CN1985089A - 用于电磁操作的轴向制动器 - Google Patents
用于电磁操作的轴向制动器 Download PDFInfo
- Publication number
- CN1985089A CN1985089A CNA2005800137183A CN200580013718A CN1985089A CN 1985089 A CN1985089 A CN 1985089A CN A2005800137183 A CNA2005800137183 A CN A2005800137183A CN 200580013718 A CN200580013718 A CN 200580013718A CN 1985089 A CN1985089 A CN 1985089A
- Authority
- CN
- China
- Prior art keywords
- fluid passage
- coil
- wall
- magnetic field
- permanent magnet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K41/00—Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
- H02K41/02—Linear motors; Sectional motors
- H02K41/03—Synchronous motors; Motors moving step by step; Reluctance motors
- H02K41/031—Synchronous motors; Motors moving step by step; Reluctance motors of the permanent magnet type
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K33/00—Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B19/00—Machines or pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B1/00 - F04B17/00
- F04B19/006—Micropumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B43/00—Machines, pumps, or pumping installations having flexible working members
- F04B43/02—Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
- F04B43/04—Pumps having electric drive
- F04B43/043—Micropumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B43/00—Machines, pumps, or pumping installations having flexible working members
- F04B43/12—Machines, pumps, or pumping installations having flexible working members having peristaltic action
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K33/00—Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
- H02K33/16—Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with polarised armatures moving in alternate directions by reversal or energisation of a single coil system
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K7/00—Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
- H02K7/08—Structural association with bearings
- H02K7/09—Structural association with bearings with magnetic bearings
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K7/00—Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
- H02K7/14—Structural association with mechanical loads, e.g. with hand-held machine tools or fans
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K99/00—Subject matter not provided for in other groups of this subclass
- H02K99/20—Motors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/02—General characteristics of the apparatus characterised by a particular materials
- A61M2205/0244—Micromachined materials, e.g. made from silicon wafers, microelectromechanical systems [MEMS] or comprising nanotechnology
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Electromagnetism (AREA)
- Reciprocating Pumps (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Abstract
本发明涉及电磁制动器,其用于引起流体通道(例如管)壁的周期性箍缩和释放型的微流泵。将至少一个永磁体靠着流体通道壁设置,并位于具有磁场的区域中,该磁场由径向对称于该通道的线圈所产生。永磁体引起流体通道壁的箍缩和释放以使流体流过该通道。
Description
本申请要求2004年5月25日提交的临时专利申请第60/574,432号的优先权,其全部内容结合与此作为参考。
背景技术
美国专利第6,254,355和6,679,687号教导了一种微流泵,其利用在流体通道部分内一区域的压缩,以便引起流体沿着该通道流动的。这种泵可被微型化,并且可利用微加工技术制成。基本地,通道的区域以某种方式被压缩以便引起流体沿着该通道流动。
上述专利教导了各种压缩通道的方式。
发明内容
本申请描述了一种电磁制动器,其利用轴向的线圈(in-linecoils)以形成用于微流泵的制动,该类型的微流泵要求压缩部分通道。根据本文所披露的技术,可将磁场沿着通道的轴线定向,并用于实现用于制动该泵的压缩。
附图说明
下面将结合附图描述本发明的这些和其他方面,其中:
图1示出了基于管道的泵和制动该泵送系统的磁线圈和制动器的图示;
图2和图3泵内力的特性曲线;
图4图示了嵌入管道的弹性壁内的制动器;
图5图示了被装入的并完全包围管道周边的泵送制动器;
图6图示了位于管道相对两侧的制动器;以及
图7图示了一个具体实施方式,其中制动器和线圈都被装入管道壁内。
具体实施方式
本文披露的具体实施方式利用微流泵的磁制动。这些技术形成了运动的磁场梯度,该运动的磁场梯度驱动制动器以压缩通道壁。在具体实施方式中,通道由软管形成。诸如永磁体的铁磁材料被连接至管壁。可将制动布置做成圆柱形对称以便易于微型化和对称。
根据一方面,利用了在梯度磁场中的磁矩的相互作用。这种相互作用力用以下张量关系式加以描述:
其中向量m表示磁矩,而向量B表示磁矩位置处的磁场。
方程式1可被展开成如下的三个正交力方向:
其示出了具体实施方式中磁体上的相应力。
图1示出了一个具体实施方式。管100形成将接受泵送力的元件。另一具有不同流体特性的管140连接至该第一管100。然而,更一般地,管100、140可为任意流体通道。
第一和第二线圈组102、104缠绕在管100上。线圈102、104具有使其电制动的电连接。
线圈可以沿着x轴(如图1所示的沿管100)方位对称地缠绕。在一方面,这些线圈也可彼此电连接,以便彼此同相地激励(或提供能量给)它们的磁场。这些线圈形成对称磁场,该磁场大致沿着图1所示的磁场线110方向。磁作用部件120以其磁场取向平行于线圈的对称轴而定位。在一个具体实施方式中,作用部件(effectedpart)可为永磁体,该永磁体的磁场122为图1所示的x方向。永磁体元件120可基本为例如圆柱体部分的形状,但也可为其他形状。在一个具体实施方式中,永磁体是径向对称的。在另一实施方式中
利用圆柱坐标,来自沿着径向轴、角轴和z轴的半径为a的单个线圈转动的磁场的分析表达式是熟知的:
(5)Ba=0
其中K和E分别为第一和第二类的完全椭圆积分:
具有
这些方程式可用于在数值上估计图1中线圈结构的磁场和磁场梯度的准确值。
在该具体实施方式中,磁体120接触流体通道的外表面。磁矩沿着x方向定向,使得在磁体上的力处于z方向,为:
图2示出了沿着x轴、在两个线圈102、104之间定中心的磁场x分向量值的曲线图。来自方程式11沿着z轴的力曲线在图3中以曲线图示出。要注意的是该力曲线具有明显的最小值,大约在“1”。
交流电通过线圈在磁体120沿着z-轴方向产生交变力。这种交流电可被调整到系统的谐波,以便使泵送作用最大化或调节泵送作用。磁体120可以以任何希望的方式,例如通过胶合或某些其他连接方式附着于外表面。
图4示出了一个具体实施方式,在该具体实施方式中,永磁体元件400被嵌入流体通道的壁内。示出的流体通道402具有壁404。壁404在区域406处包括一在其中的袋状部。永磁体元件400被嵌入该袋状部。永磁体元件可具有完整的径向环的形式或由环的任何部分形成的任何式样。这个部分可将该环变成偶数或奇数个部分,并且单个部分可具有任何几何形状。
图4示出了单个磁体元件400。
图5示出了具有完整环状的铁磁材料500的具体实施方式,该铁磁材料500形成在管的内壁502和外壁506之间。这可以是嵌入管壁的任意数量的分离的磁体片。在图5的具体实施方式中,磁体元件是圆柱形对称的。
图6所示的另一具体实施方式具有第一磁体元件600、以及在管相对侧的另外的磁体元件602。
磁体元件可由任何铁磁材料形成,该铁磁材料包括但不限于坡莫合金(铁镍导磁合金)、NdFeB、AlNiCo以及SmCo。
在图7所示的另一具体实施方式中,导电线圈700、702被嵌入弹性管壁内。导线704可在线圈700、702之间延伸。示出了单个磁体710;然而,这可利用本文所示和所述的任何其他结构。这可形成更加紧凑的结构,其中所有部件都嵌入管中。
在该具体实施方式中,泵可由管的弹性部分构成,具有大约2.8mm2的截面面积。其连接至具有大约0.5mm2的面积的刚性玻璃部分。泵的弹性部分由硅橡胶形成,具有约220kPa的杨氏模量。波反射由阻抗失配产生,其中阻抗失配由相对于分界面处更硬的材料的不对称箍缩(pinching)提供。
线圈接收50Hz方波的输入波形,其具有48ma振幅以及负24ma的偏移(offset)。线圈可由可变电源(如图1示出的130)进行通电。用于希望的流速和流向的频率取决于所使用的材料的特性、壁厚度、以及节段的长度。这些特性可数学地加以计算,或可选替换地,电源和频率发生器可以是可变的(如所示的)以便能够试验地确定最佳性质。
尽管以上仅仅披露了几个具体实施方式,但是可以有其他修改,并且本披露内容覆盖所有这样的修改,更具体地,本披露内容覆盖本领域普通技术人员可推出的任何修改。例如,虽然上文将流体通道描述为管,但是应当理解,可利用任何类型的任何流体通道,只要其以某种方式可变形。此外,虽然该具体实施方式描述了将披露的系统用于压缩水弹性型(hydroelastic type)泵的壁,但是这种系统可用于流体通道需要压缩的任意应用中,例如其可用于阀门通道的完全箍缩,或限流,例如作为可变限流器。这也可用于压缩在例如蠕动泵内的部件。
同样,只有那些使用术语“用于”的权利要求才适用于根据第六款的35 USC 112加以解释。此外,说明书非限制地理解任何权利要求,除了明确表达地包含在权利要求中的那些限制之外。
Claims (24)
1.一种电磁制动器,包括:
限定流体通道的壁;
至少一个线圈,其相对所述流体通道圆柱形地对称;以及
作用部件,其接触所述壁设置,并且位于所述线圈的磁场区域中,以通过所述磁场在所述流体通道的区域中移动。
2.根据权利要求1所述的制动器,其中,所述线圈包括在所述作用部件的第一侧的第一线圈部件、以及在所述作用部件的第二侧的第二线圈部件,所述第一和第二线圈部件都相对所述流体通道圆柱形地对称。
3.根据权利要求2所述的制动器,进一步包括在所述第一和第二线圈部件之间的电连接。
4.根据权利要求1所述的制动器,进一步包括与驱动所述至少一个线圈的电源的连接。
5.根据权利要求4所述的制动器,其中,所述电源以交流电驱动所述至少一个线圈,并且进一步包括调节所述交流电的至少一个参数的装置。
6.根据权利要求5所述的制动器,其中,所述至少一个参数为所述交流电的频率。
7.根据权利要求1所述的制动器,其中,所述作用部件为永磁体,其嵌入所述壁内。
8.根据权利要求1所述的制动器,其中,至少部分所述线圈嵌入所述壁内。
9.根据权利要求1所述的制动器,其中,至少部分所述线圈嵌入所述壁内。
10.根据权利要求1所述的制动器,其中,所述流体通道为具有第一流体特性的通道,进一步包括具有第二流体特性的第二通道,所述第二通道连接至所述第一流体通道,形成泵送机械装置。
11.根据权利要求1所述的制动器,其中,所述作用部件为永磁体,其相对所述流体通道圆柱形对称。
12.一种方法,包括
沿着由流体通道限定的轴线形成磁场,其中磁力线沿着所述轴线延伸;以及
利用所述磁场移动磁场作用部件,所述作用部件接触所述流体通道。
13.根据权利要求12所述的方法,其中,所述形成磁场包括利用沿着所述轴线延伸的所述第一和第二线圈部件,其中所述作用部件在所述第一和第二线圈部件之间。
14.根据权利要求12所述的方法,其中,所述形成磁场包括将磁场线圈嵌入所述流体通道的壁内。
15.根据权利要求12所述的方法,其中,所述利用所述磁场包括将至少一个永磁体嵌入限定所述流体通道的壁内。
16.根据权利要求14所述的方法,其中,所述利用所述磁场包括将至少一个永磁体嵌入限定所述流体通道的壁内。
17.根据权利要求13所述的方法,其中,所述形成磁场包括利用相对所述流体通道圆柱形地对称的线圈部件。
18.根据权利要求13所述的方法,进一步包括电连接所述第一和第二线圈部件。
19.根据权利要求13所述的方法,进一步包括驱动彼此同相的所述第一和第二线圈部件。
20.根据权利要求12所述的方法,进一步包括利用所述永磁体的移动而泵送流体。
21.一种泵送系统,包括:
第一流体通道,其具有第一特性;
第二流体通道,其连接至所述第一流体通道并且具有不
同于所述第一特性的第二特性;以及
制动器,其在所述第一流体通道上,具有径向对称于所述第一流体通道的线圈部件,并且具有在所述线圈部件的磁场区内形成的磁作用部件,所述磁作用部件起作用以压缩所述第一流体通道,从而引起所述第一流体通道内的流体相对于所述第二流体通道被泵送。
22.根据权利要求21所述的泵送系统,其中,所述线圈部件被嵌入所述第一流体通道的壁内。
23.根据权利要求21所述的泵送系统,其中,所述磁作用部件被嵌入所述第一流体通道的壁内。
24.根据权利要求23所述的泵送系统,其中,所述磁作用部件为永磁体。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US57443204P | 2004-05-25 | 2004-05-25 | |
US60/574,432 | 2004-05-25 | ||
US11/137,853 | 2005-05-24 | ||
US11/137,853 US8197234B2 (en) | 2004-05-25 | 2005-05-24 | In-line actuator for electromagnetic operation |
Publications (1)
Publication Number | Publication Date |
---|---|
CN1985089A true CN1985089A (zh) | 2007-06-20 |
Family
ID=35451563
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNA2005800137183A Pending CN1985089A (zh) | 2004-05-25 | 2005-05-25 | 用于电磁操作的轴向制动器 |
Country Status (6)
Country | Link |
---|---|
US (1) | US8197234B2 (zh) |
EP (1) | EP1749337A4 (zh) |
JP (1) | JP2008500494A (zh) |
KR (1) | KR100811037B1 (zh) |
CN (1) | CN1985089A (zh) |
WO (1) | WO2005117240A2 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111093753A (zh) * | 2017-10-12 | 2020-05-01 | 费森尤斯医疗护理德国有限责任公司 | 夹具 |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8197234B2 (en) | 2004-05-25 | 2012-06-12 | California Institute Of Technology | In-line actuator for electromagnetic operation |
US7398818B2 (en) * | 2004-12-28 | 2008-07-15 | California Institute Of Technology | Fluidic pump for heat management |
US7749152B2 (en) * | 2005-01-10 | 2010-07-06 | California Institute Of Technology | Impedance pump used in bypass grafts |
US7883325B2 (en) | 2005-03-25 | 2011-02-08 | Arash Kheradvar | Helically actuated positive-displacement pump and method |
US20060280655A1 (en) * | 2005-06-08 | 2006-12-14 | California Institute Of Technology | Intravascular diagnostic and therapeutic sampling device |
US20070085449A1 (en) | 2005-10-13 | 2007-04-19 | Nanyang Technological University | Electro-active valveless pump |
US20090165876A1 (en) * | 2005-11-22 | 2009-07-02 | Micah James Atkin | Microfluidic Structures |
US8092365B2 (en) * | 2006-01-06 | 2012-01-10 | California Institute Of Technology | Resonant multilayered impedance pump |
WO2007084392A2 (en) * | 2006-01-13 | 2007-07-26 | Micronics, Inc. | Electromagnetically actuated valves for use in microfluidic structures |
US7566209B2 (en) * | 2006-03-15 | 2009-07-28 | Chrysler Llc | Peristaltic pump with field generator |
JP5044758B2 (ja) * | 2006-04-14 | 2012-10-10 | 昭和電工株式会社 | 調節孔の制御方法 |
WO2008036997A1 (en) * | 2006-09-28 | 2008-04-03 | Fluidyx Pty. Limited | A system and method for controlling fluids within a microfluidic device |
US8283185B2 (en) * | 2006-10-30 | 2012-10-09 | Stc.Unm | Magnetically susceptible particles and apparatuses for mixing the same |
US9656009B2 (en) | 2007-07-11 | 2017-05-23 | California Institute Of Technology | Cardiac assist system using helical arrangement of contractile bands and helically-twisting cardiac assist device |
US9125655B2 (en) | 2010-07-16 | 2015-09-08 | California Institute Of Technology | Correction and optimization of wave reflection in blood vessels |
US9249789B2 (en) | 2010-10-08 | 2016-02-02 | Ravindra Kashyap | Pipe pump system |
IT201600114952A1 (it) * | 2016-11-15 | 2018-05-15 | Edoardo Albertin | Struttura di pompa volumetrica |
JP2021518249A (ja) | 2018-03-20 | 2021-08-02 | セカンド・ハート・アシスト・インコーポレイテッド | 循環補助ポンプ |
TWI730301B (zh) * | 2019-03-06 | 2021-06-11 | 點晶科技股份有限公司 | 流體驅動裝置 |
US11813395B2 (en) * | 2019-11-18 | 2023-11-14 | United States Government As Represented By The Department Of Veterans Affairs | Catheter configured for use with negative pressure and system comprising same |
US20240200548A1 (en) * | 2022-12-19 | 2024-06-20 | Trelleborg Sealing Solutions Germany Gmbh | Tube with embedded magnetic particles and associated pumping device |
Family Cites Families (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3593718A (en) * | 1967-07-13 | 1971-07-20 | Biocybernetics Inc | Physiologically controlled cardiac pacer |
US3511583A (en) * | 1968-09-24 | 1970-05-12 | Gen Motors Corp | Magnetic fluid actuating pump |
US3768931A (en) * | 1971-05-03 | 1973-10-30 | Birch R | Magnetically actuated pump with flexible membrane |
US3982722A (en) * | 1975-11-21 | 1976-09-28 | General Motors Corporation | Magnetic control valve |
IL59942A (en) * | 1980-04-28 | 1986-08-31 | D P Lab Ltd | Method and device for fluid transfer |
US4463502A (en) * | 1982-03-08 | 1984-08-07 | Fitzgerald Thomas J | Magnetic distributor-downcomer for fluidized beds and magnetic valve to control the flow of solids |
JPS60125788A (ja) * | 1983-12-08 | 1985-07-05 | Mitsui Eng & Shipbuild Co Ltd | 流体ポンプ |
DE3621766A1 (de) * | 1986-06-28 | 1988-01-28 | Peter Boensch | Elektromagnetische pumpe |
US4808079A (en) * | 1987-06-08 | 1989-02-28 | Crowley Christopher J | Magnetic pump for ferrofluids |
IL84286A (en) * | 1987-10-26 | 1992-07-15 | D F Lab Ltd | Diaphragm and diaphragm-actuated fluid-transfer control device |
US5166563A (en) * | 1990-03-02 | 1992-11-24 | Stuart Bassine | Magnetically actuated linear displacement compressor |
US5203172A (en) * | 1990-05-17 | 1993-04-20 | Simpson Alvin B | Electromagnetically powered hydraulic engine |
DE4029250A1 (de) * | 1990-09-14 | 1992-03-19 | Peschel Manfred | Vorrichtung zur erzeugung von druckstoessen in fluessigkeiten und/oder gasen |
CA2100842C (en) * | 1993-07-19 | 1998-11-24 | James E. Poil | Magnetic motion producing device |
JPH09287571A (ja) * | 1996-04-18 | 1997-11-04 | Fuji Electric Co Ltd | マイクロポンプ |
IL120858A (en) * | 1997-05-19 | 2001-01-11 | Q Core Ltd | Magnetic flow controller |
WO1999044096A2 (en) | 1998-02-25 | 1999-09-02 | California Institute Of Technology | Aperture coded camera for three-dimensional imaging |
US7006132B2 (en) | 1998-02-25 | 2006-02-28 | California Institute Of Technology | Aperture coded camera for three dimensional imaging |
US6254355B1 (en) * | 1999-04-19 | 2001-07-03 | California Institute Of Technology | Hydro elastic pump which pumps using non-rotary bladeless and valveless operations |
US6074179A (en) * | 1999-05-10 | 2000-06-13 | The United States Of America As Represented By The Secretary Of The Navy | Magnetostrictive peristaltic pump |
US6506025B1 (en) | 1999-06-23 | 2003-01-14 | California Institute Of Technology | Bladeless pump |
KR100865105B1 (ko) * | 1999-06-28 | 2008-10-24 | 캘리포니아 인스티튜트 오브 테크놀로지 | 마이크로 가공된 탄성중합체 밸브 및 펌프 시스템 |
US6682004B2 (en) * | 1999-08-18 | 2004-01-27 | The Procter & Gamble Company | Electrostatic spray device |
US6956230B1 (en) | 1999-09-17 | 2005-10-18 | California Institute Of Technology | Integrated particles sensor formed on single substrate using fringes formed by diffractive elements |
US6608668B2 (en) | 2000-08-11 | 2003-08-19 | California Institute Of Technology | Sub miniaturized laser doppler velocimeter sensor |
WO2002065088A2 (en) | 2000-12-04 | 2002-08-22 | California Institute Of Technology | Particle sizing and concentration sensor using a hollow shaped beam |
US6717172B2 (en) | 2000-12-19 | 2004-04-06 | California Institute Of Technology | Diffractive optical fluid shear stress sensor |
SE0100418D0 (sv) * | 2001-02-08 | 2001-02-08 | Pharmacia Ab | Liquid delivery device and use method |
US6607368B1 (en) | 2001-11-03 | 2003-08-19 | Anthony Ross | Linear pump and method |
US6884040B2 (en) * | 2001-12-27 | 2005-04-26 | Pratt & Whitney Canada Corp. | Multi pumping chamber magnetostrictive pump |
US7998190B2 (en) | 2002-06-17 | 2011-08-16 | California Institute Of Technology | Intravascular miniature stent pump |
US7163385B2 (en) | 2002-11-21 | 2007-01-16 | California Institute Of Technology | Hydroimpedance pump |
US6910466B2 (en) * | 2003-01-17 | 2005-06-28 | Siemens Vdo Automotive Inc. | Elastomeric vapor flow control actuator with improved mechanical advantage |
US7491170B2 (en) | 2003-03-31 | 2009-02-17 | California Institute Of Technology | Noninvasive methods for assessing valvular and ventricular dysfunction |
US8197234B2 (en) | 2004-05-25 | 2012-06-12 | California Institute Of Technology | In-line actuator for electromagnetic operation |
WO2005115502A2 (en) | 2004-05-25 | 2005-12-08 | California Institute Of Technology | Device and method for treating hydrocephalus |
US7524298B2 (en) | 2004-05-25 | 2009-04-28 | California Institute Of Technology | Device and method for treating hydrocephalus |
US7398818B2 (en) | 2004-12-28 | 2008-07-15 | California Institute Of Technology | Fluidic pump for heat management |
US7331991B2 (en) | 2005-02-25 | 2008-02-19 | California Institute Of Technology | Implantable small percutaneous valve and methods of delivery |
US7883325B2 (en) | 2005-03-25 | 2011-02-08 | Arash Kheradvar | Helically actuated positive-displacement pump and method |
-
2005
- 2005-05-24 US US11/137,853 patent/US8197234B2/en active Active
- 2005-05-25 KR KR1020067022166A patent/KR100811037B1/ko active IP Right Grant
- 2005-05-25 WO PCT/US2005/018592 patent/WO2005117240A2/en not_active Application Discontinuation
- 2005-05-25 JP JP2007515353A patent/JP2008500494A/ja active Pending
- 2005-05-25 CN CNA2005800137183A patent/CN1985089A/zh active Pending
- 2005-05-25 EP EP05757048A patent/EP1749337A4/en not_active Withdrawn
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111093753A (zh) * | 2017-10-12 | 2020-05-01 | 费森尤斯医疗护理德国有限责任公司 | 夹具 |
CN111093753B (zh) * | 2017-10-12 | 2022-10-11 | 费森尤斯医疗护理德国有限责任公司 | 夹具 |
Also Published As
Publication number | Publication date |
---|---|
KR100811037B1 (ko) | 2008-03-07 |
WO2005117240A2 (en) | 2005-12-08 |
WO2005117240A3 (en) | 2007-02-01 |
US8197234B2 (en) | 2012-06-12 |
EP1749337A4 (en) | 2012-05-16 |
US20050275494A1 (en) | 2005-12-15 |
JP2008500494A (ja) | 2008-01-10 |
EP1749337A2 (en) | 2007-02-07 |
KR20070004894A (ko) | 2007-01-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1985089A (zh) | 用于电磁操作的轴向制动器 | |
CN102801237B (zh) | 转子芯、用于转子芯的模组、转子和电动机 | |
US7667560B2 (en) | Membrane actuator based on ferromagnetic shape memory alloy composite for synthetic jet actuator | |
US6476702B1 (en) | Electromagnetic actuator with an oscillating spring-mass system | |
WO2011158473A1 (ja) | 発電素子および発電素子を備えた発電装置 | |
WO2010139917A1 (en) | Valve | |
CN107405781A (zh) | 穿孔装置以及穿孔方法 | |
CN107332473A (zh) | 一种压电振动式管道流发电机 | |
CN104373327A (zh) | 一种具有混合式电磁力弹簧的压电泵 | |
CN209654838U (zh) | 磁流变管道减振系统 | |
CN113380943B (zh) | 利用永磁体提高磁电耦合器件的磁电耦合系数的方法 | |
CN101702569B (zh) | 一种使用磁性液体发电的装置 | |
US11175191B1 (en) | Mechanically actuated and shunted magnetostrictive dipole transmitter | |
CN101374610A (zh) | 用于布置在箱体中的清洁头的驱动系统 | |
JP2609066B2 (ja) | 振動型ポンプ | |
JPH0421075B2 (zh) | ||
WO2007110578A1 (en) | Electromagnetic transducer apparatus | |
US7234482B2 (en) | Servovalve with torque motor | |
CN2683910Y (zh) | 用于液压激振器的四位旋阀 | |
CN105119456A (zh) | 自驱动转动轴多维转动驱动系统 | |
CN205004936U (zh) | 具有电磁永磁直接驱动的自转动轴的多维驱动系统 | |
CN106104241B (zh) | 用于测量空心柱体形的机器元件上的力或力矩的装置 | |
CN105094155B (zh) | 自驱动转动轴的振动及局部位置稳定系统 | |
WO2015022886A1 (ja) | 発電装置 | |
US11739757B2 (en) | Circular magnetic field generator and pump with rotating permanent magnet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |