CN1996098A - Micro- and nano- full optical display device based on 2D photon crystal - Google Patents
Micro- and nano- full optical display device based on 2D photon crystal Download PDFInfo
- Publication number
- CN1996098A CN1996098A CN 200610122083 CN200610122083A CN1996098A CN 1996098 A CN1996098 A CN 1996098A CN 200610122083 CN200610122083 CN 200610122083 CN 200610122083 A CN200610122083 A CN 200610122083A CN 1996098 A CN1996098 A CN 1996098A
- Authority
- CN
- China
- Prior art keywords
- dimensional photonic
- micro
- microcavities
- nano
- resonant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 title description 3
- 239000013078 crystal Substances 0.000 title 1
- 239000004038 photonic crystal Substances 0.000 claims abstract description 42
- 230000005540 biological transmission Effects 0.000 claims abstract description 26
- 239000000758 substrate Substances 0.000 claims description 9
- 239000000463 material Substances 0.000 claims description 6
- 230000005693 optoelectronics Effects 0.000 claims description 4
- 239000002105 nanoparticle Substances 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 4
- 238000004088 simulation Methods 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
Images
Landscapes
- Optical Integrated Circuits (AREA)
Abstract
本发明是一种基于二维光子晶体的全光显示器件,特别是一种微纳尺寸的全光显示器件。包括有有限高度二维光子晶体板层(3),其中有限高度二维光子晶体板层(3)中至少引入一条直线的空气传输波导(L)和若干个不同频率的共振微腔,与若干个不同频率的共振微腔的频率相对应的若干种不同频率的信号光从空气传输波导(L)的一端输入。本发明由于采用具有一条空气传输波导和若干个不同频率的共振微腔的结构,通过改变输入光的频率和共振微腔的截面半径即实现可见光波段的显示功能,本发明是一种设计巧妙的基于二维光子晶体的微纳全光显示器件。
The invention is a two-dimensional photonic crystal-based plenoptic display device, in particular a micro-nano-sized plenoptic display device. It includes a finite-height two-dimensional photonic crystal plate (3), wherein at least one linear air transmission waveguide (L) and several resonant microcavities with different frequencies are introduced into the finite-height two-dimensional photonic crystal plate (3), and several Signal lights of several different frequencies corresponding to the frequencies of the resonant microcavities of different frequencies are input from one end of the air transmission waveguide (L). Since the present invention adopts a structure with an air transmission waveguide and several resonant microcavities of different frequencies, the display function of the visible light band can be realized by changing the frequency of the input light and the cross-sectional radius of the resonant microcavity. The present invention is a cleverly designed Micro-nano all-optical display devices based on two-dimensional photonic crystals.
Description
技术领域:Technical field:
本发明是一种基于二维光子晶体的全光显示器件,特别是一种微纳尺寸的全光显示器件,属于基于二维光子晶体的全光显示器件的创新技术。The invention is a plenoptic display device based on two-dimensional photonic crystals, in particular a plenoptic display device of micro-nano size, which belongs to the innovative technology of plenoptic display devices based on two-dimensional photonic crystals.
背景技术:Background technique:
由于二维光子晶体对光信号具有良好的控制性且便于研制,所以引起了广大研究者的兴趣。但是目前基于二维光子晶体器件主要是光通信方面的研究,没有涉及可见光方面的研究。Two-dimensional photonic crystals have aroused the interest of many researchers because of their good controllability to optical signals and their ease of manufacture. However, the current research on two-dimensional photonic crystal devices is mainly in the field of optical communication, and there is no research on visible light.
发明内容:Invention content:
本发明的目的在于利用二维光子晶体对光的良好的控制性,提出了一种在可见光波段、结构简单的基于二维光子晶体的微纳全光显示器件。The purpose of the present invention is to use the good controllability of two-dimensional photonic crystals to light, and propose a micro-nano all-optical display device based on two-dimensional photonic crystals in the visible light band and with a simple structure.
本发明的原理框图如图1所示,包括有有限高度二维光子晶体板层(3),其中有限高度二维光子晶体板层(3)中引入一条直线的空气传输波导(L)和若干个不同频率的共振微腔,与若干个不同频率的共振微腔的频率相对应的若干种不同频率的信号光从空气传输波导(L)的一端输入。The principle block diagram of the present invention is as shown in Figure 1, comprises finite-height two-dimensional photonic crystal plate (3), wherein in the limited-height two-dimensional photonic crystal plate (3), introduces a straight air transmission waveguide (L) and several There are several resonant microcavities with different frequencies, and signal lights of several different frequencies corresponding to the frequencies of the several resonant microcavities are input from one end of the air transmission waveguide (L).
上述若干个不同频率的共振微腔分别对称位于空气传输波导(L)的两边,若干个共振微腔的截面半径不一样,且不同截面半径的微腔所对应的从空气传输波导(L)输入的信号光的共振频率也不相同。The above resonant microcavities with different frequencies are symmetrically located on both sides of the air transmission waveguide (L). The resonant frequency of the signal light is also different.
上述有限高度二维光子晶体板层(3)中引入一条直线的空气传输波导(L)和四个不同频率的共振微腔(f1、f2、f3、f4),与四个不同频率的共振微腔(f1、f2、f3、f4)的频率相对应的四种不同频率的信号光从空气传输波导(L)的一端输入。A linear air transmission waveguide (L) and four resonant microcavities (f 1 , f 2 , f 3 , f 4 ) with different frequencies are introduced into the above-mentioned finite-height two-dimensional photonic crystal slab (3), which are different from the four Signal lights of four different frequencies corresponding to the frequencies of the resonant microcavities (f 1 , f 2 , f 3 , f 4 ) are input from one end of the air transmission waveguide (L).
上述四个不同频率的共振微腔(f1、f2、f3、f4)的各两个分别位于空气传输波导(L)的两边,四个共振微腔(f1、f2、f3、f4)的截面半径不一样,且不同截面半径的微腔所对应的从空气传输波导(L)输入的信号光的共振频率也不相同。Two resonant microcavities (f 1 , f 2 , f 3 , f 4 ) of the above four different frequencies are respectively located on both sides of the air transmission waveguide (L), and the four resonant microcavities (f 1 , f 2 , f 3 , f 4 ) have different cross-section radii, and the resonant frequencies of the signal light input from the air transmission waveguide (L) corresponding to microcavities with different cross-section radii are also different.
上述空气传输波导(L)中传输的四种不同频率的信号光是分别与四个共振微腔(f1、f2、f3、f4)的频率相对应的TM偏振的可见光。The signal lights of four different frequencies transmitted in the above-mentioned air transmission waveguide (L) are TM-polarized visible light respectively corresponding to the frequencies of the four resonant microcavities (f 1 , f 2 , f 3 , f 4 ).
上述四种不同频率的可见光从空气传输波导(L)的一端输入,并在波导中传播,且分别与其频率相对应的共振微腔发生共振并从微腔中发射出去。Visible light of the above four different frequencies is input from one end of the air transmission waveguide (L), propagates in the waveguide, resonates with the resonant microcavity corresponding to the frequency respectively, and emits from the microcavity.
上述有限高度二维光子晶体板层(3)的底部还设有缓冲层(2)及衬底(1),缓冲层(2)和有限高度二维光子晶体板层(3)依次覆盖在衬底(1)上。A buffer layer (2) and a substrate (1) are also provided at the bottom of the finite-height two-dimensional photonic crystal plate (3), and the buffer layer (2) and the finite-height two-dimensional photonic crystal plate (3) are sequentially covered on the substrate bottom (1).
上述有限高度二维光子晶体板层(3)是对可见光透明且折射率较高的光电子材料,衬底(1)及缓冲层(2)是对可见光透明且折射率较低的光电子材料。The finite-height two-dimensional photonic crystal plate layer (3) is an optoelectronic material transparent to visible light and having a relatively high refractive index, and the substrate (1) and buffer layer (2) are optoelectronic materials transparent to visible light and having a relatively low refractive index.
本发明由于采用具有一条空气传输波导和若干个不同频率的共振微腔的结构,通过改变输入光的频率和共振微腔的截面半径即实现可见光波段的显示功能,本发明是一种设计巧妙的基于二维光子晶体的微纳全光显示器件。Since the present invention adopts a structure with an air transmission waveguide and several resonant microcavities of different frequencies, the display function of the visible light band can be realized by changing the frequency of the input light and the cross-sectional radius of the resonant microcavity. The present invention is a cleverly designed Micro-nano all-optical display devices based on two-dimensional photonic crystals.
附图说明:Description of drawings:
图1为本发明结构示意图;Fig. 1 is a structural representation of the present invention;
图2a、图2b、图2c、图2d为本发明的从四个微腔中发射出来的四种可见光的光强模拟结果示例图。Fig. 2a, Fig. 2b, Fig. 2c and Fig. 2d are example diagrams of light intensity simulation results of four kinds of visible light emitted from four microcavities according to the present invention.
具体实施方式:Detailed ways:
实施例:Example:
本发明的结构示意图如图1所示,包括有有限高度二维光子晶体板层3,其中有限高度二维光子晶体板层3中引入一条直线的空气传输波导L和若干个不同频率的共振微腔,与若干个不同频率的共振微腔的频率相对应的若干种不同频率的信号光从空气传输波导L的一端输入。有限高度二维光子晶体板层3是由有限高度的介质柱排成的六方晶格体系。本发明中的二维光子晶体的禁带落在可见光波长波段,利用光子晶体禁带理论以及直线波导和微腔相结合的理论,本发明可在同一个光子晶体上实现全光显示。The schematic diagram of the structure of the present invention is shown in Figure 1, including a finite-height two-dimensional
上述若干个不同频率的共振微腔分别对称位于空气传输波导L的两边,若干个共振微腔的截面半径不一样,且不同截面半径的微腔所对应的从空气传输波导L输入的信号光的共振频率也不相同。The above resonant microcavities with different frequencies are symmetrically located on both sides of the air transmission waveguide L, the cross-sectional radii of the several resonant microcavities are different, and the signal light input from the air transmission waveguide L corresponding to the microcavities with different cross-sectional radii The resonance frequency is also different.
本实施例中,二维光子晶体板层的禁带宽度为:430nm~645nm,包括有一条直线空气波导L、四个输出微腔f1、f2、f3、f4。直线波导L的宽度为295nm,长度为3087nm,四个输出微腔f1、f2、f3、f4的截面半径分别是:130nm、127nm、117nm、113nm,每个微腔与直线波导的距离都是186nm。微腔f1和f2在直线波导L左边,微腔f1和f2之间的距离为1290nm;微腔f3和f4在直线波导L右边,微腔f3和f4之间的距离也为1290nm。二维光子晶体板层的高度为430nm,直线波导和所有微腔的高度都为430nm。In this embodiment, the forbidden band width of the two-dimensional photonic crystal plate layer is 430nm-645nm, including a straight air waveguide L and four output microcavities f 1 , f 2 , f 3 , and f 4 . The width of the linear waveguide L is 295nm, and the length is 3087nm. The cross-sectional radii of the four output microcavities f 1 , f 2 , f 3 , and f 4 are respectively: 130nm, 127nm, 117nm, and 113nm. The distance between each microcavity and the linear waveguide The distances are all 186nm. Microcavities f 1 and f 2 are on the left of the linear waveguide L, and the distance between microcavities f 1 and f 2 is 1290nm; microcavities f 3 and f 4 are on the right of the linear waveguide L, and the distance between microcavities f 3 and f 4 The distance is also 1290nm. The height of the two-dimensional photonic crystal slab is 430nm, and the height of the linear waveguide and all microcavities is 430nm.
上述有限高度二维光子晶体板层3的底部还设有缓冲层2及衬底1,缓冲层2和有限高度二维光子晶体板层3依次覆盖在衬底1上。本实施例中,衬底1和缓冲层2的材料为二氧化硅(SiO2),折射率是1.4;二维光子晶体板层3的介质柱的材料为二氧化钛(TiO2),对于波长为430nm到645nm的可见光,其折射率为3.16到2.86。A
本发明在波长为430nm至645nm的可见光波段具有显示功能,图2所示为发射光场强度的模拟结果示例图。功能模拟所用的信号光脉冲波长分别为430nm、440nm、530nm和560nm。模拟结果如下:当波长分别为430nm、440nm、530nm和560nm四种信号光同时在波导L中传播时,它们将分别与微腔f1、f2、f3、f4发生共振,并分别从微腔f1、f2、f3、f4向自由空间发射出去,如图2a、图2b、图2c、图2d所示。The present invention has a display function in the visible light band with a wavelength of 430nm to 645nm. FIG. 2 shows an example diagram of the simulation result of the intensity of the emitted light field. The signal light pulse wavelengths used in the functional simulation are 430nm, 440nm, 530nm and 560nm respectively. The simulation results are as follows: When the four signal lights with wavelengths of 430nm, 440nm, 530nm and 560nm propagate in the waveguide L at the same time, they will resonate with the microcavities f 1 , f 2 , f 3 , and f 4 respectively, and move from The microcavities f 1 , f 2 , f 3 , and f 4 emit to free space, as shown in Fig. 2a, Fig. 2b, Fig. 2c, and Fig. 2d.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 200610122083 CN1996098A (en) | 2006-09-11 | 2006-09-11 | Micro- and nano- full optical display device based on 2D photon crystal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 200610122083 CN1996098A (en) | 2006-09-11 | 2006-09-11 | Micro- and nano- full optical display device based on 2D photon crystal |
Publications (1)
Publication Number | Publication Date |
---|---|
CN1996098A true CN1996098A (en) | 2007-07-11 |
Family
ID=38251233
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 200610122083 Pending CN1996098A (en) | 2006-09-11 | 2006-09-11 | Micro- and nano- full optical display device based on 2D photon crystal |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN1996098A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111308582A (en) * | 2020-03-06 | 2020-06-19 | 中南民族大学 | Two-dimensional photonic crystal slab, design method and optical device using the slab |
-
2006
- 2006-09-11 CN CN 200610122083 patent/CN1996098A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111308582A (en) * | 2020-03-06 | 2020-06-19 | 中南民族大学 | Two-dimensional photonic crystal slab, design method and optical device using the slab |
WO2021175310A1 (en) * | 2020-03-06 | 2021-09-10 | 中南民族大学 | Two-dimensional photonic crystal panel, design method and optical device using panel |
CN111308582B (en) * | 2020-03-06 | 2021-10-01 | 中南民族大学 | Two-dimensional photonic crystal slab, design method and optical device using the slab |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Dionne et al. | Highly confined photon transport in subwavelength metallic slot waveguides | |
CN105759355B (en) | An on-chip integrated polarization beam splitter and its polarization beam splitting method | |
CN100541249C (en) | Two-dimensional complete band gap photon crystal and depolarization beam splitter | |
CN102148476B (en) | Deep sub-wavelength surface plasmon polariton microcavity laser | |
Yang et al. | Silicon on-chip one-dimensional photonic crystal nanobeam bandgap filter integrated with nanobeam cavity for accurate refractive index sensing | |
CN105137539A (en) | Ultra-wideband photodiode based on photonic crystal | |
CN108646350B (en) | Mechanical oscillator microcavity coupling body and optical circulator using it | |
CN101614844A (en) | Optical add-drop filter based on two-dimensional photonic crystal band gap and self-collimation effect | |
CN105954234A (en) | Nano beam waveguide filter and micro cavity cascaded structure-based one-dimensional photonic crystal integrated sensor | |
CN107976738B (en) | Wavelength-division mould based on photonic crystal and Nanowire Waveguides divides hybrid multiplex device | |
CN104459879A (en) | Silicon-based microring polarization demultiplexer | |
Rajasekar et al. | Numerical analysis of reconfigurable and multifunctional barium titanate platform based on photonic crystal ring resonator | |
CN102141651A (en) | Optical multiplexer/demultiplexer integrated based on surface plasmas and preparation method thereof | |
CN106772703B (en) | One kind being based on the parallel multiplied sensor array structure of 1 × 8 high-performance photonic crystal of silicon on insulator (SOI) | |
Yang et al. | Coupled resonances in multiple silicon photonic crystal cavities in all-optical solid-state analogy to electromagnetically induced transparency | |
CN102540626A (en) | Optical waveguide micro-ring resonant cavity-based all-optical logic gate and logic operation method thereof | |
CN107102402B (en) | Super transmission waveguide design method based on polarization resonance and Prague resonant interaction | |
CN105449321A (en) | Multi-channel terahertz wave filter | |
CN105044847B (en) | Optical fiber splitter based on drop coupling | |
Yang et al. | Silicon on-chip side-coupled high-Q micro-cavities for the multiplexing of high sensitivity photonic crystal integrated sensors array | |
CN1996098A (en) | Micro- and nano- full optical display device based on 2D photon crystal | |
Doss et al. | Numerical analysis of annular photonic crystal based reconfigurable and multifunctional nanoring symmetrical resonator for optical networks | |
Zaki et al. | High sensitivity hybrid plasmonic rectangular resonator for gas sensing applications | |
CN102722061B (en) | All-optical multi-wavelength conversing method and device based on photonic crystal | |
CN101916027A (en) | All-optical optical logic gate device based on a single photonic crystal microring |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C12 | Rejection of a patent application after its publication | ||
RJ01 | Rejection of invention patent application after publication |