4-2) is hinged with the Second Edge of motion platform (15) respectively;
3) end of the 6th group of two flexible hinges (6-1,6-2) is hinged with the two ends on pedestal (9) the 3rd limit respectively, the other end of the 6th group of two flexible hinges (6-1, a 6-2) respectively end of the flexible hinge (5-1,5-2) parallel with the 5th group two is hinged, and the other end of the 5th group of two parallel flexible hinges (5-1,5-2) is hinged with the 3rd limit of motion platform (15) respectively;
4) end of the 7th group of two flexible hinges (7-1,7-2) is hinged with the two ends on pedestal (9) the 4th limit respectively, the other end of the 7th group of two flexible hinges (7-1, a 7-2) respectively end of the flexible hinge (8-1,8-2) parallel with the 8th group two is hinged, and the other end of the 8th group of two parallel flexible hinges (8-1,8-2) is hinged with the 4th limit of motion platform (15) respectively; It is characterized in that:
Pedestal (9) the 3rd limit one side-lower also has and the 6th group of two flexible hinge (6-1,6-2) two parallel grooves, II piezoelectric ceramic actuator and I piezoelectric ceramic actuator place respectively groove separately, at pedestal (9) Second Edge middle part change enlargement factor lever (11) is set downwards, become output hinge (10) flexible hinge (4-1 parallel with second group two on enlargement factor lever (11) top, 4-2) middle part is hinged, and tightens spring pre-tightening screw (14-1 by the side respectively, 14-2) make one group two input hinge (12-1 that become enlargement factor lever (11) bottom, 12-2) contact with II piezoelectric ceramic actuator and I piezoelectric ceramic actuator respectively.
2. a kind of micro-positioning platform according to claim 1 changes the device of stroke range, it is characterized in that: described I piezoelectric ceramic actuator, input hinge (12-2) locates to produce displacement Y1, the output hinge (10) that becomes the enlargement factor lever locates to produce displacement Y, this moment lever enlargement factor K=Y/Y1=L/L1, in the formula: L is the distance of output hinge (10) to fixed hinge (13), and L1 is the distance of input hinge (12-2) to fixed hinge (13); Described II piezoelectric ceramic actuator, input hinge 12-1 place produces displacement Y2, the output hinge (10) that becomes the enlargement factor lever locates to produce displacement Y, this moment lever enlargement factor K=Y/Y2=L/L2, in the formula: L is the distance of output hinge (10) to fixed hinge (13), and L2 is the distance of input hinge (12-1) to fixed hinge (13); Change thus the enlargement factor of lever by driving two piezoelectric ceramic actuators, make micro-positioning platform have different displacement delivery strokes.
3. a kind of micro-positioning platform according to claim 2 changes the device of stroke range, it is characterized in that: the fixed hinge (13) of described change enlargement factor lever, one group two input hinges (12-1,12-2) and export hinge (10) and be circular-arc flexible hinge; First group of two flexible hinge (1-1,1-2) of compound parallel four-bar guiding mechanism, second group of two flexible hinge (2-1,2-2), the 3rd group of two flexible hinges (3-1,3-2), the 4th group of two flexible hinges (4-1,4-2), the 5th group of two flexible hinges (5-1,5-2), the 6th group of two flexible hinges (6-1,6-2), the 7th group of two flexible hinges (7-1,7-2) and the 8th group of two flexible hinges (8-1,8-2) are lobate flexible hinge.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201220215143 CN202662295U (en) | 2012-05-14 | 2012-05-14 | Device for changing route range of micro-positioning stage |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201220215143 CN202662295U (en) | 2012-05-14 | 2012-05-14 | Device for changing route range of micro-positioning stage |
Publications (1)
Publication Number | Publication Date |
---|---|
CN202662295U true CN202662295U (en) | 2013-01-09 |
Family
ID=47457183
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 201220215143 Expired - Lifetime CN202662295U (en) | 2012-05-14 | 2012-05-14 | Device for changing route range of micro-positioning stage |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN202662295U (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102682857A (en) * | 2012-05-14 | 2012-09-19 | 浙江大学 | Device for changing route range of jogged positioning platform |
CN103963033A (en) * | 2014-05-20 | 2014-08-06 | 广东工业大学 | One-dimensional micro-positioning platform with adjustable rigidity frequency based on stress rigidization principle |
CN105252528A (en) * | 2015-11-02 | 2016-01-20 | 西安电子科技大学 | Rope-driven parallel translational micro movement platform |
CN106251909A (en) * | 2016-08-19 | 2016-12-21 | 天津大学 | A kind of high accuracy, big stroke freedom degree parallel connection mini positioning platform |
CN106328213A (en) * | 2016-10-27 | 2017-01-11 | 北京航空航天大学 | Two-axis micro-motion platform based on flexible hinge |
CN108494285A (en) * | 2018-05-14 | 2018-09-04 | 西安科技大学 | A kind of accurate amplification flexible micro system |
-
2012
- 2012-05-14 CN CN 201220215143 patent/CN202662295U/en not_active Expired - Lifetime
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102682857A (en) * | 2012-05-14 | 2012-09-19 | 浙江大学 | Device for changing route range of jogged positioning platform |
CN103963033A (en) * | 2014-05-20 | 2014-08-06 | 广东工业大学 | One-dimensional micro-positioning platform with adjustable rigidity frequency based on stress rigidization principle |
CN103963033B (en) * | 2014-05-20 | 2016-06-29 | 广东工业大学 | The one-dimensional micromotion platform of rigidity frequency-adjustable based on Stress stiffening principle |
CN105252528A (en) * | 2015-11-02 | 2016-01-20 | 西安电子科技大学 | Rope-driven parallel translational micro movement platform |
CN105252528B (en) * | 2015-11-02 | 2017-03-01 | 西安电子科技大学 | A kind of wire saws parallel translational jogging motion platform |
CN106251909A (en) * | 2016-08-19 | 2016-12-21 | 天津大学 | A kind of high accuracy, big stroke freedom degree parallel connection mini positioning platform |
CN106251909B (en) * | 2016-08-19 | 2019-08-02 | 天津大学 | A kind of high-precision, big stroke freedom degree parallel connection mini positioning platform |
CN106328213A (en) * | 2016-10-27 | 2017-01-11 | 北京航空航天大学 | Two-axis micro-motion platform based on flexible hinge |
CN108494285A (en) * | 2018-05-14 | 2018-09-04 | 西安科技大学 | A kind of accurate amplification flexible micro system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102682857B (en) | Device for changing route range of jogged positioning platform | |
CN202662295U (en) | Device for changing route range of micro-positioning stage | |
CN201168876Y (en) | Three-freedom degree precision positioning worktable | |
CN108962336B (en) | Two-dimensional parallel flexible micro-motion platform based on piezoelectric drive | |
CN101887761B (en) | Two-degree-of-freedom micro-positioning platform | |
CN103021472B (en) | Plane parallel type three-freedom-degree precise positioning work table | |
CN101286369B (en) | X-Y-Z three freedom degree tandem type nanometer grade microposition workstation | |
CN104440817B (en) | Spatial three-dimensional micro-displacement precise positioning device | |
CN105006254B (en) | Large-stroke quick-response X-Y micro-motion workbench with double displacement magnification | |
CN102540442B (en) | Plane parallel three-degree-of-freedom precise operating platform | |
CN103225728A (en) | Two-dimensional parallel micromotion platform driven by piezoceramic | |
CN205064770U (en) | Grand little two actuation transmission platform | |
CN101837586B (en) | Two-dimensional micromotion stage | |
CN102699888A (en) | Lifting type work table | |
CN102794664A (en) | Bridge-type flexible hinge based high-frequency ultra-precision machining lathe saddle driving platform | |
CN101786269B (en) | Micrometer-nanometer transmission platform | |
CN104900573A (en) | Symmetric differential-lever micro displacement amplification apparatus | |
CN201707930U (en) | Two-degree-of-freedom micro-motion positioning platform | |
CN201109120Y (en) | Microposition platform for 2dof parallel structure | |
CN204038967U (en) | Small electrical controlled shearing type fork jacking system | |
CN105196280A (en) | Redundant drive type three-horizontal-movement micro-operation robot | |
CN201000769Y (en) | Precision positioning flat base based on plane electric motor and ultra-magnetostriction driver | |
CN103672317A (en) | Accuracy-adjustable lamination-type space three-horizontal-moving-flexibility precision positioning platform | |
CN204316374U (en) | A kind of clamp formula piezoelectric motor | |
CN101000807A (en) | Precision positioning desk based on planar motor and super-magnetostrictive drive |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
AV01 | Patent right actively abandoned |
Granted publication date: 20130109 Effective date of abandoning: 20131016 |
|
RGAV | Abandon patent right to avoid regrant |