CN1965146B - 水基增粘剂流体及其使用方法 - Google Patents

水基增粘剂流体及其使用方法 Download PDF

Info

Publication number
CN1965146B
CN1965146B CN200580018966.7A CN200580018966A CN1965146B CN 1965146 B CN1965146 B CN 1965146B CN 200580018966 A CN200580018966 A CN 200580018966A CN 1965146 B CN1965146 B CN 1965146B
Authority
CN
China
Prior art keywords
tackifier compound
aqueous tackifier
aqueous
proppant
activator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN200580018966.7A
Other languages
English (en)
Other versions
CN1965146A (zh
Inventor
马修·E.·布劳克
托马斯·D.·韦尔顿
菲利普·D.·阮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Halliburton Energy Services Inc
Original Assignee
Halliburton Energy Services Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Halliburton Energy Services Inc filed Critical Halliburton Energy Services Inc
Publication of CN1965146A publication Critical patent/CN1965146A/zh
Application granted granted Critical
Publication of CN1965146B publication Critical patent/CN1965146B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/80Compositions for reinforcing fractures, e.g. compositions of proppants used to keep the fractures open
    • C09K8/805Coated proppants
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/62Compositions for forming crevices or fractures
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/62Compositions for forming crevices or fractures
    • C09K8/66Compositions based on water or polar solvents
    • C09K8/68Compositions based on water or polar solvents containing organic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/62Compositions for forming crevices or fractures
    • C09K8/66Compositions based on water or polar solvents
    • C09K8/68Compositions based on water or polar solvents containing organic compounds
    • C09K8/685Compositions based on water or polar solvents containing organic compounds containing cross-linking agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/80Compositions for reinforcing fractures, e.g. compositions of proppants used to keep the fractures open
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/10Sealing or packing boreholes or wells in the borehole
    • E21B33/13Methods or devices for cementing, for plugging holes, crevices or the like
    • E21B33/138Plastering the borehole wall; Injecting into the formation
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • E21B43/267Methods for stimulating production by forming crevices or fractures reinforcing fractures by propping
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • Y10T428/2998Coated including synthetic resin or polymer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Physics & Mathematics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明涉及水基增粘剂流体以及它们在稳定支撑裂缝的颗粒中的用途。本发明的一些实施方案提供了在地下岩层中生产支撑剂填充物的方法,该方法包括:将包括支撑剂颗粒的水性维护流体引入地下裂缝中,其中至少一些支撑剂颗粒至少部分地被水性增粘剂化合物涂布;并且,活化水性增粘剂化合物以形成支撑剂填充物。其它的实施方案提供了稳定支撑剂填充物的方法,其包括:将水性增粘剂化合物引入一部分现有的支撑剂填充物中;并且,活化水性增粘剂化合物以稳定支撑剂填充物。其它的实施方案提供了包括支撑剂颗粒和水性流体的维护流体,其中至少一些支撑剂颗粒被部分地涂布有水性增粘剂化合物。

Description

水基增粘剂流体及其使用方法
技术领域
本发明涉及水基增粘剂流体以及它们在稳定支撑裂缝的颗粒中的用途。
背景技术
烃生产井通常是由水力破碎处理来增产的。在水力破碎处理中,粘性压裂液被以一定的速度和压力泵送入生产区域中,以使地下岩层断裂并且在该区域中形成一个或多个裂缝。通常被称为“支撑剂”的颗粒固体如分级的砂子悬浮于部分压裂液中,然后当该压裂液转化为返回到表面的稀流体的时候,所述颗粒固体沉积于裂缝中。这些颗粒特别是用来防止裂缝的完全闭合,以形成所产生的烃类能够流过的传导通道。
为了防止随后支撑剂和其它颗粒与所产生的流体一起回流,可以将引入裂缝中的一部分支撑剂涂布上可固化树脂,以促进裂缝中的支撑剂颗粒的固结。通常,树脂涂布的支撑剂在大量未涂布的支撑剂已沉积在裂缝中之后沉积在裂缝中。部分闭合的裂缝向树脂涂布的支撑剂颗粒施加压力,从而使这些颗粒相互接触,同时该树脂提高了单个支撑剂颗粒之间的粒-粒接触。压力和树脂的作用引起了支撑剂颗粒固结为坚硬的、可以渗透的具有压缩和拉伸强度的物质,能够防止未固结的支撑剂和地层砂与所产生的流体一起流出裂缝,并且破坏生产设备和/或该井的潜在生产量。
连同或者替代树脂,可以用增粘剂涂布一些或者全部的支撑剂来帮助控制地层碎屑在支撑剂填充物中的迁移。增粘剂即使在被放置到地层中后,其本质上仍保留有粘性或者保留了粘合特性。这样,当地层碎屑企图与地层流体一起流过填充物的时候,它们能够被增粘剂捕获,以至于不能与所生成的流体一起产出。
已经证实这种增粘剂的使用对烃和水的生产特别有用,特别是在煤床甲烷地层中。然而,传统的增粘剂需要烃系或非水性载体流体,这在特定的表面陆地、水或者海环境中被证明可能是有问题的。另外,传统的试剂通常不能提供在某些地下岩层中所希望的高弹性的支撑剂-支撑剂粘结,传统的增粘剂通常还缺乏控制“增粘作用”的开始的能力(即,该增粘剂不能作为非粘性的、可以后来被活化变粘的流体)。因此,所述支撑剂通常应该在被放置到裂缝中之前被增粘,这限制了加固和/或增粘已被放置的支撑剂的能力。此外,在暴露于氧化环境时,传统的增粘剂常常随着时间的流逝而固化。
发明内容
本发明涉及水基增粘流体以及它们在稳定支撑裂缝的颗粒中的用途。
本发明的一些实施方案提供了在地下岩层中形成支撑剂填充物的方法,该方法包括:将包含支撑剂颗粒的水性维护流体引入地下裂缝中,其中至少一些支撑剂颗粒至少部分地涂布有水性增粘剂化合物;以及活化该水性增粘剂化合物,以便形成支撑剂填充物。
本发明的其它实施方案提供了稳定支撑剂填充物的方法,该方法包括:将水性增粘剂化合物引入至少一部分现有支撑剂填充物中;以及活化水性增粘剂化合物,以便稳定支撑剂填充物。
本发明的其它实施方案提供了控制支撑剂颗粒从支撑剂填充物回流的方法,该方法包括:将包含支撑剂颗粒的水性载体流体引入地下裂缝中,以便形成支撑剂填充物,其中至少一些支撑剂颗粒至少部分地涂布有水性增粘剂化合物;以及活化该水性增粘剂化合物。
本发明的其它实施方案提供了包含支撑剂颗粒和水性流体的维护流体,其中至少一些支撑剂颗粒至少部分地涂布有水性增粘剂化合物。
本发明的其它实施方案提供了涂布有水性增粘剂化合物的支撑剂颗粒。
对于本领域的技术人员来说,在阅读了下面的优选实施方案以后,本发明的特点和优点将是显而易见的。
具体实施方式
本发明涉及水基增粘流体和它们在稳定支撑裂缝的颗粒中的用途。本发明的水性增粘剂化合物
根据本发明,可以将水性增粘剂化合物涂布到被引入包含未固结颗粒的地下裂缝一部分中的颗粒(例如支撑剂颗粒)上。对本文中所使用的术语“粘性的”来说,在它的所有形式中,通常是指触觉上本身(或者可以被活化成为)有些粘性的物质。本文中所使用的术语“未固结的”是指颗粒松散地未粘合或者非常弱粘合地粘合在一起,以至于能够随在部分地下岩层中运动的流体一起迁移的情形。例如,没有充分与树脂粘合在一起,并且趋向于与流体一起在地层中迁移的支撑剂颗粒可以被认为是未固结的。
合适的水性增粘剂化合物能够在颗粒(例如,支撑剂)的表面形成至少部分涂层。通常,当被置于颗粒上时,合适的水性增粘剂化合物并不是明显粘性的,但是其能够被“活化”(也就是被去稳定、聚结和/或起反应),以便在需要的时刻该化合物可以转化成粘性的增粘化合物。这样的活化可以发生在将水性增粘剂化合物放入地下岩层之前、之中或之后。在一些实施方案中,可以首先用预处理接触颗粒的表面来为其涂布水性增粘剂化合物作准备。
本发明的一些实施方案描述了使用水性增粘剂化合物来控制存在于地下岩层中的松散颗粒并且用来稳定地下岩层的界面区,以至于阻碍颗粒(例如碎屑)从界面释放或者产生的方法。在本发明的一些实施方案中,水性增粘剂化合物一旦被活化,就有助于通过改进形式的絮凝物来稳定颗粒。在通常的絮凝物中,增粘的颗粒结块在一起;然而,通过本发明的水性增粘剂化合物产生的改进絮凝物还能够絮凝,粘性的颗粒粘附到它们所接触的表面(例如,井底地层面或者另一颗粒的表面)上。由于这些颗粒被增粘且即使当絮凝颗粒从它们所粘附的表面上挣脱下来时依然保持粘性,因此它们具有重新粘附到另一表面的能力。这进一步降低了增粘的颗粒随地层流体一起迁移并削弱该井的生产量的可能性。
本发明的一些实施方案提供了补救地下裂缝而不需要重新破碎或者重新固作可能已经沉积于裂缝中的支撑剂颗粒的方法。在本发明包括“补救操作”(即,其中支撑剂填充物已经就位,不希望的回流已经开始发生并且需要进行补救或操作,而其中地层已经开始散裂且不稳定的地层表面需要补救的操作)的实施方案中,本发明的水性增粘剂化合物可以是特别适合的,因为在某种程度上,它们可以作为非粘性物质而被置于将要被补救的区域内,然后被活化至呈现出粘性特性。本发明的水性增粘剂化合物可以特别适合于这种补救应用,部分是因为它们可以作为非粘性物质或者吸收性物质而置于支撑剂填充物区域内,然后被活化至呈现出粘性特性,从而到达目标颗粒表面而不存在于孔间隙中。
本发明的水性增粘化合物通常是包含以下化合物的带电荷聚合物,当处于水性溶剂或者溶液中时,该化合物可以形成非硬化的涂层(通过其自身或者与活化剂一起),并且当置于颗粒上的时侯,其与水流接触时将可以增加该颗粒的连续临界再悬浮速度(在实施例7中作了进一步描述)。该水性增粘剂化合物提高了地层中单个颗粒(它们是支撑剂颗粒、地层碎屑、或者其它颗粒)之间的粒子-粒子接触,有助于使所述颗粒固结为内聚、挠曲且可渗透的物质。
适合于本发明中使用的水性增粘化合物的实例包括但不限于:丙烯酸聚合物、丙烯酸酯聚合物、丙烯酸衍生物聚合物、丙烯酸均聚物、丙烯酸酯均聚物(例如聚丙烯酸甲酯、聚丙烯酸丁酯和聚丙烯酸2-乙基己酯)、丙烯酸酯共聚物、甲基丙烯酸衍生物聚合物、甲基丙烯酸均聚物、甲基丙烯酸酯均聚物(例如聚甲基丙烯酸甲酯、聚甲基丙烯酸丁酯和聚甲基丙烯酸2-乙基己酯)、丙烯酰胺基-甲基-丙烷磺酸酯聚合物、丙烯酰胺基-甲基-丙烷磺酸酯衍生物聚合物、丙烯酰胺基-甲基-丙烷磺酸酯共聚物、和丙烯酸/丙烯酰胺基-甲基-丙烷磺酸酯共聚物以及它们的组合。
虽然存在很多用于确定适合水性增粘剂的潜在方法,但是选择合适聚合物的一种实用的方法如下:将被测试的聚合物设定为浓缩形式(也就是说,约20-50%的浓度),并且向其加入活化剂。根据经验,如果该混合物看起来凝结形成固体或半固体物质的话,则表示该聚合物是本发明合适的水性增粘剂。如果该混合物看上去没有凝结形成固体或半固体物质,则应该选择另外一种活化剂并重复该测试。本领域的技术人员在知道了希望的凝结结果以后,将能够选择合适的活化剂。例如,当测试适合用作水性增粘剂的丙烯酸酯聚合物的时侯,包含50%乙酐和50%冰乙酸(v/v)的混合物是合适的活化剂。水性增粘化合物的选择可能特别取决于井下的条件(例如,盐度、温度和/或pH)。对于所有合适的水性增粘剂化合物来说,这些和其它井下条件之间的关系并不是一致的。例如,高盐度可能加速一些水性增粘剂化合物的活化,而对于其它化合物则可能延迟活化。本领域的技术人员将能够确定具体的井下条件对所选水性增粘剂化合物的影响。例如,当使用聚丙烯酸酯聚合物的时侯,高盐度和/或极端的pH(高于约9或低于约5)通常加速活化。
如上所述,合适的水性增粘剂化合物通常是带电荷聚合物;它们优先粘结在具有相反电荷的表面上。例如,具有负电荷的水性增粘剂化合物可以优先粘结在具有正至中性ξ电势的表面上和/或疏水性表面上。同样地,使用类似化学物,带正电荷的水溶性增粘剂化合物可以优先粘附到具有负至中性ξ电势的表面和/或亲水性表面上。在其中被处理表面(地层或颗粒)缺乏足够的接受表面的具体实施方案中(即,被处理的表面缺乏与被选择的水性增粘剂化合物基本相反的电荷),可以使用预处理流体来使得所述表面更能接受水性增粘化合物。例如,人们可以使用预处理材料例如阳离子聚合物来处理具有负ξ电势的表面,或者使用阴离子预处理物来处理具有正ξ电势的表面。本领域的技术人员应该理解,也可以使用两性的和两性粒子的预处理流体,只要在它们使用中的暴露条件下使它们可以显示出希望的电荷。合适的预处理流体包括带电荷流体,其包括带电荷表面活性剂、带电荷聚合物或者它们的组合。本领域的技术人员应当理解,在本申请公开内容的帮助下,预处理的使用是任选的并且至少部分地取决于电荷的不均匀性,或在所选水性增粘剂化合物与被处理表面之间的电荷缺乏性。
如上面所提及的那样,水性增粘剂化合物最初是非粘性的,当与活化剂接触时变得发粘。通常,活化剂是有机酸(或能够在水中水解生成有机酸的有机酸的酸酐)、无机酸、无机盐(例如盐水)、带电荷表面活性剂、带电荷聚合物或者它们的组合,但是根据本发明的教导,能够使得水性增粘剂化合物不溶解于水溶液中的任何物质都可以用作活化剂。活化剂的选择可以根据特别是水性增粘剂化合物的组成而改变。适于在本发明中使用的一种活化剂的实例是乙酸/乙酸酐的掺合物。其它的酸、酸性盐、酸酐及它们的混合物也可以是合适的。此外,这与凝结是类似的。例如,很多天然橡胶乳胶在生产过程中通过乙酸或甲酸凝结。合适的盐包括但不限于:氯化钠、氯化钾、氯化钙、和它们的混合物。在本发明的另一个示例性实施方案中,存在于地层水中的盐或其他活性化合物自身的浓度可以足以活化水性增粘剂化合物。在这样的实施方案中,没有必要加入外部活化剂。通常,在使用时所述活化剂是的存在量为流体量的约0.1重量%-约40重量%;然而,在一些情况下如在使用盐水的情况下,活化剂可以超过处理流体和水性增粘剂化合物。然而在本发明的教导中,不考虑触发水性增粘剂化合物活化所必需的活化剂浓度,任何引起水性增粘剂化合物活化的化合物(例如,引起水性增粘剂化合物变成为不溶性的)都可以使用。
合适的活化剂种类与合适的预处理流体种类基本相同;差别至少部分地在于所使用的量和它的使用时间。例如,在使用相同的化学试剂或化学药品作为预处理流体和活化剂的情况下,预处理流体可以仅仅占所使用总体积的约0.1体积%-约5体积%。本领域的技术人员可以认识到,预处理流体主要是用来为接受水性增粘剂化合物而作准备的,通常不以足以充分活化该水性活化剂化合物的量使用。此外,在一些实施方案中,可能完全不必使用活化剂。例如,处理的地下岩层部分在地层流体中可能含有足量的盐,以至于简单地将水性增粘剂化合物放入地层中并且让它与现有流体接触,就可以导致所希望的活化。
在本发明的一些实施方案中,水性增粘剂化合物被用来涂布支撑剂颗粒。合适的支撑剂颗粒通常具有一定的尺寸,以便防止从地下区域生成可以与所产生的流体一起迁移的地层碎屑。任何合适的支撑剂颗粒都可以使用,其包括分级的天然砂子或果壳,或结构材料如矾土、陶瓷材料、玻璃材料、聚合物珠粒、复合颗粒等。通常,该支撑剂颗粒具有约4-约400目的U.S.分级筛的尺寸。在本发明的一些实施方案中,支撑剂颗粒是粒径为约10-约70目的U.S.分级筛的分级砂子。应该理解,在本申请中所使用的术语“颗粒”包括所有已知形状的材料,其包括基本球形的材料、纤维材料、多角形材料(例如立方体材料)和它们的混合物。此外,在支撑剂和砂粒处理中通常包括纤维材料,纤维材料可以用来或者可以不被用来承受闭合裂缝的压力,特别是用来增加所得填充物的传导性。
在本发明具体的实施方案中,支撑剂颗粒可以至少部分地涂布可固化树脂。在具体的实施方案中,该涂布有树脂的支撑剂(″RCP″)可以包括由商业供应商预涂布的支撑剂。合适的市售RCP材料包括但不限于:预固化的树脂涂布的砂子、涂布了可固化树脂的砂子、涂布了可固化树脂的陶瓷及单层、双层或多层树脂涂布的砂子、陶瓷或矾土。可以从Borden Chemical,Columbus,Ohio购得的一些实例是″XRTTM CERAMAX P″、″CERAMAX I″、″CERAMAX P″、″ACFRACBLACK″、″ACFRAC CR″、″ACFRAC SBC″、″ACFRAC SC″和″ACFRAC LTC″。可从Santrol,Fresno,Texas购得的一些实例是″HYPERPROP G2″、″DYNAPROPG2″、″MAGNAPROP G2″、″OPTIPROP G2″、″SUPER HS″、″SUPER DC″、″SUPERLC″和″SUPER HT″。
合适的可固化树脂成分包括能够形成硬化的、固结物质的那些树脂。合适的树脂包括但不限于:双组份环氧基树脂、线性酚醛清漆树脂、聚环氧化物树脂、酚醛树脂、脲醛树脂、聚氨酯树脂、酚醛树脂、呋喃/糠醇树脂、酚醛/乳胶树脂、苯酚甲醛树脂、聚酯树脂以及它们的混合物和共聚物、丙烯酸酯树脂、及它们的混合物。一些合适的树脂如环氧树脂可以具有上面所提及的两个组份,并且使用外部催化剂或活化剂。其它合适的树脂,例如呋喃树脂,如果固化温度较低(即,低于250
Figure 058189667_0
)的话,通常要求延时的催化剂或者外部催化剂来帮助活化这些树脂的聚合,但是如果地层温度高于约250
Figure 058189667_1
,优选高于约300
Figure 058189667_2
的话,将在时间和温度的作用下固化。合适树脂涂布材料的选择可以受到将引入该流体的地下岩层的温度的影响。作为实例,对于井底静态温度(″BHST″)为约60
Figure 058189667_3
-约250的地下岩层,包含可硬化树脂组分和含有特殊硬化剂的硬化剂组分的双组分环氧基树脂可以是优选的。对于BHST为约300-约600
Figure 058189667_6
的地下岩层,呋喃基树脂可以是优选的。对于BHST为约200
Figure 058189667_7
-约400
Figure 058189667_8
的地下岩层,酚醛基树脂或者单组分HT环氧基树脂可以是优选的。对于BHST为至少约175
Figure 058189667_9
的地下岩层,苯酚/苯酚甲醛/糠醇树脂也可以是适宜的。在本公开内容的帮助下,本领域的技术人员能够选择在本发明实施方案中使用的合适树脂,并且确定是否需要触发固化的催化剂。
在本发明的具体实施方案中,支撑剂颗粒可以预先涂布水性增粘剂化合物。与被预涂布相反,在本发明的其它实施方案中,支撑剂可以现场涂布水性增粘剂化合物。
本发明的一些实施方案描述了使用支撑剂颗粒破碎地下岩层的方法,其中所述支撑剂颗粒至少部分地涂布有水性增粘剂化合物。在这样的实施方案中,支撑剂颗粒通常通过首次在维护流体(例如,压裂液)中形成淤浆而被运输到地下岩层部分。
本发明的合适的维护流体可以是水性流体、乳液、泡沫,或者是本领域中已知的任何其它形式的地下流体。在一些实施方案中,本发明的维护流体包括淡水。在一些实施方案中,咸水溶液也可以用作维护流体,只要流体的盐浓度不会不令人满意地活化和/或去稳定所述水性增粘剂化合物。根据本发明,还可以使用含水凝胶、泡沫、直接氮、二氧化碳、乳液和其它合适的压裂液(交联的或者未交联的)。含水凝胶通常包括水和一种或多种凝胶剂。乳液可以由两种不混溶的液体,例如水凝胶化的液体和液化的、通常为气体的流体如氮气或二氧化碳构成。在本发明的示例性实施方案中,维护流体是由水、用来凝胶化水并且增加其粘度的凝胶剂、以及任选用于交联所述凝胶并且进一步增加流体粘度的交联剂组成的含水凝胶。该凝胶化的或者凝胶且交联的维护流体增加的粘度特别降低了流体损失,并且可能允许维护流体运送大量的悬浮支撑剂颗粒。用来形成维护流体的水可以是淡水、咸水、盐水或者任何其它不负面地与其它组分反应的水性液体。根据本发明,通过使用水性维护流体,对地下处理的环境影响可以最小化或者降低,特别是在维护流体被倒入到表面陆地、水、或海环境中,或者所述流体是根据U.S.EPA Safe Drinking Water Act(Section 1425,42U.S.C.3000h-4(a),Section 1422(b),U.S.C.300h-l(b))调节的情况下。
在本发明包括使用维护流体(例如交联的凝胶)的实施方案中,活化剂可以是不必要的(如在地下流体或者维护流体自身固有地含有足够的活化化合物的情况下),活化剂可能包括在维护流体自身中,并且所述活化剂可以在被放入维护流体之前放入到地层中的预冲洗流体中,活化剂可以被包含在在维护流体之后放入地层中的超量冲洗液中,或者可以使用一种或多种活化剂的放置的结合。如上所述,活化剂通常以总流体体积的约0.1%-约40%的量存在;然而,在盐水或者压裂液的情况下,其可以大大的超量。在其它实施方案中,活化剂以总流体体积的约0.2%-约25%的量存在。在其它实施方案中,活化剂以总流体体积的约0.5%-约10%的量存在。应该理解,不考虑触发水性增粘剂化合物的活化所必需的活化剂的浓度,在本发明的教导内可以使用能够引起水性增粘剂化合物活化的任何化合物(例如,引起水性增粘剂化合物凝结并且变粘)。
虽然水性增粘剂化合物的活化可能发生在将支撑剂放置于地下裂缝之前、之中或者之后,本发明的具体实施方案是在放置支撑剂之后活化水性增粘剂化合物作为处理现有支撑剂填充物的手段。这特别适合于可能不希望以增粘的形式放置水性增粘剂化合物的情况,例如在补救操作中。以这种方式,水性增粘剂化合物可以被活化形成高粘性化合物或增粘剂,其特定地或者优先地粘附到对所述增粘剂具有天然的或者诱导亲合力的希望的支撑剂表面上。
这样,可以在水力破碎处理中使水性增粘剂化合物以任意多次的不同次数暴露于活化剂。在本发明的特定的实施方案中,活化剂可以几乎同时随水性增粘剂化合物而与载体流体混合。以这种方式,引入地下岩层中的水性增粘剂化合物已经被活化,或者至少处于被活化的过程中。在本发明另外的实施方案中,活化剂可以在已将水性增粘剂化合物引入地层以后的某些时间被引入地下岩层中(例如,水性增粘剂化合物可以在其被活化前的某一时间存在于地下岩层中)。以这种方式,在发生水泥散裂或者支撑剂颗粒或者碎屑需要被再固结的情况下,水性增粘剂化合物提供了补救性地增粘裂缝的能力。本领域的技术人员可以认识到,是否预混合活化剂和水性增粘剂化合物决定至少部分取决于所选择的活化剂。例如,盐活化剂可能趋向于比带电荷表面活性剂更快地活化水性增粘剂化合物。
为了便于更好地理解本发明,给出了下面的优选实施方案的实施例。下面的实施例决不应该被认为是对本发明范围的限制或定义。
实施例
实施例1
通过混合1升含有20克KCl盐的水、4.2克干瓜尔胶聚合物和0.2ml乙酸/乙酸铵混合物(用作pH缓冲剂来将混合物的pH降低到约6.5),并且在混合机中混合约10分钟使瓜尔胶水合,以制备1000加仑含有35lb干瓜尔胶聚合物的硼酸盐交联压裂液的碱性凝胶。在水合步骤以后,加入2.5ml碳酸钾(用作pH缓冲剂),将最后的碱性凝胶的pH升高到约10.2。
用每250克Brady砂1ml季铵盐的表面活性剂来处理Brady砂子(20/40目),然后用3重量%、由40%聚丙烯酸酯聚合物溶液形成的涂料对其进行干法涂布。
然后将250克涂布过的20/40 Brady砂放置在干净的1升烧杯中,加入300ml所述碱性凝胶溶液,其后将该烧杯放入具有高架混合器的140的水浴中。在混合的同时,用约2分钟将0.32ml硼酸盐交联剂加入到该碱性凝胶/支撑剂浆液中,使交联开始。
得到了稳定的交联,将其与使用了没有用本发明处理的支撑剂所进行的对照试验进行比较。两种流体都保持稳定,这表明本发明的溶液对于流体稳定性没有显著的负面影响;也就是说,其没有表现出例如不能交联或者太早断裂的有害影响。
在用HCl破坏交联凝胶的时候,将涂布的砂分开并进行测试,结果证实其具有希望的粘性和改进的T测试性能(参见下面)。此外,发现涂布过的砂不需要另外的活化剂来得到希望的涂布性能,这至少部分是因为含有活化剂如KCl的破碎凝胶系统,并且其对丙烯酸基聚合物也表现出令人满意的活化pH。
实施例2
使用粒度小于100目的Brazos River砂子来模拟地层砂子。然后将该材料填充到5英寸长1英寸ID的锥形特氟龙管套中。将约0.5英寸厚的20/40目的Ottawa砂子填充到Brazos River砂材料的下面和上面。然后用3%的KCl盐水使砂柱饱和,并且用该盐水以5mL/min的速度以几种孔隙体积(pore volume)进行冲洗,以确定砂子填充物的初始渗透度。然后用2倍孔隙体积的处理流体(4体积%的40%的聚丙烯酸酯聚合物溶液、0.5%活化剂、0.1%阳离子表面活性剂、0.1%两性表面活性剂、余量为水)处理含Brazos River砂子的柱。然后用5倍孔隙体积的KCl盐水(3%)超量冲洗(overflush)该砂子填充物。然后将处理过的砂柱放在烘箱中,在175
Figure 058189667_11
下固化20个小时。
在固化阶段之后,使用3%的KCl盐水建立从相反方向流过被处理砂柱的流动。将流动速率保持在恒定的5mL/min来确定砂子填充物所保留的渗透度,用来与初始渗透度相比较。被处理的砂子填充物有大于95%的渗透度保留下来,在用来建立重新得到渗透的5mL/min KCl流动过程中所收集的流出液中,没有产生碎屑的迹象。
该实施例的结果确定了该处理流体能够稳定地层砂子材料,没有引起对砂子填充物渗透度的过度破坏。
实施例3
除了使用了不同浓度的处理流体外,在本实施例中重复实施例2中所描述的相似的制备和测试程序。使用Brazos River砂子模拟地层碎屑。将该材料填充到5英寸长1英寸ID锥形特氟龙管套中。将约0.5英寸厚的具有20/40目粒度的Ottawa砂子填充到Brazos River砂子材料的下面和上面。然后用3%的KCl盐水使砂柱饱和,并且用该盐水以5mL/min的速度以几种孔隙体积进行冲洗,以确定砂子填充物的初始渗透度。然后加入2倍孔隙体积的处理流体(2体积%的40%聚丙烯酸酯聚合物溶液、0.5%活化剂、0.1%阳离子表面活性剂、0.1%两性表面活性剂、余量为水)。随后再用5倍孔隙体积的KCl盐水(3%)超量冲洗该砂子填充物。
然后将处理的砂柱放在烘箱中,在175
Figure 058189667_12
下固化20个小时。在固化阶段之后,使用3%KCl盐水建立从相反方向流过被处理砂柱的流动。将流动速率保持在恒定的5mL/min来确定砂子填充物保留的渗透度,用来与初始渗透度相比较。
被处理的砂子填充物保留了大于97%的渗透度。再一次在重新获得渗透的流动过程中所收集的流出液中,没有产生碎屑的迹象。
实施例4
使用Brazos River砂来模拟地层砂子。将该材料填充到两个1.5英寸ID的黄铜单元中,并且将其夹在由70/170目砂子构成的砂子填充物之间。用3倍孔隙体积的3%的KCl盐水冲洗砂柱,接下来用2倍孔隙体积的处理流体(5体积%的40%的聚丙烯酸酯聚合物溶液、0.5%活化剂、0.2%表面活性剂、余量为水)冲洗砂柱,并且用3倍孔隙体积的3%KCl盐水超量冲洗砂柱。
然后将一个单元放在175
Figure 058189667_13
的烘箱中20个小时,将一个放在325
Figure 058189667_14
的烘箱中20个小时来模拟井的井下固化。在固化阶段之后,将处理过的砂子从单元中取出来并且观察它的结构、形状和挠曲性。处理过的Brazos River砂子表现为呈现单元形状的坚固结构。尽管具有与通常从固结岩石所观察到的可以忽略的固结强度,处理过的Brazos River砂粒粘结在一起形成稳定的结构。
实施例5
使用了Brazos River砂子来模拟地层砂子。将该材料填充到两个1.5英寸ID的黄铜单元中,并将其夹在由70/170目砂子构成的砂子填充物之间。用3倍孔隙体积的3%的KCl盐水冲洗砂柱,接下来用2倍孔隙体积的处理流体(5体积%的40%的聚丙烯酸酯聚合物溶液、0.5%活化剂、0.2%表面活性剂、余量为水)冲洗砂柱,不再采用超量冲洗。
然后将一个处理过的柱子放在175的烘箱中20个小时,并且将一个放在325的烘箱中20个小时来模拟井的井下固化。在固化阶段之后,将处理过的砂子从单元中取出并且观察结构、形状和曲挠性。处理过的Brazos River砂子表现为呈现单元形状的坚固结构。尽管具有通常从固结岩石所观察到的可以忽略的固结强度,但处理过的Brazos River砂粒粘结在一起形成稳定的结构。
实施例6
使用筛分粒度为200目及更小的Brazos River砂碎屑来模拟地下碎屑。将该材料填充到1英寸ID的透明丙烯酸流动单元中,以便于观察。将20/40目筛眼的Ottawa砂子填充到该地层碎屑材料的下面和上面。然后然后用3%的KCl盐水使砂柱饱和,并且用5倍体积的该盐水对其进行冲洗,接下来用2倍孔隙体积的处理流体(2体积%的40%的聚丙烯酸酯聚合物溶液、0.5%活化剂、0.2表面活性剂、余量为水)对其冲洗,然后用2倍孔隙体积的3%的KCl盐水超量冲洗砂柱。
然后将处理过的砂柱放在烘箱中在140下固化20个小时。在固化阶段之后,使用3%的KCl盐水建立与处理过程相反方向流过被处理砂柱的流动。流动速率开始为10mL/min,并逐渐增加到80mL/min。收集流出液以帮助确定流动过程中在所述单元中所观察到的结果。所有结果都表明,与对照物相比,被处理的柱能够在所有流速内完全控制碎屑的迁移。
作为对比,将同样制备但是没有用浓缩处理流体处理过的砂柱作为对照物。观察到一旦建立了流动,碎屑颗粒就立即开始迁移到砂子填充物中,并且作为流出液的一部分而产生,即使流动速率为10mL/min。
实施例7
基于总处理流体的体积,以约2%(v/w)的量处理20/40 Brady砂子试样(41.25%的聚丙烯酸酯聚合物浓缩液、3.75%表面活性剂、30%水、接下来25%的活化剂)。将试样放入下面所描述的T检测中。对用作增粘化合物的化合物的液体或溶液的评价通过下面的测试完成:首先,确定将要涂布该增粘化合物的材料的临界再悬浮速度。一种合适的测试装置包括连接到入口水源的1/2″的玻璃T型管,出口处理管线对于流体流动是封闭的。通过入口管将颗粒的水基浆料吸入到T型管中,并且通过筛子收集过滤到的一部分。当T型部分充满的时侯,除去真空源并且使用塞子来密封该部分的端部。然后将从入口到出口的流动通道擦洗干净,并将控制体积的泵连接到入口,开始受控制的水流动。缓慢地增加通过入口的流体速度,直到流动的水流得到了第一颗粒的粒子材料。这确定了开始再悬浮速度的基线。接下来,进一步增加流体速率,直到颗粒的迁移变为连续。这确定了连续的再悬浮速度的基线。接下来,可以结束该测试并且将该装置中再填满颗粒,所述该颗粒具有相应于被涂布颗粒约0.5重量%活性材料的涂层。在所测试浓度为约0.1-约3%的时侯,在结果中看到了大体相同的趋势,然而,在优选涂覆范围内0.5%含量对于标准化的程序来说是优选的。可以重复该测试来确定颗粒移动的起始点,以及所述移动变得连续的速度。然后基于初始的或者连续的基线值确定速度增加(或降低)的百分数。
与未处理过的支撑剂相比,有效处理过的支撑剂可以抵抗输送。即使当测试装置在其最大速率2,000mL/min流动的时候,测试试样也没有显示出运动的迹象。未被处理的20/40 Brady砂子在速度为154mL/min时开始流动;处理过的砂抵抗高于未被处理的砂13倍流动速率的流动。
实施例8
基于总处理流体的体积,以约2%(v/w)的量处理20/40的Brady砂子试样(40%的聚丙烯酸酯聚合物浓缩液、5%表面活性剂、10%活化剂、余量为水)。与未经处理的20/40 Brady砂相比,本试样显示出对支撑剂传导性有13%的提高。还观察到被处理的支撑剂表现出所希望的粘合特性,其中单个支撑剂胶着并且有弹性地粘合在一起。
实施例9
确定聚合物是否适合用作水性增粘剂的一种方法是:制备由50%乙酸酐和50%冰乙酸(v/v)组成的混合物。将10ml测试聚合物放入60ml玻璃瓶中。接下来,加入40ml去离子水并且用手旋动使其混合。然后加入15ml乙酸/乙酸酐(或其它活化剂)。剧烈地摇动瓶子30s。合适的聚合物将形成固体的或者半固体物质。重复用其它已知的活化剂进行筛选,例如乙酸/乙酸酐的掺合物、其它酸、酸的盐、酸酐、带电荷聚合物、带电荷表面活性剂、氯化钠、氯化钾、氯化钙和它们的混合物。
实施例10
在表现出相对低的单口井产量的煤层甲烷地进行处理。据估计井的产量至少部分地受到阻止气体流入钻井的煤碎屑的削弱。这些井已经在多个煤层中进行了预先水力破碎。用在水中包括乙酸酐、冰乙酸、聚丙烯酸酯聚合物水性增粘剂化合物、酶和氧化剂的溶液处理两口井。
第一口井从处理前约43MCFD(千立方英尺/天)的甲烷产量变成处理后的约75MCFD。类似地,第二口井从处理前约80MCFD的甲烷产量变成处理后的约105MCFD。此外,这些被处理井的观察结果显示,与其在处理前的状态相比,所生成的水中没有碎屑颗粒;从而支持了对地层颗粒达到了有效稳定的假设。
实施例11
用研钵和杵从干燥的煤地层制备50ml地下煤颗粒(Subitmunious A)浆料,并将其放置到盛放有淡水的瓶子中,并且使其变成泥浆。然后用10ml包括乙酸酐、冰乙酸、水和聚丙烯酸酯聚合物水性增粘剂化合物的溶液处理该煤/水浆液。处理之后,在约12小时的时间内观察到了煤颗粒的初始絮凝,其后观察到这些煤颗粒成为能够在搅拌时破裂并且重新形成的凝聚物质。水相澄清,没有可见的碎屑颗粒保留在溶液中。该实施例从视觉上解释了所描述的煤碎屑稳定和从水溶液中除去的过程。
实施例12
将约2cm平方的固体煤试样放置到盛有水的60ml瓶中。然后将该瓶子放在超声发生器中10分钟。结果是从较大块的表面破碎的大量可见的煤颗粒。在另一个瓶中,用包含乙酸酐、冰乙酸、水和聚丙烯酸酯聚合物水性增粘剂化合物的溶液处理几乎相同的煤试样,然后将其置入水中,再放入超声发生器中10分钟。对被处理煤试样的视觉观察表明几乎完全没有煤碎屑从处理过的煤表面上破碎下来。
实施例13
对表现出低井产量的产生微固结气体的碎屑状地层进行处理。据猜想井产量至少部分地受到阻止气体流入钻井的碎屑的削弱。这些井已经被预先水力破碎。用在水中包括聚丙烯酸酯、乙酸酐/乙酸、季铵盐表面活性剂、两性表面活性剂、酶和氧化剂的水性增粘剂化合物处理这口井。该井的产量从30MCFD变成200MCFD,这显示了已经基本上解决了碎屑问题。
实施例14
用100ml阳离子增粘流体处理100克20/40 Brady砂子(2%的阳离子聚丙烯酰胺聚合物浓缩液、94%水,接下来为4%的乙酸酐/乙酸活化剂)。在回收后,该Brady砂表现出希望的粘性特性。
实施例15
用100ml阳离子增粘流体处理1克活化过的煤碎屑试样(2%的阳离子聚丙烯酰胺聚合物浓缩液、1%阴离子表面活性剂、93%的水,接下来是4%的乙酸酐/乙酸活化剂)。在5分钟以内,该碎屑固结成为粘性物质。
实施例16
用100ml阳离子增粘流体处理1克被活化的煤碎屑试样(2%的阳离子聚丙烯酰胺聚合物浓缩液、1%阴离子表面活性剂、1%两性表面活性剂、92%的水,接下来是4%的乙酸酐/乙酸活化剂)。在5分钟以内,该碎屑固结成为粘性物质。
因此,本发明非常适合实现所提及的目的和优点以及自身固有的那些优点。虽然本领域的技术人员可以进行很多改变,但是这样的改变都被包括在由下面所附的权利要求所限定的本发明的精神内。

Claims (58)

1.一种在地下岩层中形成支撑剂填充物的方法,该方法包括:
将包含支撑剂颗粒的水性维护流体引入地下裂缝中,其中至少一些支撑剂颗粒至少部分地涂布有水性增粘剂化合物;以及,
通过使所述水性增粘剂化合物曝露于活化剂来活化所述水性增粘剂化合物,以形成所述支撑剂填充物。
2.权利要求1的方法,其中活化所述水性增粘剂化合物形成了稳定的支撑剂填充物。
3.权利要求1的方法,其中所述维护流体包括水性流体、乳液或者泡沫。
4.权利要求1的方法,其中所述维护流体包括淡水、咸水、或它们的组合。
5.权利要求1的方法,其中所述维护流体被交联。
6.权利要求1的方法,其中所述维护流体进一步包括活化剂。
7.权利要求1的方法,其中所述活化剂选自以下组中:有机酸、有机酸的酸酐、无机酸、无机盐、带电荷表面活性剂、带电荷聚合物、以及它们的组合。
8.权利要求1的方法,其中所述水性增粘剂化合物在将支撑剂颗粒引入地下裂缝之前被活化。
9.权利要求1的方法,其中所述水性增粘剂化合物在将支撑剂颗粒引入地下裂缝的同时被活化。
10.权利要求1的方法,其中所述水性增粘剂化合物在将支撑剂颗粒引入地下裂缝之后被活化。
11.权利要求1的方法,其中所述水性增粘剂化合物被优先粘结到具有正ξ电势的表面上。
12.权利要求1的方法,其中所述水性增粘剂化合物被优先粘结到疏水性表面上。
13.权利要求1的方法,其中所述水性增粘剂化合物被优先粘结到具有负ξ电势的表面上。
14.权利要求1的方法,其中所述水性增粘剂化合物被优先粘结到亲水性表面上。
15.权利要求1的方法,其中所述水性增粘剂化合物包括:丙烯酸聚合物、丙烯酸酯聚合物、丙烯酸衍生物聚合物、丙烯酸均聚物、丙烯酸酯均聚物、丙烯酰胺基-甲基-丙烷磺酸酯聚合物、丙烯酰胺基-甲基-丙烷磺酸酯衍生物聚合物、丙烯酰胺基-甲基-丙烷磺酸酯共聚物、丙烯酸和丙烯酰胺基-甲基-丙烷磺酸酯共聚物、它们的共聚物、以及它们的混合物。
16.权利要求1的方法,其中活化水性增粘剂化合物包括使所述水性增粘剂化合物去稳定。
17.权利要求1的方法,其中所述活化剂包括乙酸和乙酸酐的掺合物。
18.权利要求1的方法,其中使所述支撑剂颗粒在被至少部分涂布水性增粘剂化合物之前与预处理流体接触。
19.权利要求18的方法,其中所述预处理流体选自以下组中:有机酸、有机酸的酸酐、无机酸、无机盐、带电荷表面活性剂、带电荷聚合物、以及它们的组合。
20.权利要求1的方法,其中所述支撑剂颗粒在被至少部分涂布水性增粘剂化合物之前被至少部分地涂布树脂。
21.一种稳定支撑剂填充物的方法,该方法包括:
将水性增粘剂化合物引入现有支撑剂填充物的至少一部分中;以及
通过使所述水性增粘剂化合物曝露于活化剂来活化所述水性增粘剂化合物,以稳定所述支撑剂填充物。
22.权利要求21的方法,其中在将所述水性增粘剂化合物置入部分地下岩层之前,使其与维护流体混合。
23.权利要求22的方法,其中所述维护流体包括水性流体、乳液、或者泡沫。
24.权利要求22的方法,其中所述维护流体包括淡水、咸水、或者它们的组合。
25.权利要求22的方法,其中所述维护流体被交联。
26.权利要求22的方法,其中所述维护流体进一步包括活化剂。
27.权利要求21的方法,其中所述活化剂选自以下组中:有机酸、有机酸的酸酐、无机酸、无机盐、带电荷表面活性剂、带电荷聚合物、以及它们的组合。
28.权利要求21的方法,其中所述水性增粘剂化合物包括:丙烯酸聚合物、丙烯酸酯聚合物、丙烯酸衍生物聚合物、丙烯酸均聚物、丙烯酸酯均聚物、丙烯酰胺基-甲基-丙烷磺酸酯聚合物、丙烯酰胺基-甲基-丙烷磺酸酯衍生物聚合物、丙烯酰胺基-甲基-丙烷磺酸酯共聚物、丙烯酸和丙烯酰胺基-甲基-丙烷磺酸酯共聚物、它们的共聚物、以及它们的混合物。
29.权利要求21的方法,其中活化水性增粘剂化合物包括使所述水性增粘剂化合物去稳定。
30.权利要求21的方法,其中所述活化剂包括乙酸和乙酸酐的掺合物。
31.权利要求21的方法,其中至少部分现有支撑剂填充物在将水性增粘剂化合物引入现有支撑剂填充物的至少一部分中之前与预处理流体接触。
32.权利要求31的方法,其中所述预处理流体选自以下组中:有机酸、有机酸的酸酐、无机酸、无机盐、带电荷表面活性剂、带电荷聚合物、以及它们的组合。
33.一种控制支撑剂颗粒从支撑剂填充物回流的方法,该方法包括:
将包含支撑剂颗粒的水性载体流体引入地下裂缝中以形成支撑剂填充物,其中至少一些支撑剂颗粒至少部分地涂布有水性增粘剂化合物;以及,
通过使所述水性增粘剂化合物曝露于活化剂来活化水性增粘剂化合物。
34.权利要求33的方法,其中活化水性增粘剂化合物形成了稳定的支撑剂填充物。
35.权利要求33的方法,其中所述维护流体包括水性流体、乳液、或者泡沫。
36.权利要求33的方法,其中所述维护流体包括淡水、咸水、或者它们的组合。
37.权利要求33的方法,其中所述维护流体被交联。
38.权利要求33的方法,其中所述维护流体进一步包括活化剂。
39.权利要求33的方法,其中所述活化剂选自以下组中:有机酸、有机酸的酸酐、无机酸、无机盐、带电荷表面活性剂、带电荷聚合物、以及它们的组合。
40.权利要求33的方法,其中所述水性增粘剂化合物在将支撑剂颗粒引入地下裂缝之前被活化。
41.权利要求33的方法,其中所述水性增粘剂化合物在将支撑剂颗粒引入地下裂缝的同时被活化。
42.权利要求33的方法,其中所述水性增粘剂化合物在将支撑剂颗粒引入地下裂缝之后被活化。
43.权利要求33的方法,其中所述水性增粘剂化合被优先粘结到具有正ξ电势的表面上。
44.权利要求33的方法,其中所述水性增粘剂化合物被优先粘结到具有负ξ电势的表面上。
45.权利要求33的方法,其中所述水性增粘剂化合物包括:丙烯酸聚合物、丙烯酸酯聚合物、丙烯酸衍生物聚合物、丙烯酸均聚物、丙烯酸酯均聚物、丙烯酰胺基-甲基-丙烷磺酸酯聚合物、丙烯酰胺基-甲基-丙烷磺酸酯衍生物聚合物、丙烯酰胺基-甲基-丙烷磺酸酯共聚物、丙烯酸和丙烯酰胺基-甲基-丙烷磺酸酯共聚物、它们的共聚物、以及它们的混合物。
46.权利要求33的方法,其中活化水性增粘剂化合物包括使所述水性增粘剂化合物去稳定。
47.权利要求33的方法,其中所述活化剂包括乙酸和乙酸酐的掺合物。
48.权利要求33的方法,其中所述支撑剂颗粒在被至少部分地涂布水性增粘剂化合物之前与预处理流体接触。
49.权利要求48的方法,其中所述预处理流体选自以下组中:有机酸、有机酸的酸酐、无机酸、无机盐、带电荷表面活性剂、带电荷聚合物、以及它们的混合物。
50.权利要求33的方法,其中所述支撑剂颗粒在被至少部分地涂布水性增粘剂化合物之前被至少部分地涂布树脂。
51.一种包括支撑剂颗粒、水性流体和活化剂的维护流体,其中至少一些支撑剂颗粒被至少部分地涂布水性增粘剂化合物,并且所述活化剂可操作为使所述水性增粘剂化合物活化。
52.权利要求51的维护流体,其中所述水性流体包括淡水、咸水、或它们的组合。
53.权利要求51的维护流体,其中所述水性流体被交联。
54.权利要求51的维护流体,其中所述活化剂选自以下组中:有机酸、有机酸的酸酐、无机酸、无机盐、带电荷表面活性剂、带电荷聚合物、以及它们的组合。
55.权利要求51的维护流体,其中所述活化剂包括乙酸和乙酸酐的掺合物。
56.权利要求51的维护流体,其中所述水性增粘剂化合物被优先粘结到具有正ξ电势的表面上。
57.权利要求51的维护流体,其中所述水性增粘剂化合物被优先粘结到具有负ξ电势的表面上。
58.权利要求51的维护流体,其中所述水性增粘剂化合物包括:丙烯酸聚合物、丙烯酸酯聚合物、丙烯酸衍生物聚合物、丙烯酸均聚物、丙烯酸酯均聚物、丙烯酰胺基-甲基-丙烷磺酸酯聚合物、丙烯酰胺基-甲基-丙烷磺酸酯衍生物聚合物、丙烯酰胺基-甲基-丙烷磺酸酯共聚物、丙烯酸和丙烯酰胺基-甲基-丙烷磺酸酯共聚物、它们的共聚物、以及它们的混合物。
CN200580018966.7A 2004-06-09 2005-05-19 水基增粘剂流体及其使用方法 Expired - Fee Related CN1965146B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10/864,618 2004-06-09
US10/864,618 US7131491B2 (en) 2004-06-09 2004-06-09 Aqueous-based tackifier fluids and methods of use
PCT/GB2005/001975 WO2005121505A2 (en) 2004-06-09 2005-05-19 Aqueous-based tackifier fluids and methods of use

Publications (2)

Publication Number Publication Date
CN1965146A CN1965146A (zh) 2007-05-16
CN1965146B true CN1965146B (zh) 2011-09-14

Family

ID=34968180

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200580018966.7A Expired - Fee Related CN1965146B (zh) 2004-06-09 2005-05-19 水基增粘剂流体及其使用方法

Country Status (10)

Country Link
US (1) US7131491B2 (zh)
CN (1) CN1965146B (zh)
AU (1) AU2005252419B2 (zh)
CA (1) CA2565174C (zh)
DE (1) DE112005001353B4 (zh)
GB (1) GB2435748B (zh)
RU (1) RU2382066C2 (zh)
UA (1) UA90274C2 (zh)
WO (1) WO2005121505A2 (zh)
ZA (1) ZA200610277B (zh)

Families Citing this family (177)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7216711B2 (en) * 2002-01-08 2007-05-15 Halliburton Eenrgy Services, Inc. Methods of coating resin and blending resin-coated proppant
US6691780B2 (en) 2002-04-18 2004-02-17 Halliburton Energy Services, Inc. Tracking of particulate flowback in subterranean wells
US7413010B2 (en) * 2003-06-23 2008-08-19 Halliburton Energy Services, Inc. Remediation of subterranean formations using vibrational waves and consolidating agents
US8541051B2 (en) 2003-08-14 2013-09-24 Halliburton Energy Services, Inc. On-the fly coating of acid-releasing degradable material onto a particulate
US7766099B2 (en) 2003-08-26 2010-08-03 Halliburton Energy Services, Inc. Methods of drilling and consolidating subterranean formation particulates
US8167045B2 (en) 2003-08-26 2012-05-01 Halliburton Energy Services, Inc. Methods and compositions for stabilizing formation fines and sand
US7829507B2 (en) 2003-09-17 2010-11-09 Halliburton Energy Services Inc. Subterranean treatment fluids comprising a degradable bridging agent and methods of treating subterranean formations
US7833944B2 (en) 2003-09-17 2010-11-16 Halliburton Energy Services, Inc. Methods and compositions using crosslinked aliphatic polyesters in well bore applications
US7674753B2 (en) 2003-09-17 2010-03-09 Halliburton Energy Services, Inc. Treatment fluids and methods of forming degradable filter cakes comprising aliphatic polyester and their use in subterranean formations
US20070007009A1 (en) * 2004-01-05 2007-01-11 Halliburton Energy Services, Inc. Methods of well stimulation and completion
US20050173116A1 (en) 2004-02-10 2005-08-11 Nguyen Philip D. Resin compositions and methods of using resin compositions to control proppant flow-back
US7211547B2 (en) 2004-03-03 2007-05-01 Halliburton Energy Services, Inc. Resin compositions and methods of using such resin compositions in subterranean applications
US7703531B2 (en) * 2004-05-13 2010-04-27 Baker Hughes Incorporated Multifunctional nanoparticles for downhole formation treatments
US8196659B2 (en) * 2004-05-13 2012-06-12 Baker Hughes Incorporated Multifunctional particles for downhole formation treatments
US7721803B2 (en) 2007-10-31 2010-05-25 Baker Hughes Incorporated Nano-sized particle-coated proppants for formation fines fixation in proppant packs
US20090312201A1 (en) * 2007-10-31 2009-12-17 Baker Hughes Incorporated Nano-Sized Particles for Formation Fines Fixation
US9540562B2 (en) 2004-05-13 2017-01-10 Baker Hughes Incorporated Dual-function nano-sized particles
US8499832B2 (en) * 2004-05-13 2013-08-06 Baker Hughes Incorporated Re-use of surfactant-containing fluids
US8226830B2 (en) 2008-04-29 2012-07-24 Baker Hughes Incorporated Wastewater purification with nanoparticle-treated bed
US8567502B2 (en) * 2004-05-13 2013-10-29 Baker Hughes Incorporated Filtration of dangerous or undesirable contaminants
US7299875B2 (en) 2004-06-08 2007-11-27 Halliburton Energy Services, Inc. Methods for controlling particulate migration
US7757768B2 (en) 2004-10-08 2010-07-20 Halliburton Energy Services, Inc. Method and composition for enhancing coverage and displacement of treatment fluids into subterranean formations
US7648946B2 (en) 2004-11-17 2010-01-19 Halliburton Energy Services, Inc. Methods of degrading filter cakes in subterranean formations
US7325608B2 (en) * 2004-12-01 2008-02-05 Halliburton Energy Services, Inc. Methods of hydraulic fracturing and of propping fractures in subterranean formations
US7261157B2 (en) * 2004-12-08 2007-08-28 Halliburton Energy Services, Inc. Methods of controlling particulate segregation in slurries
US8113283B2 (en) 2004-12-08 2012-02-14 Halliburton Energy Services, Inc. Methods for improving low-quality proppant and method of using low-quality proppant in subterranean operations
US7748451B2 (en) * 2004-12-08 2010-07-06 Halliburton Energy Services, Inc. Methods for improving low-quality proppant and method of using low-quality proppant in subterranean operations
US7883740B2 (en) 2004-12-12 2011-02-08 Halliburton Energy Services, Inc. Low-quality particulates and methods of making and using improved low-quality particulates
US20060169182A1 (en) 2005-01-28 2006-08-03 Halliburton Energy Services, Inc. Methods and compositions relating to the hydrolysis of water-hydrolysable materials
US20080009423A1 (en) 2005-01-31 2008-01-10 Halliburton Energy Services, Inc. Self-degrading fibers and associated methods of use and manufacture
US8598092B2 (en) 2005-02-02 2013-12-03 Halliburton Energy Services, Inc. Methods of preparing degradable materials and methods of use in subterranean formations
US7673686B2 (en) 2005-03-29 2010-03-09 Halliburton Energy Services, Inc. Method of stabilizing unconsolidated formation for sand control
US7677315B2 (en) 2005-05-12 2010-03-16 Halliburton Energy Services, Inc. Degradable surfactants and methods for use
US7662753B2 (en) 2005-05-12 2010-02-16 Halliburton Energy Services, Inc. Degradable surfactants and methods for use
US20060260808A1 (en) * 2005-05-20 2006-11-23 Weaver Jim D Methods of treating particulates and use in subterranean formations
US7363978B2 (en) * 2005-05-20 2008-04-29 Halliburton Energy Services, Inc. Methods of using reactive surfactants in subterranean operations
US7318474B2 (en) * 2005-07-11 2008-01-15 Halliburton Energy Services, Inc. Methods and compositions for controlling formation fines and reducing proppant flow-back
US7493957B2 (en) * 2005-07-15 2009-02-24 Halliburton Energy Services, Inc. Methods for controlling water and sand production in subterranean wells
US7484564B2 (en) * 2005-08-16 2009-02-03 Halliburton Energy Services, Inc. Delayed tackifying compositions and associated methods involving controlling particulate migration
US7595280B2 (en) * 2005-08-16 2009-09-29 Halliburton Energy Services, Inc. Delayed tackifying compositions and associated methods involving controlling particulate migration
US7713916B2 (en) 2005-09-22 2010-05-11 Halliburton Energy Services, Inc. Orthoester-based surfactants and associated methods
US7350579B2 (en) * 2005-12-09 2008-04-01 Clearwater International Llc Sand aggregating reagents, modified sands, and methods for making and using same
US8443890B2 (en) * 2006-01-04 2013-05-21 Halliburton Energy Services, Inc. Methods of stimulating liquid-sensitive subterranean formations
US7776797B2 (en) 2006-01-23 2010-08-17 Halliburton Energy Services, Inc. Lost circulation compositions
US8132623B2 (en) 2006-01-23 2012-03-13 Halliburton Energy Services Inc. Methods of using lost circulation compositions
US8613320B2 (en) 2006-02-10 2013-12-24 Halliburton Energy Services, Inc. Compositions and applications of resins in treating subterranean formations
US7926591B2 (en) 2006-02-10 2011-04-19 Halliburton Energy Services, Inc. Aqueous-based emulsified consolidating agents suitable for use in drill-in applications
US7819192B2 (en) 2006-02-10 2010-10-26 Halliburton Energy Services, Inc. Consolidating agent emulsions and associated methods
US7665517B2 (en) 2006-02-15 2010-02-23 Halliburton Energy Services, Inc. Methods of cleaning sand control screens and gravel packs
US20070284114A1 (en) 2006-06-08 2007-12-13 Halliburton Energy Services, Inc. Method for removing a consumable downhole tool
US20080257549A1 (en) 2006-06-08 2008-10-23 Halliburton Energy Services, Inc. Consumable Downhole Tools
US7591318B2 (en) * 2006-07-20 2009-09-22 Halliburton Energy Services, Inc. Method for removing a sealing plug from a well
US8329621B2 (en) 2006-07-25 2012-12-11 Halliburton Energy Services, Inc. Degradable particulates and associated methods
US20080060811A1 (en) * 2006-09-13 2008-03-13 Halliburton Energy Services, Inc. Method to control the physical interface between two or more fluids
US7687438B2 (en) 2006-09-20 2010-03-30 Halliburton Energy Services, Inc. Drill-in fluids and associated methods
US7678743B2 (en) 2006-09-20 2010-03-16 Halliburton Energy Services, Inc. Drill-in fluids and associated methods
US7678742B2 (en) 2006-09-20 2010-03-16 Halliburton Energy Services, Inc. Drill-in fluids and associated methods
US20080078545A1 (en) * 2006-09-28 2008-04-03 Halliburton Energy Services, Inc. Treatment fluids viscosifield with modified xanthan and associated methods for well completion and stimulation
US7571766B2 (en) * 2006-09-29 2009-08-11 Halliburton Energy Services, Inc. Methods of fracturing a subterranean formation using a jetting tool and a viscoelastic surfactant fluid to minimize formation damage
US7686080B2 (en) 2006-11-09 2010-03-30 Halliburton Energy Services, Inc. Acid-generating fluid loss control additives and associated methods
US8082994B2 (en) * 2006-12-05 2011-12-27 Halliburton Energy Services, Inc. Methods for enhancing fracture conductivity in subterranean formations
US7727935B2 (en) * 2006-12-29 2010-06-01 Halliburton Energy Services, Inc. Dual-function additives for enhancing fluid loss control and stabilizing viscoelastic surfactant fluids
US7997342B2 (en) * 2006-12-29 2011-08-16 Halliburton Energy Services, Inc. Subterranean treatment fluids comprising viscoelastic surfactant gels
US7718584B2 (en) 2006-12-29 2010-05-18 Halliburton Energy Services, Inc. Dual-function additives for enhancing fluid loss control and stabilizing viscoelastic surfactant fluids
US8815785B2 (en) * 2006-12-29 2014-08-26 Halliburton Energy Services, Inc. Utilization of surfactant as conformance materials
US7939471B2 (en) * 2006-12-29 2011-05-10 Halliburton Energy Services, Inc. Subterranean treatment fluids comprising viscoelastic surfactant gels
US8220548B2 (en) 2007-01-12 2012-07-17 Halliburton Energy Services Inc. Surfactant wash treatment fluids and associated methods
US7730950B2 (en) 2007-01-19 2010-06-08 Halliburton Energy Services, Inc. Methods for treating intervals of a subterranean formation having variable permeability
US7910524B2 (en) * 2007-02-08 2011-03-22 Halliburton Energy Services, Inc. Treatment fluids comprising diutan and associated methods
US7584791B2 (en) * 2007-02-08 2009-09-08 Halliburton Energy Services, Inc. Methods for reducing the viscosity of treatment fluids comprising diutan
US7934557B2 (en) 2007-02-15 2011-05-03 Halliburton Energy Services, Inc. Methods of completing wells for controlling water and particulate production
US20080202764A1 (en) 2007-02-22 2008-08-28 Halliburton Energy Services, Inc. Consumable downhole tools
US8720571B2 (en) * 2007-09-25 2014-05-13 Halliburton Energy Services, Inc. Methods and compositions relating to minimizing particulate migration over long intervals
US8980098B2 (en) 2007-10-31 2015-03-17 Baker Hughes Incorporated Rechargeable surface active porous media for removal of organic materials from aqueous fluids
US8278251B2 (en) * 2007-10-31 2012-10-02 Baker Hughes Incorporated Fines migration control at their sources in water reservoirs
US8230923B2 (en) * 2007-10-31 2012-07-31 Baker Hughes Incorporated Controlling coal fines in coal bed operations
US20110000672A1 (en) * 2007-10-31 2011-01-06 Baker Hughes Incorporated Clay Stabilization with Nanoparticles
US8397812B2 (en) * 2007-10-31 2013-03-19 Baker Hughes Incorporated Nano-sized particle-coated proppants for formation fines fixation in proppant packs
US20100108613A1 (en) * 2007-10-31 2010-05-06 Baker Hughes Incorporated Methods and Compositions to Remove Coal Fines From Aqueous Fluids
US7690431B2 (en) * 2007-11-14 2010-04-06 Halliburton Energy Services, Inc. Methods for controlling migration of particulates in a subterranean formation
US8598094B2 (en) 2007-11-30 2013-12-03 Halliburton Energy Services, Inc. Methods and compostions for preventing scale and diageneous reactions in subterranean formations
WO2009079235A2 (en) * 2007-12-14 2009-06-25 3M Innovative Properties Company Fracturing fluid compositions comprising solid epoxy particles and methods of use
US20100263870A1 (en) * 2007-12-14 2010-10-21 Dean Michael Willberg Methods of contacting and/or treating a subterranean formation
WO2009079315A2 (en) * 2007-12-14 2009-06-25 3M Innovative Properties Company Fiber aggregate
WO2009079233A2 (en) * 2007-12-14 2009-06-25 3M Innovative Properties Company Proppants and uses thereof
WO2009079234A2 (en) * 2007-12-14 2009-06-25 Schlumberger Canada Limited Methods of treating subterranean wells using changeable additives
US7712529B2 (en) * 2008-01-08 2010-05-11 Halliburton Energy Services, Inc. Sand control screen assembly and method for use of same
US7703520B2 (en) * 2008-01-08 2010-04-27 Halliburton Energy Services, Inc. Sand control screen assembly and associated methods
US8006760B2 (en) 2008-04-10 2011-08-30 Halliburton Energy Services, Inc. Clean fluid systems for partial monolayer fracturing
US8105492B2 (en) * 2008-04-29 2012-01-31 Baker Hughes Incorporated Methods for recharging nanoparticle-treated beds
US7906464B2 (en) 2008-05-13 2011-03-15 Halliburton Energy Services, Inc. Compositions and methods for the removal of oil-based filtercakes
CN101644151B (zh) * 2008-07-25 2014-07-02 贝克休斯公司 用于井下地层处理的多功能纳米颗粒
US7866383B2 (en) * 2008-08-29 2011-01-11 Halliburton Energy Services, Inc. Sand control screen assembly and method for use of same
US7841409B2 (en) * 2008-08-29 2010-11-30 Halliburton Energy Services, Inc. Sand control screen assembly and method for use of same
US7814973B2 (en) * 2008-08-29 2010-10-19 Halliburton Energy Services, Inc. Sand control screen assembly and method for use of same
US7833943B2 (en) 2008-09-26 2010-11-16 Halliburton Energy Services Inc. Microemulsifiers and methods of making and using same
US8794322B2 (en) 2008-10-10 2014-08-05 Halliburton Energy Services, Inc. Additives to suppress silica scale build-up
BRPI0919963A2 (pt) 2008-10-29 2015-12-08 Basf Se agente de escoramento, método para formar um agente de escoramento, e método para fraturamento hidráulico de uma formação subterrânea
US9714378B2 (en) 2008-10-29 2017-07-25 Basf Se Proppant
US7762329B1 (en) 2009-01-27 2010-07-27 Halliburton Energy Services, Inc. Methods for servicing well bores with hardenable resin compositions
US7998910B2 (en) 2009-02-24 2011-08-16 Halliburton Energy Services, Inc. Treatment fluids comprising relative permeability modifiers and methods of use
US8261833B2 (en) * 2009-02-25 2012-09-11 Halliburton Energy Services, Inc. Methods and compositions for consolidating particulate matter in a subterranean formation
US8579028B2 (en) 2009-06-09 2013-11-12 Halliburton Energy Services, Inc. Tackifying agent pre-coated particulates
US8082992B2 (en) 2009-07-13 2011-12-27 Halliburton Energy Services, Inc. Methods of fluid-controlled geometry stimulation
US8136595B2 (en) 2009-08-07 2012-03-20 Halliburton Energy Services, Inc. Methods for controlling particulate flowback and migration in a subterranean formation
US8136593B2 (en) 2009-08-07 2012-03-20 Halliburton Energy Services, Inc. Methods for maintaining conductivity of proppant pack
US8141637B2 (en) * 2009-08-11 2012-03-27 Schlumberger Technology Corporation Manipulation of flow underground
WO2011050046A1 (en) 2009-10-20 2011-04-28 Soane Energy, Llc Proppants for hydraulic fracturing technologies
US8167042B2 (en) 2009-11-18 2012-05-01 Halliburton Energy Services, Inc. Method of forming self-diverting high-rate water packs
US8720555B2 (en) 2009-11-18 2014-05-13 Halliburton Energy Services, Inc. Self-diverting high-rate water packs
US8936087B2 (en) 2010-03-24 2015-01-20 Halliburton Energy Services, Inc. Methods and compositions for sand control in injection wells
US8875786B2 (en) 2010-03-24 2014-11-04 Halliburton Energy Services, Inc. Methods and compositions for sand control in injection wells
US8268758B2 (en) 2010-04-14 2012-09-18 Halliburton Energy Services Inc. Consolidating emulsions comprising convertible surfactant compositions and methods related thereto
US20130056213A1 (en) * 2010-04-27 2013-03-07 Schlumberger Technology Corporation Heterogeneous Proppant Placement
US20110265990A1 (en) * 2010-04-28 2011-11-03 Halliburton Energy Services, Inc. Sand Control Screen Assembly Having a Surface-Modified Filter Medium and Method for Making Same
US8448706B2 (en) 2010-08-25 2013-05-28 Schlumberger Technology Corporation Delivery of particulate material below ground
US9234415B2 (en) 2010-08-25 2016-01-12 Schlumberger Technology Corporation Delivery of particulate material below ground
US8714248B2 (en) 2010-08-25 2014-05-06 Schlumberger Technology Corporation Method of gravel packing
US8459353B2 (en) 2010-08-25 2013-06-11 Schlumberger Technology Corporation Delivery of particulate material below ground
US8276663B2 (en) 2010-09-28 2012-10-02 Halliburton Energy Services Inc. Methods for reducing biological load in subterranean formations
US20130048282A1 (en) 2011-08-23 2013-02-28 David M. Adams Fracturing Process to Enhance Propping Agent Distribution to Maximize Connectivity Between the Formation and the Wellbore
CN103764948B (zh) 2011-08-31 2018-05-18 自悬浮支撑有限公司 用于水力破碎的自-悬浮支撑剂
US9297244B2 (en) 2011-08-31 2016-03-29 Self-Suspending Proppant Llc Self-suspending proppants for hydraulic fracturing comprising a coating of hydrogel-forming polymer
US20140000891A1 (en) 2012-06-21 2014-01-02 Self-Suspending Proppant Llc Self-suspending proppants for hydraulic fracturing
AU2013249743B2 (en) * 2012-04-19 2016-12-22 Self-Suspending Proppant Llc Self-suspending proppants for hydraulic fracturing
US9868896B2 (en) 2011-08-31 2018-01-16 Self-Suspending Proppant Llc Self-suspending proppants for hydraulic fracturing
US8936086B2 (en) 2011-10-04 2015-01-20 Halliburton Energy Services, Inc. Methods of fluid loss control, diversion, and sealing using deformable particulates
US9016375B2 (en) 2011-11-30 2015-04-28 Halliburton Energy Services, Inc. Breaking diutan with oxalic acid at 180° F to 220° F
US8936114B2 (en) 2012-01-13 2015-01-20 Halliburton Energy Services, Inc. Composites comprising clustered reinforcing agents, methods of production, and methods of use
US8881813B2 (en) 2012-03-26 2014-11-11 Halliburton Energy Services, Inc. Methods of forming high-porosity fractures in weakly consolidated or unconsolidated formations
US9850748B2 (en) 2012-04-30 2017-12-26 Halliburton Energy Services, Inc. Propping complex fracture networks in tight formations
US8991495B2 (en) 2012-05-18 2015-03-31 Halliburton Energy Services, Inc. Methods for protecting a hydrocarbon-producing zone of a subterranean formation using a relative permeability modifier
US20130312962A1 (en) * 2012-05-22 2013-11-28 Halliburton Energy Services, Inc. Enhancing the Conductivity of Propped Fractures
US8997868B2 (en) 2012-06-21 2015-04-07 Halliburton Energy Services, Inc. Methods of using nanoparticle suspension aids in subterranean operations
US9309454B2 (en) 2012-07-20 2016-04-12 Halliburton Energy Services, Inc. Use of expandable self-removing filler material in fracturing operations
US9080094B2 (en) 2012-08-22 2015-07-14 Halliburton Energy Services, Inc. Methods and compositions for enhancing well productivity in weakly consolidated or unconsolidated formations
US8863842B2 (en) 2012-08-27 2014-10-21 Halliburton Energy Services, Inc. Methods for propping fractures using proppant-laden aggregates and shear-thickening fluids
US8936083B2 (en) 2012-08-28 2015-01-20 Halliburton Energy Services, Inc. Methods of forming pillars and channels in propped fractures
US8978759B2 (en) 2012-08-28 2015-03-17 Halliburton Energy Services, Inc. Electrostatic particulate coating methods and apparatus for fracturing fluids
US9260650B2 (en) 2012-08-29 2016-02-16 Halliburton Energy Services, Inc. Methods for hindering settling of proppant aggregates in subterranean operations
US8960284B2 (en) 2012-08-29 2015-02-24 Halliburton Energy Services, Inc. Methods of hindering the settling of proppant aggregates
US9540561B2 (en) 2012-08-29 2017-01-10 Halliburton Energy Services, Inc. Methods for forming highly conductive propped fractures
US9169433B2 (en) 2012-09-27 2015-10-27 Halliburton Energy Services, Inc. Methods for enhancing well productivity and minimizing water production using swellable polymers
US9410076B2 (en) 2012-10-25 2016-08-09 Halliburton Energy Services, Inc. Wellbore servicing methods and compositions comprising degradable polymers
US9702238B2 (en) 2012-10-25 2017-07-11 Halliburton Energy Services, Inc. Wellbore servicing methods and compositions comprising degradable polymers
US8714249B1 (en) 2012-10-26 2014-05-06 Halliburton Energy Services, Inc. Wellbore servicing materials and methods of making and using same
US9951266B2 (en) 2012-10-26 2018-04-24 Halliburton Energy Services, Inc. Expanded wellbore servicing materials and methods of making and using same
MX2015003469A (es) 2012-10-30 2015-09-25 Halliburton Energy Services Inc Composiciones de fluidos de perforacion y metodos para utilizarlas en formaciones subterraneas.
US9790416B2 (en) 2012-10-30 2017-10-17 Halliburton Energy Services, Inc. Drilling fluid compositions and methods for use thereof in subterranean formations
US9279077B2 (en) 2012-11-09 2016-03-08 Halliburton Energy Services, Inc. Methods of forming and placing proppant pillars into a subterranean formation
US9321956B2 (en) 2012-11-28 2016-04-26 Halliburton Energy Services, Inc. Methods for hindering the settling of particulates in a subterranean formation
US9429005B2 (en) 2012-11-28 2016-08-30 Halliburton Energy Services, Inc. Methods for hindering the settling of proppant in a subterranean formation
US9932513B2 (en) 2013-01-23 2018-04-03 Haliburton Energy Services, Inc. Treatment fluids comprising stabilized heteropolysaccharides and related methods
US20140209307A1 (en) 2013-01-29 2014-07-31 Halliburton Energy Services, Inc. Wellbore Fluids Comprising Mineral Particles and Methods Relating Thereto
US9322231B2 (en) 2013-01-29 2016-04-26 Halliburton Energy Services, Inc. Wellbore fluids comprising mineral particles and methods relating thereto
US9777207B2 (en) 2013-01-29 2017-10-03 Halliburton Energy Services, Inc. Wellbore fluids comprising mineral particles and methods relating thereto
US10407988B2 (en) 2013-01-29 2019-09-10 Halliburton Energy Services, Inc. Wellbore fluids comprising mineral particles and methods relating thereto
US9410065B2 (en) 2013-01-29 2016-08-09 Halliburton Energy Services, Inc. Precipitated particles and wellbore fluids and methods relating thereto
US9175529B2 (en) 2013-02-19 2015-11-03 Halliburton Energy Services, Inc. Methods and compositions for treating subterranean formations with interlocking lost circulation materials
US8935957B2 (en) 2013-03-13 2015-01-20 Halliburton Energy Services, Inc. Methods of designing a drilling fluid having suspendable loss circulation material
US10640702B2 (en) * 2013-08-01 2020-05-05 Covestro Llc Coated particles and methods for their manufacture and use
MX2016006428A (es) * 2013-11-18 2016-07-19 Lubrizol Oilfield Solutions Inc Metodo para consolidar materiales solidos durante operaciones de tratamiento subterraneo.
CN104695931A (zh) * 2013-12-06 2015-06-10 中国石油天然气股份有限公司 防止低渗透水平井压裂支撑剂回流的压裂方法
US9932521B2 (en) 2014-03-05 2018-04-03 Self-Suspending Proppant, Llc Calcium ion tolerant self-suspending proppants
CN104371700A (zh) * 2014-11-06 2015-02-25 中国石油天然气集团公司 一种清洁压裂液
CN107002487B (zh) * 2014-12-05 2020-06-30 陶氏环球技术有限责任公司 包含油井处理剂涂料的支撑剂
WO2017007462A1 (en) 2015-07-07 2017-01-12 Halliburton Energy Services, Inc. Method of using low-strength proppant in high closure strees fractures
RU2633930C1 (ru) * 2016-08-17 2017-10-19 Публичное акционерное общество "Татнефть" имени В.Д. Шашина Способ разработки залежи высоковязкой нефти пароциклическим воздействием
GB2573710B (en) 2017-04-04 2022-07-20 Halliburton Energy Services Inc Methods and treatment fluids for microfracture creation and microproppant delivery in subterranean formations
EP3630914A1 (en) * 2017-06-02 2020-04-08 Saudi Arabian Oil Company Coated silica particles
CN109536158B (zh) * 2017-09-21 2021-11-26 中国石油化工股份有限公司 一种低密度陶粒支撑剂及其制备方法
WO2019108177A1 (en) 2017-11-29 2019-06-06 Halliburton Energy Services, Inc. Automated pressure control system
US10752829B2 (en) * 2018-10-25 2020-08-25 Cnpc Usa Corporation Compositions of hydraulic fracturing fluid and method thereof
US11713415B2 (en) 2018-11-21 2023-08-01 Covia Solutions Inc. Salt-tolerant self-suspending proppants made without extrusion
CN110055049B (zh) * 2019-06-04 2021-05-28 阳泉煤业(集团)有限责任公司 一种用于水力压裂的支撑剂体系制备方法
US11827849B2 (en) 2019-08-13 2023-11-28 Xpand Oil & Gas Solutions, Llc Gas generating compositions and uses
EP4025666A1 (en) 2019-09-05 2022-07-13 Saudi Arabian Oil Company Propping open hydraulic fractures

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1303462A (zh) * 1998-05-29 2001-07-11 3M创新有限公司 包胶破胶剂、组合物及其使用方法

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4681165A (en) * 1984-03-01 1987-07-21 Dowell Schlumberger Incorporated Aqueous chemical wash compositions
GB8412423D0 (en) * 1984-05-16 1984-06-20 Allied Colloids Ltd Polymeric compositions
US4772646A (en) * 1986-11-17 1988-09-20 Halliburton Company Concentrated hydrophilic polymer suspensions
US5095987A (en) * 1991-01-31 1992-03-17 Halliburton Company Method of forming and using high density particulate slurries for well completion
US5278203A (en) * 1991-03-21 1994-01-11 Halliburton Company Method of preparing and improved liquid gelling agent concentrate and suspendable gelling agent
US5249627A (en) * 1992-03-13 1993-10-05 Halliburton Company Method for stimulating methane production from coal seams
US5381864A (en) * 1993-11-12 1995-01-17 Halliburton Company Well treating methods using particulate blends
US5839510A (en) * 1995-03-29 1998-11-24 Halliburton Energy Services, Inc. Control of particulate flowback in subterranean wells
US5501274A (en) * 1995-03-29 1996-03-26 Halliburton Company Control of particulate flowback in subterranean wells
US5775425A (en) * 1995-03-29 1998-07-07 Halliburton Energy Services, Inc. Control of fine particulate flowback in subterranean wells
US6209643B1 (en) * 1995-03-29 2001-04-03 Halliburton Energy Services, Inc. Method of controlling particulate flowback in subterranean wells and introducing treatment chemicals
US5582249A (en) * 1995-08-02 1996-12-10 Halliburton Company Control of particulate flowback in subterranean wells
US6047772A (en) * 1995-03-29 2000-04-11 Halliburton Energy Services, Inc. Control of particulate flowback in subterranean wells
US5960878A (en) * 1995-03-29 1999-10-05 Halliburton Energy Services, Inc. Methods of protecting well tubular goods from corrosion
US5787986A (en) * 1995-03-29 1998-08-04 Halliburton Energy Services, Inc. Control of particulate flowback in subterranean wells
US5833000A (en) * 1995-03-29 1998-11-10 Halliburton Energy Services, Inc. Control of particulate flowback in subterranean wells
US5697440A (en) * 1996-01-04 1997-12-16 Halliburton Energy Services, Inc. Control of particulate flowback in subterranean wells
US6330916B1 (en) * 1996-11-27 2001-12-18 Bj Services Company Formation treatment method using deformable particles
US6059034A (en) * 1996-11-27 2000-05-09 Bj Services Company Formation treatment method using deformable particles
US5924488A (en) * 1997-06-11 1999-07-20 Halliburton Energy Services, Inc. Methods of preventing well fracture proppant flow-back
US5921317A (en) * 1997-08-14 1999-07-13 Halliburton Energy Services, Inc. Coating well proppant with hardenable resin-fiber composites
US6016870A (en) * 1998-06-11 2000-01-25 Halliburton Energy Services, Inc. Compositions and methods for consolidating unconsolidated subterranean zones
US6534449B1 (en) * 1999-05-27 2003-03-18 Schlumberger Technology Corp. Removal of wellbore residues
US6311773B1 (en) * 2000-01-28 2001-11-06 Halliburton Energy Services, Inc. Resin composition and methods of consolidating particulate solids in wells with or without closure pressure
US6450260B1 (en) * 2000-07-07 2002-09-17 Schlumberger Technology Corporation Sand consolidation with flexible gel system
US6439309B1 (en) 2000-12-13 2002-08-27 Bj Services Company Compositions and methods for controlling particulate movement in wellbores and subterranean formations
US7001872B2 (en) * 2001-06-11 2006-02-21 Halliburton Energy Services, Inc. Subterranean formation treating fluid and methods of fracturing subterranean formations
US6732800B2 (en) * 2002-06-12 2004-05-11 Schlumberger Technology Corporation Method of completing a well in an unconsolidated formation
US6877560B2 (en) * 2002-07-19 2005-04-12 Halliburton Energy Services Methods of preventing the flow-back of particulates deposited in subterranean formations
US6742590B1 (en) * 2002-09-05 2004-06-01 Halliburton Energy Services, Inc. Methods of treating subterranean formations using solid particles and other larger solid materials
US6851474B2 (en) * 2003-02-06 2005-02-08 Halliburton Energy Services, Inc. Methods of preventing gravel loss in through-tubing vent-screen well completions
US20080148672A1 (en) 2006-12-21 2008-06-26 Gary Monteer Ventilated siding system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1303462A (zh) * 1998-05-29 2001-07-11 3M创新有限公司 包胶破胶剂、组合物及其使用方法

Also Published As

Publication number Publication date
US7131491B2 (en) 2006-11-07
CN1965146A (zh) 2007-05-16
RU2006147239A (ru) 2008-07-20
ZA200610277B (en) 2008-05-28
WO2005121505A2 (en) 2005-12-22
GB2435748B (en) 2009-04-29
AU2005252419B2 (en) 2009-12-03
WO2005121505A3 (en) 2006-03-30
CA2565174C (en) 2009-07-14
GB2435748A (en) 2007-09-05
US20050274517A1 (en) 2005-12-15
DE112005001353T5 (de) 2007-05-03
GB0623302D0 (en) 2007-01-03
UA90274C2 (ru) 2010-04-26
DE112005001353B4 (de) 2013-01-31
CA2565174A1 (en) 2005-12-22
AU2005252419A1 (en) 2005-12-22
RU2382066C2 (ru) 2010-02-20

Similar Documents

Publication Publication Date Title
CN1965146B (zh) 水基增粘剂流体及其使用方法
CN1985067B (zh) 控制颗粒的方法和涂布地下岩层的一部分表面的方法以及控制碎屑颗粒的处理流体
EP1838804B1 (en) Methods for controlling migration of particulates in a subterranean formation
CA2924578C (en) Drill-in fluids comprising nanoparticulates for consolidating subterranean formations while drilling
US20130161003A1 (en) Proppant placement
EA009172B1 (ru) Способ вскрытия слабо затвердевших формаций
EP1714003A1 (en) Well bore servicing fluids comprising thermally activated viscosification compounds and methods of using the same
CN106317321A (zh) 用于制备井下交联复合凝胶的组合物以及由其制备的交联复合凝胶
CN107406754A (zh) 新支撑剂及其使用方法
AU2011231415B2 (en) Methods and compositions for sand control in injection wells
US9234124B2 (en) Dimer acid grafted polymer for stabilizing particulate in a well
US10501681B2 (en) Inorganic clay particulate additive for consolidating treatments
US11352547B2 (en) Wellbore treatment fluids with no-heat liquid solder additives
Mörtl Methods of diverting water-based resins for sand consolidation
WO2017052497A1 (en) A water soluble epoxy resin system with enhanced absorption at higher temperatures

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20110914

Termination date: 20150519

EXPY Termination of patent right or utility model