CN202018277U - 回转体三维扫描系统 - Google Patents

回转体三维扫描系统 Download PDF

Info

Publication number
CN202018277U
CN202018277U CN2010206857260U CN201020685726U CN202018277U CN 202018277 U CN202018277 U CN 202018277U CN 2010206857260 U CN2010206857260 U CN 2010206857260U CN 201020685726 U CN201020685726 U CN 201020685726U CN 202018277 U CN202018277 U CN 202018277U
Authority
CN
China
Prior art keywords
laser light
revolution
solid
scanning system
knife
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2010206857260U
Other languages
English (en)
Inventor
陆鹏
张熹
吴君毅
艾钢
曾宪友
郑长江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai shine Heavy Industry Co., Ltd.
Original Assignee
711th Research Institute of CSIC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 711th Research Institute of CSIC filed Critical 711th Research Institute of CSIC
Priority to CN2010206857260U priority Critical patent/CN202018277U/zh
Application granted granted Critical
Publication of CN202018277U publication Critical patent/CN202018277U/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

本实用新型涉及一种结构简单、测量方便的回转体三维扫描系统,包括旋转台、直线导轨、激光光刀系统以及摄像机。旋转台用以放置被测物体,且能够旋转预定角度。激光光刀系统用以向该被测物体投射出垂直于水平面的激光光刀。直线导轨沿着该激光光刀系统的投射方向布置,旋转台通过一滑块设置在该直线导轨上。摄像机的摄像方向与该激光光刀系统的投射方向成一角度,该摄像机用以捕捉该激光光刀在该被测物体的反射光线,并输入一计算机中。

Description

回转体三维扫描系统
技术领域
本实用新型涉及一种回转体三维扫描系统,属于光电子及光测实验力学领域。
背景技术
三维扫描系统在主要用于对物体空间外形和结构进行扫描,以获得物体表面的三维的空间坐标。它的重要意义在于能够将实物的立体信息转换为计算机能直接处理的数字信号,为实物数字化提供了相当方便快捷的手段。
目前市场上的三维产品,主要是国外的Zygo的轮廓仪、雷顿的三坐标测量仪等为代表和国内的北京华卓接触式轮廓仪、上海威申的三维激光扫描系统。这些产品都是系统庞大、测量复杂。
最近,国内有些学者,如孙艳玲等人在《仪器仪表用户》上撰文提出“一种用于测量微观形貌的激光干涉式测量仪”(2006年,第13卷,第2期,第26~27页)。还只是在研究阶段,更不用提该系统设计复杂,如需要正交衍射光栅为坐标标准器、直线电机粗定位,压电陶瓷精定位,产品化十分困难。
实用新型内容
本实用新型的目的是提出一种回转体三维扫描系统,其结构简单,测量方便,且精度较高,适合推广应用。
本实用新型为解决上述技术问题而采用的技术方案是提出一种回转体三维扫描系统,包括:能够旋转预定角度的旋转台,用以放置被测物体;激光光刀系统,用以向该被测物体投射出垂直于水平面的激光光刀;以及摄像机,其摄像方向与该激光光刀系统的投射方向成一角度,该摄像机用以捕捉该激光光刀在该被测物体的反射光线,并输入一计算机中。
在上述的回转体三维扫描系统中,还包括一激光测距仪,与该摄像机关于该激光光刀系统的投射方向对称布置。
在上述的回转体三维扫描系统中,该旋转台是由步进电机驱动的分度旋转台。
在上述的回转体三维扫描系统中,还包括一剪切型升降台,该激光光刀系统是放置在该剪切型升降台上。
在上述的回转体三维扫描系统中,还包括一步进电机,用以驱动该剪切型升降台。
在上述的回转体三维扫描系统中,还包括:一直线导轨,沿着该该激光光刀系统的投射方向布置;以及一滑块,该旋转台通过该滑块设置在该直线导轨上。
在上述的回转体三维扫描系统中,该激光光刀系统包括激光器、柱面镜、非球面透镜以及刀口修正板,其中该柱面镜、非球面透镜以及刀口修正板按照依次布置在激光器的出射光路上。
在上述的回转体三维扫描系统中,该激光器的光源为LED光源。
在上述的回转体三维扫描系统中,该非球面透镜布置在该柱面镜的焦点上。
在上述的回转体三维扫描系统中,该刀口修正板具有一宽度可调节的狭缝。
本实用新型由于采用以上技术方案,使之与现有技术相比,具有如下显著优点:
1、采用精密直线导轨,固定系统y方向自由度,所以测量时对试件摆放要求不高,方便测量;
2、采用精密步进电机旋转台,旋转平稳可靠;
3、采用激光自动测距方式,确定物体到摄像头的CCD的距离作为固定参数,使得人工干预影响测量结果精度的可能性降到最小;
4、采用空间步进电机驱动剪切型升降台,使得系统高低调节自动化,而且精度高。对于z方向尺寸较大的被测物体可以实现分段测量,然后“拼接”成一体;
5、采用新型激光光刀,提高了测量的精度,当激光功率提高时,还可以测量大范围的被测物体,如人体等米量级尺寸的物体。
附图说明
为让本实用新型的上述目的、特征和优点能更明显易懂,以下结合附图对本实用新型的具体实施方式作详细说明,其中:
图1示出根据本实用新型一实施例的回转体三维扫描系统原理图。
图2示出根据本实用新型一实施例的光刀系统原理图。
图3示出根据本实用新型一实施例的回转体三维扫描系统布局图。
图4A示出步进电机驱动的剪切型升降台的俯视图。
图4B示出步进电机驱动的剪切型升降台的侧视图。
图5示出步进电机驱动的分度旋转台。
具体实施方式
本实用新型的下述实施例描述对三维激光扫描系统的改进,主要针对回转体测量需要。实施例采用激光单线投影测量技术,测量回转体的三维外形轮廓。
图1示出根据本实用新型一实施例的回转体三维扫描系统原理图。该三维扫描系统1000包括光刀系统100、激光测距仪200、摄像机300、以及旋转台400。当被测物体(回转体)1放置在旋转台400上,将光刀系统100产生的垂直于水平面的激光光刀,投射在该被测物体1表面。同时旋转旋转台400,被测物体旋转一周后停止。光刀扫掠过被测物体1的表面,光刀不断被被测物体表面的凹凸所调制,其变形反映了被测物体的表面情况。根据光刀变形情况计算,可得到被测物体的三维空间形貌。
图2示出根据本实用新型一实施例的光刀系统的结构。参照图2所示,光刀系统100包括激光器101、柱面镜102、非球面透镜103以及刀口修正板104,其中柱面镜102、非球面透镜103以及刀口修正板104按照光路顺序依次布置在激光器101的出射光路上。柱面镜102为长条形状,其沿着图1中的Y方向延伸。非球面透镜103放置在柱面镜102的焦点处。而刀口修正板104具有用于进行刀口修正的狭缝104a,该狭缝的延伸方向垂直于柱面镜的延伸方向。
激光器101发出的激光经过柱面镜102的扩束形成Y方向等厚度而在ZX平面发散的“光片”。也就是说,光片的宽度是从柱面镜向远处扩大的,而厚度(即Y方向)不变。再将非球面透镜103放置在柱面镜的焦点处,可以实现光的准直。这样,光片不但在ZX平面上受到约束,使其宽度一致,而且厚度方向进一步缩小。最后用一刀口修正板104的狭缝104a遮挡(过滤)掉该光片的边缘杂光,形成一亮度集中、厚度均匀、宽度一致的“光刀”。狭缝104a可以调节宽度,从而决定光刀的宽度。
在本实施例中,采用非球面透镜103等光学元件,可减少Vignetting渐晕,减少象差及球差,提高光刀的成像效果。
在一实施例中,狭缝104a可调节宽度,方便选择合适宽度的光刀,甚至可以目测指导最小宽度光刀的实现而不产生衍射。
在一较佳实施例中,激光器101采用LED光源,取代白光或激光光源,实现光刀系统小型化。LED光源的优点是:体积很小(Φ3mm左右),功率可以很大(6~20MW以上);其次寿命长,通常在10000小时发光寿命以上;再有发热小,能耗低,节能环保。
通过加入准直镜、刀口等元件,使得光刀光路进行全新的改造,提高了光刀的质量。并且,大量主动提高精度的元件使用在本系统中,不但精度得到保证,而且省去了系统反复标定的繁琐步骤,只需要标定一次,或相隔较长时间再标定,就可以满足日常测量的需要。
回到如图1所示的空间布局,当利用图2所示的光刀系统100获得的光刀(垂直于水平方向,看上去是狭窄的投影单线)投射在被测物体1的表面上,该光刀有一定的宽度,经过图2的光刀系统100的调节,可以聚焦成与一条周边产生较大反差的亮线,为提高测量精度,取其明暗交界处作为摄像机300的聚焦中心。
光刀投射单线在物体表面上受到物面高低起伏变化的调制,当摄像机300的摄像方向(即摄像机中心到被测物体中心的连线)与光刀投射方向(光刀投影单线的方向)成一角度θ时,就可以观察到光刀投射单线由于受到调制而形成的一条曲线,物面的高度信息就包含在这条曲线当中。当旋转旋转台400时,该投射单线在模型表面扫掠过,就不断被改变,连续的改变可以产生空间回转的曲面,该信息被摄像机300捕捉到计算机(图未示)中。分析曲面与参考面的相对关系,可以获得被测物体表面的全部高度数值,再经过三维重构,最终形成空间三维模型的轮廓。
实际操作时,为了提高工作效率,只需要对我们关心的部分进行扫描。例如,按固定角度旋转旋转台400,旋转60度即可以扫描出物体1/6部分。若需要则继续扫描剩余的部分,最终还可“拼接”出整个空间三维轮廓。有些轴对称模型也可以扫描一部分,然后给出其中心,自动获得全部数据,从而提高测量效率。
在此,光刀是测量三维回转体的“位置传感器”,而摄像机是系统的“眼睛”,用这样的眼睛去捕捉物体的空间位置就是光刀三维回转体测量的核心。
在较佳实施例中,设置一个与摄像机300关于光刀投射方向对称布置的激光测距仪200,激光测距仪200的中心到被测物体的连线(图中虚线A)与光刀投影方向交会点必须要位于旋转台400的中心;同样,摄像机300的中心到被测物体的连线(即摄影方向)与光刀投影方向交会点也必须是旋转台400的中心。此固定的激光测距仪得到的数据作为固定参数,即参考点输入计算机系统进行计算。
图3示出根据本实用新型一实施例的回转体三维扫描系统布局图。参照图3所示,被测物体1放置在试件固定台面1006上,固定情况视试件而定,可以用螺钉将试件固定,也可以设计专用夹具来固定。试件固定台面1006与由步进电机410(参照图5所示)驱动的旋转台400刚性连接。在此实例中,旋转台400是一个分度旋转台。在步进电机410转动,而分度旋转台旋转的同时,试件固定台面1006也带动被测物体1同步旋转。旋转台400与滑块1004刚性连接;滑块1004在直线导轨1002上可自由滑动。当滑动到需要位置时,用锁紧螺钉1003固定在需要位置、直线导轨1002用导轨轴承1005平行固定在公用底板1001上。直线导轨1002是布置在激光光刀系统100的投射方向上,因此旋转台400在直线导轨1002上的滑动可调节它与激光光刀系统100间的距离。
激光光刀系统100刚性固定在剪切型升降台1008上。剪切型升降台1008由步进电机1007驱动,稳定的沿Z轴向上下平移,步进电机1007也固定在公用底板1001上。
图4A示出步进电机驱动的剪切型升降台的俯视图。图4B示出步进电机驱动的剪切型升降台的侧视图。参照图4A和图4B所示,光刀系统100放置在剪切型升降台1008的台面上。该升降台1008与公用底板1001刚性连接固定,升降效果由步进电机1007控制,升降范围在110mm左右。该升降台1008的工作原理为:两个摆动杆81的中心由可相互转动的中心铰链82交叉相连。两个摆动杆81的左边上下各有一个固定支点旋转铰链83与升降台上下面相连,即摆动杆81绕各自的固定支点旋转铰链3旋转。两个摆动杆81的右边上下各有一个滑动轴84在升降台上下面的滑动限位槽85中滑动。当步进电机1007转动时,驱动右下滑动轴84沿右下滑动限位槽85左右平移。在摆动杆右下端被带动的情况下,升降台面1009上下平移。
图5示出步进电机驱动的分度旋转台。参照图5所示,旋转台400上放置前述的试件固定台面1006。当步进电机1010旋转时,轴端弹性联轴器401带动蜗杆蜗轮402旋转,同时也带动旋转台400旋转。被测物体1放置在试件固定台面1006上也跟着旋转。
本实用新型的三维扫描系统相比已有的系统,具有以下优点:
1、采用精密直线导轨,固定系统y方向自由度,所以测量时对试件摆放要求不高,方便测量;
2、采用精密步进电机旋转台,旋转平稳可靠;
3、采用激光自动测距方式,确定物体到摄像头的CCD的距离作为固定参数,使得人工干预影响测量结果精度的可能性降到最小;
4、采用空间步进电机驱动剪切型升降台,使得系统高低调节自动化,而且精度高。对于z方向尺寸较大的被测物体可以实现分段测量,然后“拼接”成一体;
5、采用新型激光光刀,提高了测量的精度,当激光功率提高时,还可以测量大范围的被测物体,如人体等米量级尺寸的物体。
虽然本实用新型已以较佳实施例揭示如上,然其并非用以限定本实用新型,任何本领域技术人员,在不脱离本实用新型的精神和范围内,当可作些许的修改和完善,因此本实用新型的保护范围当以权利要求书所界定的为准。

Claims (9)

1.一种回转体三维扫描系统,其特征在于包括:
能够旋转预定角度的旋转台,用以放置被测物体;
激光光刀系统,用以向该被测物体投射出垂直于水平面的激光光刀;
直线导轨,沿着该该激光光刀系统的投射方向布置,该旋转台通过一滑块设置在该直线导轨上;以及
摄像机,其摄像方向与该激光光刀系统的投射方向的交会点位于该旋转台中心,且该摄像方向与该激光光刀系统的投射方向成一角度,该摄像机用以捕捉该激光光刀在该被测物体的反射光线,并输入一计算机中。
2.如权利要求1所述的回转体三维扫描系统,其特征在于,还包括一激光测距仪,与该摄像机关于该激光光刀系统的投射方向对称布置,该激光测距仪的中心到被测物体的连线与该激光光刀系统的投射方向交会点位于该旋转台的中心。
3.如权利要求1所述的回转体三维扫描系统,其特征在于,该旋转台是由步进电机驱动的分度旋转台。
4.如权利要求1所述的回转体三维扫描系统,其特征在于,还包括一剪切型升降台,该激光光刀系统是放置在该剪切型升降台上。
5.如权利要求4所述的回转体三维扫描系统,其特征在于,还包括一步进电机,用以驱动该剪切型升降台。
6.如权利要求1所述的回转体三维扫描系统,其特征在于,该激光光刀系统包括激光器、柱面镜、非球面透镜以及刀口修正板,其中该柱面镜、非球面透镜以及刀口修正板按照依次布置在激光器的出射光路上。
7.如权利要求6所述的回转体三维扫描系统,其特征在于,该激光器的光源为LED光源。
8.如权利要求6所述的回转体三维扫描系统,其特征在于,该非球面透镜布置在该柱面镜的焦点上。
9.如权利要求6所述的回转体三维扫描系统,其特征在于,该刀口修正板具有一宽度可调节的狭缝。
CN2010206857260U 2010-12-29 2010-12-29 回转体三维扫描系统 Expired - Fee Related CN202018277U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010206857260U CN202018277U (zh) 2010-12-29 2010-12-29 回转体三维扫描系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010206857260U CN202018277U (zh) 2010-12-29 2010-12-29 回转体三维扫描系统

Publications (1)

Publication Number Publication Date
CN202018277U true CN202018277U (zh) 2011-10-26

Family

ID=44811947

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010206857260U Expired - Fee Related CN202018277U (zh) 2010-12-29 2010-12-29 回转体三维扫描系统

Country Status (1)

Country Link
CN (1) CN202018277U (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103307998A (zh) * 2013-05-27 2013-09-18 深圳先进技术研究院 一种三维扫描系统及方法
CN103591905A (zh) * 2013-11-29 2014-02-19 重庆旭禾科技有限公司 三维扫描仪及使用该三维扫描仪进行扫描的方法
CN103645118A (zh) * 2013-12-30 2014-03-19 中核建中核燃料元件有限公司 一种圆柱芯块密度测量装置及其测量方法
CN103743340A (zh) * 2013-12-30 2014-04-23 清华大学 一种角度和空间坐标的测量系统以及测量方法
CN103983191A (zh) * 2014-05-29 2014-08-13 苏州新锐合金工具股份有限公司 硬质合金内冷螺旋孔导程测量仪
CN104251669A (zh) * 2014-08-28 2014-12-31 合肥斯科尔智能科技有限公司 一种具有旋转工作台的三维扫描系统
CN104848800A (zh) * 2015-06-17 2015-08-19 中国地质大学(武汉) 一种基于线激光扫描的多视角三维成像装置
CN107255457A (zh) * 2017-07-25 2017-10-17 西安交通大学 一种戒指颜色纹理和形貌的测量装置及方法
CN108196133A (zh) * 2017-12-26 2018-06-22 北京无线电计量测试研究所 一种三轴转台与球面扫描装置空间对准的调整系统及方法
US11846507B2 (en) 2019-01-25 2023-12-19 Stanley Black & Decker Inc. Laser level system

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103307998A (zh) * 2013-05-27 2013-09-18 深圳先进技术研究院 一种三维扫描系统及方法
CN103591905A (zh) * 2013-11-29 2014-02-19 重庆旭禾科技有限公司 三维扫描仪及使用该三维扫描仪进行扫描的方法
CN103645118A (zh) * 2013-12-30 2014-03-19 中核建中核燃料元件有限公司 一种圆柱芯块密度测量装置及其测量方法
CN103743340A (zh) * 2013-12-30 2014-04-23 清华大学 一种角度和空间坐标的测量系统以及测量方法
CN103645118B (zh) * 2013-12-30 2015-09-02 中核建中核燃料元件有限公司 一种圆柱芯块密度测量装置及其测量方法
CN103743340B (zh) * 2013-12-30 2016-03-30 清华大学 一种角度和空间坐标的测量系统以及测量方法
CN103983191A (zh) * 2014-05-29 2014-08-13 苏州新锐合金工具股份有限公司 硬质合金内冷螺旋孔导程测量仪
CN104251669B (zh) * 2014-08-28 2018-01-12 芜湖林一电子科技有限公司 一种具有旋转工作台的三维扫描系统
CN104251669A (zh) * 2014-08-28 2014-12-31 合肥斯科尔智能科技有限公司 一种具有旋转工作台的三维扫描系统
CN104848800A (zh) * 2015-06-17 2015-08-19 中国地质大学(武汉) 一种基于线激光扫描的多视角三维成像装置
CN107255457A (zh) * 2017-07-25 2017-10-17 西安交通大学 一种戒指颜色纹理和形貌的测量装置及方法
CN108196133A (zh) * 2017-12-26 2018-06-22 北京无线电计量测试研究所 一种三轴转台与球面扫描装置空间对准的调整系统及方法
CN108196133B (zh) * 2017-12-26 2021-03-16 北京无线电计量测试研究所 一种三轴转台与球面扫描装置空间对准的调整系统及方法
US11846507B2 (en) 2019-01-25 2023-12-19 Stanley Black & Decker Inc. Laser level system

Similar Documents

Publication Publication Date Title
CN202018277U (zh) 回转体三维扫描系统
CN204065550U (zh) 基于显微镜的数字切片自动扫描装置
CN209406712U (zh) 一种五轴点胶系统
CN209623618U (zh) 一种非接触光学元件表面面形测量装置
JP6659133B2 (ja) スライドおよびスライドとカバーガラスのセット、並びに顕微鏡システム
CN108458659A (zh) 一种叶片非接触式检测装置及方法
CN109974583A (zh) 一种非接触光学元件表面面形测量装置及方法
CN105204125A (zh) 一种反射式光电子器件的自动耦合系统
US11328409B2 (en) System and method utilizing multi-point autofocus to align an optical axis of an optical assembly portion to be normal to a workpiece surface
CN112066910A (zh) 一种基于平面镜自动旋转平台的单目三维测量系统
CN109940360A (zh) 透镜夹取装置及其夹取方法
JP6609174B2 (ja) 顕微鏡システムおよびその制御方法
CN211373522U (zh) 近距离3d信息采集设备及3d合成、显微、附属物制作设备
CN104614803A (zh) 基于arm的一体化保偏光纤定轴仪
WO2023024333A1 (zh) 一种精密的回转体测量装置和测量方法
CN108398086A (zh) 一种高效影像测量系统
CN109764817A (zh) 非接触式透镜中心厚测量系统及方法
CN2453411Y (zh) 激光最小光斑测量装置
CN207472539U (zh) 一种物镜像质与焦深的检测装置
CN106338251A (zh) 基于arm的一体化白光干涉测试仪
CN209811458U (zh) 一种具有3d自建模的自动对焦激光打标机
JP5662223B2 (ja) 形状測定装置
CN103424843A (zh) 全内反射原位照明装置及其控制方法
CN216348420U (zh) 一种基于机器视觉的线轮廓度测量装置
CN110763160A (zh) 一体化三维测量系统及测量方法

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20151210

Address after: 201108 Shanghai city Minhang District Huaning Road No. 3111 Building 1 room 629

Patentee after: Shanghai shine Heavy Industry Co., Ltd.

Address before: 201108 Shanghai city Minhang District Huaning Road No. 3111

Patentee before: The 711th Research Institute of China Shipbuilding Industrial Corporation(CSIC)

CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20111026

Termination date: 20171229