US20080009423A1 - Self-degrading fibers and associated methods of use and manufacture - Google Patents

Self-degrading fibers and associated methods of use and manufacture Download PDF

Info

Publication number
US20080009423A1
US20080009423A1 US11/047,876 US4787605A US2008009423A1 US 20080009423 A1 US20080009423 A1 US 20080009423A1 US 4787605 A US4787605 A US 4787605A US 2008009423 A1 US2008009423 A1 US 2008009423A1
Authority
US
United States
Prior art keywords
poly
self
fiber
degrading
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/047,876
Inventor
Michael Mang
Bradley Todd
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Halliburton Energy Services Inc
Original Assignee
Halliburton Energy Services Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Halliburton Energy Services Inc filed Critical Halliburton Energy Services Inc
Priority to US11/047,876 priority Critical patent/US20080009423A1/en
Assigned to HILLIBURTON ENERGY SERVICES, INC. reassignment HILLIBURTON ENERGY SERVICES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: TODD, BRADLEY L., MANG, MICHAEL N.
Priority to PCT/GB2006/000064 priority patent/WO2006079779A1/en
Priority to CA002596649A priority patent/CA2596649A1/en
Priority to ARP060100218A priority patent/AR055023A1/en
Publication of US20080009423A1 publication Critical patent/US20080009423A1/en
Priority to US12/401,736 priority patent/US8188013B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/62Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyesters
    • D01F6/625Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyesters derived from hydroxy-carboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/0048Fibrous materials
    • C04B20/0056Hollow or porous fibres
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/10Coating or impregnating
    • C04B20/1003Non-compositional aspects of the coating or impregnation
    • C04B20/1014Coating or impregnating materials characterised by the shape, e.g. fibrous materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/02Well-drilling compositions
    • C09K8/03Specific additives for general use in well-drilling compositions
    • C09K8/035Organic additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/42Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells
    • C09K8/46Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells containing inorganic binders, e.g. Portland cement
    • C09K8/467Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells containing inorganic binders, e.g. Portland cement containing additives for specific purposes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/62Compositions for forming crevices or fractures
    • C09K8/66Compositions based on water or polar solvents
    • C09K8/68Compositions based on water or polar solvents containing organic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/62Compositions for forming crevices or fractures
    • C09K8/70Compositions for forming crevices or fractures characterised by their form or by the form of their components, e.g. foams
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/24Formation of filaments, threads, or the like with a hollow structure; Spinnerette packs therefor
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • E21B43/267Methods for stimulating production by forming crevices or fractures reinforcing fractures by propping
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2208/00Aspects relating to compositions of drilling or well treatment fluids
    • C09K2208/08Fiber-containing well treatment fluids

Definitions

  • the present invention relates to the use of degradable fibers, and more particularly, to self-degrading fibers and their associated methods of manufacture and use in subterranean applications.
  • PHA poly(lactic acid)
  • This invention relates to degradable fibers that may be used in any subterranean application wherein it is desirable to include degradable fibers, for instance, to create voids or produce associated degradation products.
  • suitable applications include cementing, fracturing, and gravel packing, as well as other applications wherein it may be desirable to produce voids or particular degradation products through the degradation of self-degrading fibers.
  • Hydraulic cement compositions are commonly utilized in subterranean operations, particularly subterranean well completion and remedial operations.
  • hydraulic cement compositions are used in primary cementing operations whereby pipe strings such as casings and liners are cemented in well bores.
  • Hydraulic cement compositions also are used in remedial cementing operations such as plugging highly permeable zones or fractures in well bores, plugging cracks in holes in pipe strings, and the like.
  • hydraulic cement compositions may be used in fracturing and gravel packing applications to form packs that are similar to gravel packs or proppant packs.
  • Hydraulic fracturing techniques are commonly used to stimulate subterranean formations to enhance the production of desirable fluids therefrom.
  • a fracturing fluid is pumped down a well bore and into a fluid-bearing formation.
  • the fracturing fluid is pumped into the formation under a pressure sufficient to create or enlarge fissures in the formation.
  • Fracturing fluids used in conventional hydraulic fracturing techniques include: fresh water, brine, liquid hydrocarbons, gelled water, or gelled brine.
  • the fracturing fluid may contain a viscosifying or gelling agent to increase its viscosity.
  • the fracturing fluid typically also will contain a proppant that will be deposited in the fractures.
  • proppant particulates include particulate materials like sand, walnut shells, glass beads, metal pellets, and ceramic beads.
  • the deposited proppant particulates often form proppant packs in the fractures to help to maintain the integrity of those fractures in the formation.
  • cement compositions are desirable in this application because of their high strength and low cost.
  • such cement compositions when used as propping agents often contain particulate carbonate salts.
  • the resultant cement matrix has some degree of permeability, which allows formation fluids to flow to the well bore.
  • Carbonate salts require an acid to dissolve out of the cement composition. Acid treatment may be unreliable because acid tends to find the path of least resistance within the cement composition, which results in uneven distribution of acid and resultant removal of carbonate salt particulates.
  • the resultant permeability usually is not sufficient for hydrocarbon production.
  • the use of acid undermines the integrity of the cement by destabilizing the structure of the cement matrix, thus weakening the cement strength or consolidation.
  • Incompetent subterranean formations include those which contain loose sand that is readily entrained by produced fluids, and those wherein the bonded sand particles comprising the formations lack sufficient bond strength to withstand the forces produced by the intermittent production of fluids from the formations.
  • unconsolidated formations have been treated by creating fractures in the formations and depositing proppant material, e.g., sand of a selected size, in the fractures to substantially preserve the fractures.
  • proppant material e.g., sand of a selected size
  • the proppant has heretofore been consolidated within the fractures into hard permeable masses to prevent the proppant from flowing back and to reduce the migration of sand through the fractures with produced fluids.
  • costly “gravel packs,” which may include sand screens, slotted liners, perforated shrouds, and the like, have been utilized in wells to prevent the production of formation sand.
  • graded sand is placed in the annulus between a screen and the walls of the well bore in the producing interval. The resulting structure provides a barrier to migrating sand while allowing desired fluids to flow into the well bore so that they may be produced.
  • While gravel packs may prevent the production of sand with formation fluids, they often fail and require replacement. This may be due to, for example, the deterioration of the screen as a result of corrosion or the like.
  • the initial installation of a gravel pack adds considerable expense to the cost of completing a well, and the removal and replacement of a failed gravel pack is even more costly.
  • the well bores are often completed open hole, e.g., a casing is not inserted into the well bore.
  • open hole well bores oftentimes a slotted liner, sand control screen, gravel pack, or the like is installed into the uncased well bore. This method of completion may be problematic as discussed above in that as the incompetent formation tends to break down as a result of production, the slotted liner, sand control screen, or gravel pack is often bypassed, which may result in formation sand being produced along with formation fluids.
  • permeable cement in subsurface applications such as gravel packs wherein the permeable cement composition contains a particulate, such as a carbonate salt or oil-soluble resin particulate, that is dissolvable with the addition of a second fluid, e.g., an acid or a hydrocarbon.
  • a second fluid e.g., an acid or a hydrocarbon.
  • This approach is generally that when the dissolvable particulate dissolves out of the cement mass, voids are left in the cement mass so that the cement mass has some degree of permeability to formation fluids.
  • Such permeable cement compositions and methods have not been successful because the permeability of the cement mass once the particulate is dissolved out has not been satisfactory.
  • This lack of permeability is caused by, inter alia, the dissolvable particulate's dependence on contact with a second solvent. Oftentimes, the solvent is not able to interact with a sufficient amount of the dissolvable particulate to adequately dissolve a sufficient amount of the particulate. As a result, not enough of the particulate is dissolved out of the cement mass to make the cement mass's permeability suitable for subsurface applications such as gravel packing.
  • the present invention relates to the use of degradable fibers, and more particularly, to self-degrading fibers and their associated methods of use and manufacture.
  • the present invention provides a self degrading fiber comprising: an outer shell, and a core liquid.
  • the present invention provides a subterranean treatment fluid comprising a base fluid and a plurality of self-degrading fibers, the self-degrading fibers comprising an outer shell and a core fluid.
  • the present invention provides a cement composition comprising a hydraulic cement, and a plurality of self-degrading fibers, the self-degrading fibers comprising an outer shell and a core fluid.
  • FIG. 1A depicts one embodiment of a round cross-section of a self-degrading fiber of this invention.
  • FIG. 1B illustrates an embodiment of a trilobal cross-section of a self-degrading fiber of this invention.
  • FIG. 1C illustrates another embodiment of an oval cross-section of a self-degrading fiber of this invention.
  • FIG. 1D illustrates another embodiment of a flat cross-section of a self-degrading fiber of this invention.
  • FIG. 1E illustrates another embodiment of a star cross-section of a self-degrading fiber of this invention.
  • FIG. 1F illustrates another embodiment of a cross-section of a self-degrading fiber of this invention.
  • the present invention relates to the use of degradable fibers, and more particularly, to self-degrading fibers and their associated methods of use and manufacture.
  • the self-degrading fibers of this invention comprise degradable hollow fibers. Hollow fibers are used widely in various fields.
  • the self-degrading fibers of this invention may be used in any subterranean application wherein it is desirable for the self-degrading fibers to degrade, e.g., to leave voids, act as a temporary restriction to the flow of a fluid, or produce desirable degradation products.
  • the self-degrading fibers and methods of this invention may be especially beneficial in any application in which the self-degrading fibers will be used does not contain a component that will enable the outer shell of the fibers to degrade, e.g., in a dry gas hole.
  • the self-degrading fibers of the present invention are especially suitable for subterranean applications including, but not limited to, cementing (e.g., regular or acid soluble cement compositions), fracturing, or gravel packing applications.
  • the self-degrading fibers of the present invention comprise an outer shell and a core liquid.
  • the outer shell comprises a degradable polymer, and substantially retains the core liquid.
  • the outer shells of the self-degrading fibers of this invention comprise degradable polymers that are subject to hydrolytic degradation.
  • the core liquids comprise liquids that are able to at least partially facilitate or catalyze the hydrolysis of the degradable polymers in the outer shells.
  • the self-degrading fibers of this invention may comprise a coating on the outer shell and/or a suitable additive in the core liquid, e.g., an additive chosen to interact with the degradable polymer, its degradation products, or the surrounding subterranean environment.
  • the outer shell is not porous.
  • the self-degrading fibers of this invention may have any cross-sectional shape including, but not limited to, round, oval, trilobal, star, flat, rectangular, etc.
  • FIGS. 1A through IF illustrate some embodiments of such cross-sections.
  • certain cross-sectional shapes may allow for varying volumes of core liquids to be included in the fibers. For instance, a round cross-section may allow for a larger volume of a core liquid to be retained within the outer shell, which may be desirable in certain applications when more of the core liquid will be beneficial.
  • the core liquid should be included in an amount sufficient to allow for hydrolysis of the outer shell of a given self-degrading fiber taking into account all environmental factors.
  • the desired hydrolysis characteristics also will affect the ratio of the outer shell to the core liquid in a particular self-degrading fiber.
  • One guideline that may be helpful in certain applications wherein poly(lactic acid) is included in the outer shell is that about 0.25 grams of water is needed for 1 gram of poly(lactic acid).
  • the particular cross-sectional shape chosen for the self-degrading fibers that will be used in a given application may be dictated, inter alia, by the circumstances surrounding the application (e.g., the environmental factors), the desired geometry of any voids that will be created as a result of the degradation of the self-degrading fibers, the time needed to restrict the flow of a fluid, and by the amount of core liquid needed to encourage degradation of the self-degrading fibers.
  • the diameter of the fibers should relate to the size and shape of the voids that will result after degradation of the self-degrading fibers.
  • FIG. 1A depicts one embodiment of a round cross-section of a self-degrading fiber of this invention. Shown generally in FIG. 1A are fiber end 104 , outer shell 100 , and core liquid 102 , which is contained within outer shell 100 . Note that outer shell 100 retains core liquid 102 but does not completely enclose it (i.e., fiber end 104 is not closed by the outer shell). In some embodiments, fiber end 104 may be closed if desired.
  • FIG. 1B illustrates an embodiment of a trilobal cross-section of a self-degrading fiber of this invention. Shown generally is fiber end 106 , outer shell 108 , and core liquid 110 . One should note that in some embodiments fiber end 106 may be closed (not pictured in FIG. 1B ).
  • FIG. 1C illustrates another embodiment of an oval cross-section of a self-degrading fiber of this invention. Shown generally is fiber end 112 , outer shell 114 , and core liquid 116 . One should note that in some embodiments fiber end 112 may be closed (not pictured in FIG. 1C ).
  • FIG. 1D illustrates another embodiment of a flat cross-section of a self-degrading fiber of this invention. Shown generally is fiber end 118 , outer shell 120 , and core liquid 122 . One should note that in some embodiments fiber end 118 may be closed (not pictured in FIG. 1D ).
  • FIG. 1E illustrates another embodiment of a star cross-section of a self-degrading fiber of this invention. Shown generally is fiber end 124 , outer shell 126 , and core liquid 128 . One should note that in some embodiments fiber end 124 may be closed (not pictured in FIG. 1E ).
  • FIG. 1F illustrates another embodiment of a cross-section of a self-degrading fiber of this invention. Shown generally is fiber end 130 , outer shell 132 , a first core liquid 134 and a second core liquid 136 .
  • the first core liquid 134 and the second core liquid 136 may be separated by a barrier 138 that may be any suitable barrier (e.g., a membrane, a portion of the degradable polymer that forms the outer shell, etc.).
  • the first core liquid and the second core liquid may be chosen so as to interact in a certain way to produce a desired result. For instance, they both may facilitate the degradation of the outer shell or they may react with one another to produce a reaction product that will facilitate the degradation of the degradable polymer in the outer shell.
  • one of the core liquids may be chosen so that it facilitates the degradation of the degradable polymer of the outer shell of a self-degrading fiber and the second core liquid may be chosen to perform another function in the application.
  • more than two core liquids e.g., in multiple chambers may be included inside the self-degrading fibers.
  • Fiber length, thickness, density, and concentration in a treatment fluid or composition are important variables when choosing the appropriate self-degrading fibers of this invention for a particular application.
  • the self-degrading fibers may have any suitable physical dimensions.
  • the behavior of the self-degrading fibers in a chosen application may be manipulated by manipulating the characteristics of the fibers, such as shape, size, volume of core liquid, etc.
  • Factors to take into account when designing the self-degrading fibers to be used in a particular application include, but are not limited to, the desired geometry of any voids that will be created as a result of the degradation of the self-degrading fibers and the amount of core liquid needed to encourage degradation of the self-degrading fibers.
  • the self-degrading fibers may have an average or effective diameter of about 2 to about 200 microns, and a length of at least about 1 millimeter.
  • the length of the fibers is limited only by the practical implications of handling, pumping, manufacturing, and the like.
  • a maximum length for the self-degrading fibers may be about 100 millimeters. An aspect ratio of greater than about 100 may be preferred in some applications.
  • the self-degrading fibers may have straight, crimped, curved, spiral-shaped, or other three-dimensional geometries if desired.
  • the density of the self-degrading fibers may be any suitable density appropriate for a chosen application.
  • the density of the fibers should be such that the fibers remain distributed within the treatment fluid or composition in which they are being placed in a subterranean formation.
  • the density of the fibers is preferably about the same as any proppant particulates in the fracturing fluid. In most cases, this will range from about 1 to about 4 g/cm 3 .
  • the fibers have a suitable density that will enable them to become incorporated into the resultant gravel pack as desired.
  • the self-degrading fibers may have a density of about 1 g/cm 3 .
  • the concentration of self-degrading fibers in a treatment fluid or composition may vary depending on several factors.
  • One factor is what the desired result is upon degradation of the self-degrading fibers. For instance, if a large percentage of voids are desired, then a larger concentration of self-degrading fibers may be required and vice-versa.
  • Another factor is the ease with which the self-degrading fibers may be placed in a desired location. If it is difficult to place the fibers, a higher concentration may be required to offset this difficulty.
  • the concentration of self-degrading fibers in a treatment fluid or composition may be from about 0.01% to about 75% of the treatment fluid or composition.
  • the fiber concentration ranges from about 0.1% to about 5% of the treatment fluid or composition.
  • treatment fluid refers to any fluid that may be used in a subterranean application in conjunction with a desired function and/or for a desired purpose.
  • treatment fluid does not imply any particular action by the fluid or any component thereof.
  • Methods of making the self-degrading fibers of this invention include any suitable method for forming hollow fibers.
  • One such method involves extruding hollow fibers made from a desired degradable polymer; soaking the hollow fibers in a liquid that will be the core liquid; saturating the hollow fibers with the liquid; drying the exterior of the outer core of the fibers in such a manner that the liquid is retained in the hollow fibers and becomes a core liquid.
  • Another method involves extruding a spinning solution of a chosen degradable polymer from an annular slit of a double pipe orifice to form a sheath solution while simultaneously, extruding a liquid through the inside pipe of the double pipe orifice to form a core liquid within the hollow fibers.
  • Another method involves using capillary action to place the core liquid in an already formed suitable hollow fiber. Other suitable methods may be used as well.
  • Nonlimiting examples of degradable polymers that may be used in the self-degrading fibers of the present invention include, but are not limited to, homopolymers, random, block, graft, and star- and hyper-branched aliphatic polyesters.
  • Such suitable polymers may be prepared by polycondensation reactions, ring-opening polymerizations, free radical polymerizations, anionic polymerizations, carbocationic polymerizations, coordinative ring-opening polymerization for, such as, lactones, and any other suitable process.
  • One of the important characteristics of suitable degradable polymers is that they are melt or solution processable.
  • suitable polymers include aliphatic polyesters; poly(lactides); poly(glycolides); poly( ⁇ -caprolactones); poly(hydroxybutyrates); polyanhydrides; aliphatic polycarbonates; poly(orthoesters); poly(amides); poly(urethanes); poly(hydroxy ester ethers); and poly(phosphazenes).
  • One guideline for choosing which degradable polymer to use in a particular application is what degradation products will result.
  • the differing molecular structures of the degradable polymers that are suitable for the present invention give a wide range of possibilities regarding regulating the degradation rate of the degradable polymers. In choosing the appropriate degradable polymer, one should consider the degradation products that will result. For instance, some may form an acid upon degradation; the presence of the acid may be undesirable; others may form degradation products that would be insoluble, and these may be undesirable. Moreover, these degradation products should not adversely affect other operations or components.
  • the degradability of a polymer depends at least in part on its backbone structure.
  • One of the more common structural characteristics is the presence of hydrolyzable and/or oxidizable linkages in the backbone.
  • the rates of degradation of, for example, polyesters are dependent on the type of repeat unit, composition, sequence, length, molecular geometry, molecular weight, morphology (e.g., crystallinity, size of spherulites, and orientation), hydrophilicity, surface area, and additives.
  • the environment to which the polymer is subjected may affect how the polymer degrades, e.g., temperature, presence of moisture, oxygen, microorganisms, enzymes, pH, and the like.
  • aliphatic polyesters are preferred. Of the suitable aliphatic polyesters, polyesters of ⁇ or ⁇ hydroxy acids are preferred.
  • Poly(lactide) is most preferred. Poly(lactide) is synthesized either from lactic acid by a condensation reaction or more commonly by ring-opening polymerization of cyclic lactide monomer. The lactide monomer exists generally in three different forms: two stereoisomers L- and D-lactide and D,L-lactide (meso-lactide). The chirality of the lactide units provides a means to adjust, inter alia, degradation rates, as well as physical and mechanical properties after the lactide is polymerized.
  • Poly(L-lactide), for instance, is a semicrystalline polymer with a relatively slow hydrolysis rate. This could be desirable in applications of the present invention where slow degradation of the self-degrading fiber is desired.
  • Poly(D,L-lactide) is an amorphous polymer with a much faster hydrolysis rate. This may be suitable for other applications of the methods and compositions of the present invention.
  • the stereoisomers of lactic acid may be used individually or combined for use in the compositions and methods of the present invention. Additionally, they may be copolymerized with, for example, glycolide or other monomers like ⁇ -caprolactone, 1,5-dioxepan-2-one, trimethylene carbonate, or other suitable monomers to obtain polymers with different properties or degradation times.
  • the lactic acid stereoisomers can be modified by blending high and low molecular weight polylactide or by blending polylactide with other aliphatic polyesters.
  • the degradation rate of the PLA may be affected by blending high and low molecular weight lactide, by using mixture of polylactide and lactide monomer or by blending polylactide with other aliphatic polyesters.
  • degradable polymers may depend on several factors such as the composition of the repeat units, flexibility of the chain, presence of polar groups, molecular mass, degree of branching, crystallinity, orientation, etc.
  • short chain branches reduce the degree of crystallinity of polymers while long chain branches lower the melt viscosity and impart, inter alia, extensional viscosity with tension-stiffening behavior.
  • the properties of the particular polymer utilized can be further tailored by blending, and copolymerizing it with another polymer, or by a change in the macromolecular architecture (e.g., hyper-branched polymers, star-shaped, or dendrimers, etc.).
  • any such suitable degradable polymers can be tailored by introducing functional groups along the polymer chains.
  • One of ordinary skill in the art with the benefit of this disclosure will be able to determine the appropriate functional groups to introduce to the polymer chains to achieve the desired effect.
  • Suitable core liquids include any liquid capable of being held within the outer shell of the self-degrading fibers of this invention. Liquids that may aid the degradation of the degradable polymer of the outer shell are preferred. Such liquids include alcohols, acids, bases and aqueous-based liquids.
  • the core liquid may comprise, for example, fresh water, saltwater (e.g., water containing one or more salts dissolved therein), brine (e.g., saturated salt water), or seawater.
  • the water can be from any source as long as it does not contain an excess of compounds that adversely affect other components in the viscosified treatment fluid.
  • Suitable alcohols include those that are capable of interacting with the degradable polymer such that the degradable polymer degrades (for example through transesterification with the polymer backbone of the degradable polymer).
  • An example of a suitable acid includes glacial acetic acid.
  • the core liquid in an embodiment of the self-degrading fibers of this invention may comprise chosen additives.
  • additives may be desirable, for example, to aid in the degradation of the degradable polymer or to retard the degradation of the degradable polymer.
  • the additive also may be chosen to perform a second function in a well bore.
  • an oxidizer additive may be included in the core liquid that may be used in the well bore, for example, as a breaker.
  • suitable additives include, but are not limited to, corrosion inhibitors, chelators, enzymes, and breakers.
  • the self-degrading fibers may be coated with a desirable coating.
  • a desirable coating may be desirable where it may be beneficial to disperse the self-degrading fibers in a particular fashion within the medium in which the self-degrading fibers are being used, or when it is desirable to alter the degradation rate of the outer shell.
  • a coating also may be desirable when it is preferable to control how the self-degrading fibers consolidate within a matrix (e.g., a proppant matrix or a gravel pack). Any suitable coating that may perform any one of these functions is suitable for use in conjunction with the present invention.
  • An adhesive coating may be useful, for example, to encourage the fibers to adhere to a substrate (which may be other self-degrading fibers), a portion of a subterranean formation, proppant particulates, gravel particulates, and the like.
  • the adhesive coating may be incorporated with the self-degrading fibers during manufacture or subsequent thereto.
  • the coating may be applied to an entire self-degrading fiber or on any portion thereof.
  • the coating may be sprayed or otherwise applied to the material during the coating process.
  • One form of adhesive which may be used is one that will set over time after the self-degrading fibers have been introduced into a subterranean formation.
  • An alternative adhesive might be one that upon treatment with a catalyst (which is either introduced with the self-degrading fibers into the subterranean formation or prior to or subsequent to addition of the self-degrading fibers to the subterranean formation) whereby the catalyst contacts the adhesive coating within the subterranean formation so as to activate the adhesive.
  • An example of an additive that may be included in a core liquid and/or coated on a self-degrading fiber that may aid the degradation of the degradable polymer is an enzyme.
  • Protease enzymes have been shown to hasten the hydrolysis or degradation of PLA.
  • Protease enzymes are also known as “proteinases” or “proteinase enzymes.” Esterases and lipases may also be suitable for other degradable polymers, like poly(hydroxybutyrates) or, aliphatic polyesters. Typically, these enzymes are isolated from plants, animals, bacteria, and fungi, and there are very many available commercially.
  • a preferred type of protenase enzyme that is useful in the present invention is proteinase K.
  • the protease enzymes in the enzyme compositions may be spray-dried, freeze-dried, or the like.
  • the protease enzymes of the compositions of the present invention may be provided, inter alia, in a purified form, in a partially purified form, as whole cells, as whole cell lysates, or any combination thereof.
  • the concentration of the protease enzymes in the core liquid and/or in the coating should be an amount effective to hasten hydrolysis of the degradable polymer in the well bore to a desired degree at given conditions. For instance, if a relatively faster hydrolysis rate is desired, then a higher concentration of the protease enzymes should be included. The actual amount included with depend on, inter alia, the temperature of the well bore, the concentration of the degradable polymer, the particular enzyme chosen, and the desired hydrolysis rate.
  • the self-degrading fibers of this invention may be used in any subterranean application wherein it is desirable for the self-degrading fibers to degrade, e.g., to leave voids, act as a temporary restriction to the flow of a fluid, or produce desirable degradation products.
  • an example of a method of treating a portion of a subterranean formation comprises: providing a treatment fluid comprising a plurality of self-degrading fibers; placing the treatment fluid into a subterranean formation; and treating a portion of the subterranean formation.
  • the terms “treatment” and “treating” do not imply any particular action with or by the self-degrading fibers or degradation products of the self-degrading fibers of the present invention.
  • the self-degrading fibers of the present invention are especially suitable for subterranean applications including, but not limited to, cementing (e.g., regular or acid soluble cement compositions), fracturing, or gravel packing applications.
  • the self-degrading fibers of this invention may be used in conjunction with hydraulic cement compositions and their associated applications, including, but not limited to, primary cementing, sand control, and fracturing.
  • a plurality of self-degrading fibers of this invention may be included in a cement composition that comprises a hydraulic cement, water, and any optional additives. The cement composition can then be used in a primary cementing application in a subterranean operation.
  • An example of such a method comprises the steps of: providing a cement composition that comprises a hydraulic cement, water, and a plurality self-degrading fibers of this invention; placing the cement composition in the subterranean formation; and allowing the cement composition to set therein and the self-degrading fibers to degrade.
  • the quantity of self-degrading fibers to include in a cement composition used in a primary cementing operation may range from about 0.01% to about 15% based on the amount of hydraulic cement in the composition.
  • An example of an embodiment of a method is a method comprising: providing a cement composition that comprises a hydraulic cement, water, and a plurality of self-degrading fibers, the self-degrading fibers comprising an outer shell and a core liquid; placing the cement composition in a subterranean formation; and allowing the cement composition to set therein.
  • the self-degrading fibers of this invention also may be used in a sand control application in a permeable cement composition.
  • An embodiment of a method is a method of providing some degree of sand control to a portion of a subterranean formation penetrated by a well bore comprising: providing a gravel pack fluid comprising gravel particulates and a plurality of self-degrading fibers, the self-degrading fibers comprising an outer shell and a core liquid; and placing the gravel pack fluid into the subterranean formation so that a permeable gravel pack forms adjacent to a portion of the subterranean formation.
  • Another embodiment of providing sand control in a well bore penetrating a subterranean formation comprises the following steps: placing a perforated shroud having perforations, the perforations being sealed by a temporary sealant, in the well bore adjacent to a chosen portion of the subterranean formation; providing a permeable cement composition, the permeable cement composition comprising a hydraulic cement, water, and a plurality of self-degrading fibers; placing the permeable cement composition in an annulus between the perforated shroud and the portion of the subterranean formation; allowing the permeable cement composition to set to form a permeable cement mass in the annulus; and removing the temporary sealant sealing the perforations of the perforated shroud to restore liquid communication between the well bore and the subterranean formation.
  • the self-degrading fibers may be used in fracturing applications as well, either in conjunction with any suitable fracturing fluid, including a conventional fracturing fluid that comprises a base fluid and a viscosifying agent or a fracturing fluid that comprises a cement composition.
  • fracturing fluid including a conventional fracturing fluid that comprises a base fluid and a viscosifying agent or a fracturing fluid that comprises a cement composition.
  • a permeable cement composition of the present invention is prepared (either on-the-fly or by a preblending process) that comprises a hydraulic cement, water, and a plurality of self-degrading fibers of this invention.
  • the permeable cement composition is injected into the subterranean formation at a sufficient pressure to create a fracture in the formation.
  • the permeable cement composition is allowed to set in the fracture, whereby the composition fills and forms a permeable cement matrix therein.
  • the well is produced and the permeable cement matrix acts, inter alia, to maintain the integrity of the fractures within the formation and allow formation fluids to flow into the well bore.
  • Produced liquids and gases are allowed to flow through the permeable cement matrix, but formation sands in the formation are substantially prevented from passing through the matrix.
  • the self-degrading fibers may be incorporated into the cement composition and become distributed throughout the resultant cement matrix, most preferably uniformly, as the cement matrix forms.
  • the self-degrading fibers are substantially removed from the matrix.
  • voids are created in the matrix.
  • These voids enhance the permeability of the matrix, which results in, inter alia, enhanced fracture conductivity.
  • Enhanced fracture conductivity enhances well productivity, as well productivity is a function of, inter alia, fracture conductivity.
  • these voids are channel-like and interconnected so that the permeability of the matrix is enhanced.
  • the self-degrading fibers also may be used in a fracturing operation that does not involve a cement composition to form a proppant pack in a fracture having voids to increase its permeability.
  • An example of such a method of the present invention is a method of increasing the conductivity of a fracture in a subterranean formation that comprises the steps of: providing a fracturing treatment fluid comprising a proppant composition, the proppant composition comprising proppant particulates and a plurality of self-degrading fibers; introducing the proppant composition into the fracture; and allowing the proppant composition to form a proppant matrix having voids in the fracture.
  • any suitable fracturing fluid and any suitable proppant particulates may be used.
  • the fracturing fluid may comprise a base fluid (such as an aqueous fluid) and any suitable viscosifying agent (such as a biopolymer).
  • the self-degrading fibers also may be incorporated within a gravel pack composition so as to form a gravel pack down hole that has some permeability from the degradation of the self-degrading fibers.
  • a gravel pack fluid that comprises gravel and a plurality of self-degrading fibers is placed within a well bore so as to form a gravel pack therein.
  • the self-degrading fibers are allowed to degrade so that the gravel pack develops some permeability.
  • the self-degrading fibers may be incorporated into a gravel pack composition such that when they degrade, they assist in the degradation of a filter cake neighboring the gravel pack.
  • This method is most suited for use with self-degrading fibers that form an acid upon degradation. This acid can be used to degrade an acid-soluble component in the filter cake.
  • An example of such a method of degrading a filter cake in a subterranean formation comprises the steps of: providing a gravel pack composition that comprises gravel particulates and a plurality of self-degrading fibers; placing the gravel pack composition into a subterranean formation so that a gravel pack forms that neighbors a filter cake; allowing the self-degrading fibers to degrade so as to produce an acid; and allowing the acid to contact and degrade a portion of the filter cake.
  • any suitable gravel pack composition and any suitable gravel particulates may be used.

Abstract

This invention relates to the use of degradable fibers, and more particularly, to self-degrading fibers and their associated methods of use and manufacture. In one embodiment, the present invention provides a self degrading fiber comprising: an outer shell, and a core liquid.

Description

    BACKGROUND
  • The present invention relates to the use of degradable fibers, and more particularly, to self-degrading fibers and their associated methods of manufacture and use in subterranean applications.
  • Degradable materials are increasingly becoming of interest in various subterranean applications based, at least in part, on their ability to degrade or produce desirable degradation products (e.g., acids). One particular degradable material that has received recent attention is poly(lactic acid) (“PLA”) because it is a material that will degrade down hole after it has performed a desired function or because its degradation products will perform a desired function (e.g., degrade an acid soluble component).
  • This invention relates to degradable fibers that may be used in any subterranean application wherein it is desirable to include degradable fibers, for instance, to create voids or produce associated degradation products. Examples of suitable applications include cementing, fracturing, and gravel packing, as well as other applications wherein it may be desirable to produce voids or particular degradation products through the degradation of self-degrading fibers.
  • Hydraulic cement compositions are commonly utilized in subterranean operations, particularly subterranean well completion and remedial operations. For example, hydraulic cement compositions are used in primary cementing operations whereby pipe strings such as casings and liners are cemented in well bores. Hydraulic cement compositions also are used in remedial cementing operations such as plugging highly permeable zones or fractures in well bores, plugging cracks in holes in pipe strings, and the like. In additional applications, hydraulic cement compositions may be used in fracturing and gravel packing applications to form packs that are similar to gravel packs or proppant packs.
  • Hydraulic fracturing techniques are commonly used to stimulate subterranean formations to enhance the production of desirable fluids therefrom. In a conventional hydraulic fracturing process, a fracturing fluid is pumped down a well bore and into a fluid-bearing formation. The fracturing fluid is pumped into the formation under a pressure sufficient to create or enlarge fissures in the formation. Fracturing fluids used in conventional hydraulic fracturing techniques include: fresh water, brine, liquid hydrocarbons, gelled water, or gelled brine. The fracturing fluid may contain a viscosifying or gelling agent to increase its viscosity. The fracturing fluid typically also will contain a proppant that will be deposited in the fractures. Commonly used proppant particulates include particulate materials like sand, walnut shells, glass beads, metal pellets, and ceramic beads. The deposited proppant particulates often form proppant packs in the fractures to help to maintain the integrity of those fractures in the formation.
  • There have been attempts to use cement compositions as propping agents. Cement compositions are desirable in this application because of their high strength and low cost. In conventional methods, such cement compositions when used as propping agents often contain particulate carbonate salts. In theory, when the carbonate salts are removed from the cement composition at some point before the cement composition develops substantial compressive strength, the resultant cement matrix has some degree of permeability, which allows formation fluids to flow to the well bore. Carbonate salts, however, require an acid to dissolve out of the cement composition. Acid treatment may be unreliable because acid tends to find the path of least resistance within the cement composition, which results in uneven distribution of acid and resultant removal of carbonate salt particulates. Thus, the resultant permeability usually is not sufficient for hydrocarbon production. Moreover, the use of acid undermines the integrity of the cement by destabilizing the structure of the cement matrix, thus weakening the cement strength or consolidation.
  • Additionally, oil, gas, and water producing wells often are completed in unconsolidated subterranean formations containing loose or incompetent sands that can flow into the well bores with produced fluids. The presence of this sand in the produced fluids is undesirable as it, inter alia, may erode equipment, which often substantially increases the costs associated with operating such wells and generally reduces the fluid production capability of the formation. Incompetent subterranean formations include those which contain loose sand that is readily entrained by produced fluids, and those wherein the bonded sand particles comprising the formations lack sufficient bond strength to withstand the forces produced by the intermittent production of fluids from the formations.
  • Heretofore, unconsolidated formations have been treated by creating fractures in the formations and depositing proppant material, e.g., sand of a selected size, in the fractures to substantially preserve the fractures. In addition, the proppant has heretofore been consolidated within the fractures into hard permeable masses to prevent the proppant from flowing back and to reduce the migration of sand through the fractures with produced fluids. Further, costly “gravel packs,” which may include sand screens, slotted liners, perforated shrouds, and the like, have been utilized in wells to prevent the production of formation sand. In conventional gravel packing operations, graded sand is placed in the annulus between a screen and the walls of the well bore in the producing interval. The resulting structure provides a barrier to migrating sand while allowing desired fluids to flow into the well bore so that they may be produced.
  • While gravel packs may prevent the production of sand with formation fluids, they often fail and require replacement. This may be due to, for example, the deterioration of the screen as a result of corrosion or the like. The initial installation of a gravel pack adds considerable expense to the cost of completing a well, and the removal and replacement of a failed gravel pack is even more costly.
  • In horizontal well bores formed in unconsolidated formations, the well bores are often completed open hole, e.g., a casing is not inserted into the well bore. In open hole well bores, oftentimes a slotted liner, sand control screen, gravel pack, or the like is installed into the uncased well bore. This method of completion may be problematic as discussed above in that as the incompetent formation tends to break down as a result of production, the slotted liner, sand control screen, or gravel pack is often bypassed, which may result in formation sand being produced along with formation fluids.
  • There have been attempts to use a sort of permeable cement in subsurface applications such as gravel packs wherein the permeable cement composition contains a particulate, such as a carbonate salt or oil-soluble resin particulate, that is dissolvable with the addition of a second fluid, e.g., an acid or a hydrocarbon. The thought behind this approach is generally that when the dissolvable particulate dissolves out of the cement mass, voids are left in the cement mass so that the cement mass has some degree of permeability to formation fluids. Such permeable cement compositions and methods, however, have not been successful because the permeability of the cement mass once the particulate is dissolved out has not been satisfactory. This lack of permeability is caused by, inter alia, the dissolvable particulate's dependence on contact with a second solvent. Oftentimes, the solvent is not able to interact with a sufficient amount of the dissolvable particulate to adequately dissolve a sufficient amount of the particulate. As a result, not enough of the particulate is dissolved out of the cement mass to make the cement mass's permeability suitable for subsurface applications such as gravel packing.
  • SUMMARY
  • The present invention relates to the use of degradable fibers, and more particularly, to self-degrading fibers and their associated methods of use and manufacture.
  • In one embodiment, the present invention provides a self degrading fiber comprising: an outer shell, and a core liquid.
  • In another embodiment, the present invention provides a subterranean treatment fluid comprising a base fluid and a plurality of self-degrading fibers, the self-degrading fibers comprising an outer shell and a core fluid.
  • In another embodiment, the present invention provides a cement composition comprising a hydraulic cement, and a plurality of self-degrading fibers, the self-degrading fibers comprising an outer shell and a core fluid.
  • The features and advantages of the present invention will be readily apparent to those skilled in the art upon a reading of the description of the embodiments that follows.
  • DRAWINGS
  • The following figures form part of the present specification and are included to further demonstrate certain aspects of the present invention. The invention may be better understood by reference to one or more of these drawings in combination with the description of embodiments presented herein.
  • FIG. 1A depicts one embodiment of a round cross-section of a self-degrading fiber of this invention.
  • FIG. 1B illustrates an embodiment of a trilobal cross-section of a self-degrading fiber of this invention.
  • FIG. 1C illustrates another embodiment of an oval cross-section of a self-degrading fiber of this invention.
  • FIG. 1D illustrates another embodiment of a flat cross-section of a self-degrading fiber of this invention.
  • FIG. 1E illustrates another embodiment of a star cross-section of a self-degrading fiber of this invention.
  • FIG. 1F illustrates another embodiment of a cross-section of a self-degrading fiber of this invention.
  • DESCRIPTION
  • The present invention relates to the use of degradable fibers, and more particularly, to self-degrading fibers and their associated methods of use and manufacture. The self-degrading fibers of this invention comprise degradable hollow fibers. Hollow fibers are used widely in various fields.
  • The self-degrading fibers of this invention may be used in any subterranean application wherein it is desirable for the self-degrading fibers to degrade, e.g., to leave voids, act as a temporary restriction to the flow of a fluid, or produce desirable degradation products. The self-degrading fibers and methods of this invention may be especially beneficial in any application in which the self-degrading fibers will be used does not contain a component that will enable the outer shell of the fibers to degrade, e.g., in a dry gas hole. Moreover, the self-degrading fibers of the present invention are especially suitable for subterranean applications including, but not limited to, cementing (e.g., regular or acid soluble cement compositions), fracturing, or gravel packing applications.
  • The self-degrading fibers of the present invention comprise an outer shell and a core liquid. The outer shell comprises a degradable polymer, and substantially retains the core liquid. The outer shells of the self-degrading fibers of this invention comprise degradable polymers that are subject to hydrolytic degradation. The core liquids comprise liquids that are able to at least partially facilitate or catalyze the hydrolysis of the degradable polymers in the outer shells. Optionally, the self-degrading fibers of this invention may comprise a coating on the outer shell and/or a suitable additive in the core liquid, e.g., an additive chosen to interact with the degradable polymer, its degradation products, or the surrounding subterranean environment. In preferred embodiments, the outer shell is not porous.
  • The self-degrading fibers of this invention may have any cross-sectional shape including, but not limited to, round, oval, trilobal, star, flat, rectangular, etc. FIGS. 1A through IF illustrate some embodiments of such cross-sections. One should note that certain cross-sectional shapes may allow for varying volumes of core liquids to be included in the fibers. For instance, a round cross-section may allow for a larger volume of a core liquid to be retained within the outer shell, which may be desirable in certain applications when more of the core liquid will be beneficial. One should be mindful that the core liquid should be included in an amount sufficient to allow for hydrolysis of the outer shell of a given self-degrading fiber taking into account all environmental factors. The desired hydrolysis characteristics also will affect the ratio of the outer shell to the core liquid in a particular self-degrading fiber. One guideline that may be helpful in certain applications wherein poly(lactic acid) is included in the outer shell is that about 0.25 grams of water is needed for 1 gram of poly(lactic acid). The particular cross-sectional shape chosen for the self-degrading fibers that will be used in a given application may be dictated, inter alia, by the circumstances surrounding the application (e.g., the environmental factors), the desired geometry of any voids that will be created as a result of the degradation of the self-degrading fibers, the time needed to restrict the flow of a fluid, and by the amount of core liquid needed to encourage degradation of the self-degrading fibers. When the self-degrading fibers are used in an application wherein they will degrade to leave voids, one should be mindful that the diameter of the fibers should relate to the size and shape of the voids that will result after degradation of the self-degrading fibers.
  • FIG. 1A depicts one embodiment of a round cross-section of a self-degrading fiber of this invention. Shown generally in FIG. 1A are fiber end 104, outer shell 100, and core liquid 102, which is contained within outer shell 100. Note that outer shell 100 retains core liquid 102 but does not completely enclose it (i.e., fiber end 104 is not closed by the outer shell). In some embodiments, fiber end 104 may be closed if desired.
  • FIG. 1B illustrates an embodiment of a trilobal cross-section of a self-degrading fiber of this invention. Shown generally is fiber end 106, outer shell 108, and core liquid 110. One should note that in some embodiments fiber end 106 may be closed (not pictured in FIG. 1B).
  • FIG. 1C illustrates another embodiment of an oval cross-section of a self-degrading fiber of this invention. Shown generally is fiber end 112, outer shell 114, and core liquid 116. One should note that in some embodiments fiber end 112 may be closed (not pictured in FIG. 1C).
  • FIG. 1D illustrates another embodiment of a flat cross-section of a self-degrading fiber of this invention. Shown generally is fiber end 118, outer shell 120, and core liquid 122. One should note that in some embodiments fiber end 118 may be closed (not pictured in FIG. 1D).
  • FIG. 1E illustrates another embodiment of a star cross-section of a self-degrading fiber of this invention. Shown generally is fiber end 124, outer shell 126, and core liquid 128. One should note that in some embodiments fiber end 124 may be closed (not pictured in FIG. 1E).
  • FIG. 1F illustrates another embodiment of a cross-section of a self-degrading fiber of this invention. Shown generally is fiber end 130, outer shell 132, a first core liquid 134 and a second core liquid 136. The first core liquid 134 and the second core liquid 136 may be separated by a barrier 138 that may be any suitable barrier (e.g., a membrane, a portion of the degradable polymer that forms the outer shell, etc.). In these embodiments, the first core liquid and the second core liquid may be chosen so as to interact in a certain way to produce a desired result. For instance, they both may facilitate the degradation of the outer shell or they may react with one another to produce a reaction product that will facilitate the degradation of the degradable polymer in the outer shell. Optionally, one of the core liquids may be chosen so that it facilitates the degradation of the degradable polymer of the outer shell of a self-degrading fiber and the second core liquid may be chosen to perform another function in the application. If desired and practicable, more than two core liquids (e.g., in multiple chambers) may be included inside the self-degrading fibers.
  • Fiber length, thickness, density, and concentration in a treatment fluid or composition are important variables when choosing the appropriate self-degrading fibers of this invention for a particular application. The self-degrading fibers may have any suitable physical dimensions. The behavior of the self-degrading fibers in a chosen application may be manipulated by manipulating the characteristics of the fibers, such as shape, size, volume of core liquid, etc. Factors to take into account when designing the self-degrading fibers to be used in a particular application include, but are not limited to, the desired geometry of any voids that will be created as a result of the degradation of the self-degrading fibers and the amount of core liquid needed to encourage degradation of the self-degrading fibers. In some embodiments, the self-degrading fibers may have an average or effective diameter of about 2 to about 200 microns, and a length of at least about 1 millimeter. The length of the fibers is limited only by the practical implications of handling, pumping, manufacturing, and the like. In some embodiments, a maximum length for the self-degrading fibers may be about 100 millimeters. An aspect ratio of greater than about 100 may be preferred in some applications. Additionally, the self-degrading fibers may have straight, crimped, curved, spiral-shaped, or other three-dimensional geometries if desired.
  • The density of the self-degrading fibers may be any suitable density appropriate for a chosen application. In certain embodiments, the density of the fibers should be such that the fibers remain distributed within the treatment fluid or composition in which they are being placed in a subterranean formation. For instance, in some fracturing embodiments, the density of the fibers is preferably about the same as any proppant particulates in the fracturing fluid. In most cases, this will range from about 1 to about 4 g/cm3. Also, for some gravel packing applications, it is preferred that the fibers have a suitable density that will enable them to become incorporated into the resultant gravel pack as desired. In some embodiments, the self-degrading fibers may have a density of about 1 g/cm3.
  • The concentration of self-degrading fibers in a treatment fluid or composition may vary depending on several factors. One factor is what the desired result is upon degradation of the self-degrading fibers. For instance, if a large percentage of voids are desired, then a larger concentration of self-degrading fibers may be required and vice-versa. Another factor is the ease with which the self-degrading fibers may be placed in a desired location. If it is difficult to place the fibers, a higher concentration may be required to offset this difficulty. Generally, the concentration of self-degrading fibers in a treatment fluid or composition may be from about 0.01% to about 75% of the treatment fluid or composition. Preferably, the fiber concentration ranges from about 0.1% to about 5% of the treatment fluid or composition.
  • As used herein, the term “treatment fluid” refers to any fluid that may be used in a subterranean application in conjunction with a desired function and/or for a desired purpose. The term “treatment fluid” does not imply any particular action by the fluid or any component thereof.
  • Methods of making the self-degrading fibers of this invention include any suitable method for forming hollow fibers. One such method involves extruding hollow fibers made from a desired degradable polymer; soaking the hollow fibers in a liquid that will be the core liquid; saturating the hollow fibers with the liquid; drying the exterior of the outer core of the fibers in such a manner that the liquid is retained in the hollow fibers and becomes a core liquid. Another method involves extruding a spinning solution of a chosen degradable polymer from an annular slit of a double pipe orifice to form a sheath solution while simultaneously, extruding a liquid through the inside pipe of the double pipe orifice to form a core liquid within the hollow fibers. Another method involves using capillary action to place the core liquid in an already formed suitable hollow fiber. Other suitable methods may be used as well.
  • Nonlimiting examples of degradable polymers that may be used in the self-degrading fibers of the present invention include, but are not limited to, homopolymers, random, block, graft, and star- and hyper-branched aliphatic polyesters. Such suitable polymers may be prepared by polycondensation reactions, ring-opening polymerizations, free radical polymerizations, anionic polymerizations, carbocationic polymerizations, coordinative ring-opening polymerization for, such as, lactones, and any other suitable process. One of the important characteristics of suitable degradable polymers is that they are melt or solution processable. Specific examples of suitable polymers include aliphatic polyesters; poly(lactides); poly(glycolides); poly(ε-caprolactones); poly(hydroxybutyrates); polyanhydrides; aliphatic polycarbonates; poly(orthoesters); poly(amides); poly(urethanes); poly(hydroxy ester ethers); and poly(phosphazenes). One guideline for choosing which degradable polymer to use in a particular application is what degradation products will result. The differing molecular structures of the degradable polymers that are suitable for the present invention give a wide range of possibilities regarding regulating the degradation rate of the degradable polymers. In choosing the appropriate degradable polymer, one should consider the degradation products that will result. For instance, some may form an acid upon degradation; the presence of the acid may be undesirable; others may form degradation products that would be insoluble, and these may be undesirable. Moreover, these degradation products should not adversely affect other operations or components.
  • The degradability of a polymer depends at least in part on its backbone structure. One of the more common structural characteristics is the presence of hydrolyzable and/or oxidizable linkages in the backbone. The rates of degradation of, for example, polyesters, are dependent on the type of repeat unit, composition, sequence, length, molecular geometry, molecular weight, morphology (e.g., crystallinity, size of spherulites, and orientation), hydrophilicity, surface area, and additives. Also, the environment to which the polymer is subjected may affect how the polymer degrades, e.g., temperature, presence of moisture, oxygen, microorganisms, enzymes, pH, and the like. One of ordinary skill in the art with the benefit of this disclosure will be able to determine what the optimum polymer would be for a given application considering the characteristics of the polymer utilized and the environment to which it will be subjected.
  • Of these suitable polymers, aliphatic polyesters are preferred. Of the suitable aliphatic polyesters, polyesters of α or β hydroxy acids are preferred. Poly(lactide) is most preferred. Poly(lactide) is synthesized either from lactic acid by a condensation reaction or more commonly by ring-opening polymerization of cyclic lactide monomer. The lactide monomer exists generally in three different forms: two stereoisomers L- and D-lactide and D,L-lactide (meso-lactide). The chirality of the lactide units provides a means to adjust, inter alia, degradation rates, as well as physical and mechanical properties after the lactide is polymerized. Poly(L-lactide), for instance, is a semicrystalline polymer with a relatively slow hydrolysis rate. This could be desirable in applications of the present invention where slow degradation of the self-degrading fiber is desired. Poly(D,L-lactide) is an amorphous polymer with a much faster hydrolysis rate. This may be suitable for other applications of the methods and compositions of the present invention. The stereoisomers of lactic acid may be used individually or combined for use in the compositions and methods of the present invention. Additionally, they may be copolymerized with, for example, glycolide or other monomers like ε-caprolactone, 1,5-dioxepan-2-one, trimethylene carbonate, or other suitable monomers to obtain polymers with different properties or degradation times. Additionally, the lactic acid stereoisomers can be modified by blending high and low molecular weight polylactide or by blending polylactide with other aliphatic polyesters. For example, the degradation rate of the PLA may be affected by blending high and low molecular weight lactide, by using mixture of polylactide and lactide monomer or by blending polylactide with other aliphatic polyesters.
  • The physical properties of degradable polymers (and, therefore, at least in part, the self-degrading fibers) may depend on several factors such as the composition of the repeat units, flexibility of the chain, presence of polar groups, molecular mass, degree of branching, crystallinity, orientation, etc. For example, short chain branches reduce the degree of crystallinity of polymers while long chain branches lower the melt viscosity and impart, inter alia, extensional viscosity with tension-stiffening behavior. The properties of the particular polymer utilized can be further tailored by blending, and copolymerizing it with another polymer, or by a change in the macromolecular architecture (e.g., hyper-branched polymers, star-shaped, or dendrimers, etc.). The properties of any such suitable degradable polymers (such as hydrophilicity, rate of biodegradation, etc.) can be tailored by introducing functional groups along the polymer chains. One of ordinary skill in the art with the benefit of this disclosure will be able to determine the appropriate functional groups to introduce to the polymer chains to achieve the desired effect.
  • Suitable core liquids include any liquid capable of being held within the outer shell of the self-degrading fibers of this invention. Liquids that may aid the degradation of the degradable polymer of the outer shell are preferred. Such liquids include alcohols, acids, bases and aqueous-based liquids. The core liquid may comprise, for example, fresh water, saltwater (e.g., water containing one or more salts dissolved therein), brine (e.g., saturated salt water), or seawater. The water can be from any source as long as it does not contain an excess of compounds that adversely affect other components in the viscosified treatment fluid. Suitable alcohols include those that are capable of interacting with the degradable polymer such that the degradable polymer degrades (for example through transesterification with the polymer backbone of the degradable polymer). An example of a suitable acid includes glacial acetic acid.
  • Optionally, the core liquid in an embodiment of the self-degrading fibers of this invention may comprise chosen additives. Such additives may be desirable, for example, to aid in the degradation of the degradable polymer or to retard the degradation of the degradable polymer. The additive also may be chosen to perform a second function in a well bore. For example, an oxidizer additive may be included in the core liquid that may be used in the well bore, for example, as a breaker. Examples of suitable additives include, but are not limited to, corrosion inhibitors, chelators, enzymes, and breakers.
  • In additional embodiments, the self-degrading fibers may be coated with a desirable coating. Such coatings may be desirable where it may be beneficial to disperse the self-degrading fibers in a particular fashion within the medium in which the self-degrading fibers are being used, or when it is desirable to alter the degradation rate of the outer shell. A coating also may be desirable when it is preferable to control how the self-degrading fibers consolidate within a matrix (e.g., a proppant matrix or a gravel pack). Any suitable coating that may perform any one of these functions is suitable for use in conjunction with the present invention.
  • One example of a coating that may be used in conjunction with some embodiments of the self-degrading fibers of the present invention is an adhesive coating. An adhesive coating may be useful, for example, to encourage the fibers to adhere to a substrate (which may be other self-degrading fibers), a portion of a subterranean formation, proppant particulates, gravel particulates, and the like. The adhesive coating may be incorporated with the self-degrading fibers during manufacture or subsequent thereto. The coating may be applied to an entire self-degrading fiber or on any portion thereof. The coating may be sprayed or otherwise applied to the material during the coating process. One form of adhesive which may be used is one that will set over time after the self-degrading fibers have been introduced into a subterranean formation. An alternative adhesive might be one that upon treatment with a catalyst (which is either introduced with the self-degrading fibers into the subterranean formation or prior to or subsequent to addition of the self-degrading fibers to the subterranean formation) whereby the catalyst contacts the adhesive coating within the subterranean formation so as to activate the adhesive.
  • An example of an additive that may be included in a core liquid and/or coated on a self-degrading fiber that may aid the degradation of the degradable polymer is an enzyme. Protease enzymes have been shown to hasten the hydrolysis or degradation of PLA. Protease enzymes are also known as “proteinases” or “proteinase enzymes.” Esterases and lipases may also be suitable for other degradable polymers, like poly(hydroxybutyrates) or, aliphatic polyesters. Typically, these enzymes are isolated from plants, animals, bacteria, and fungi, and there are very many available commercially. A preferred type of protenase enzyme that is useful in the present invention is proteinase K. In certain embodiments of the present invention, the protease enzymes in the enzyme compositions may be spray-dried, freeze-dried, or the like. In certain embodiments, the protease enzymes of the compositions of the present invention may be provided, inter alia, in a purified form, in a partially purified form, as whole cells, as whole cell lysates, or any combination thereof. The concentration of the protease enzymes in the core liquid and/or in the coating should be an amount effective to hasten hydrolysis of the degradable polymer in the well bore to a desired degree at given conditions. For instance, if a relatively faster hydrolysis rate is desired, then a higher concentration of the protease enzymes should be included. The actual amount included with depend on, inter alia, the temperature of the well bore, the concentration of the degradable polymer, the particular enzyme chosen, and the desired hydrolysis rate.
  • The self-degrading fibers of this invention may be used in any subterranean application wherein it is desirable for the self-degrading fibers to degrade, e.g., to leave voids, act as a temporary restriction to the flow of a fluid, or produce desirable degradation products. For instance, an example of a method of treating a portion of a subterranean formation comprises: providing a treatment fluid comprising a plurality of self-degrading fibers; placing the treatment fluid into a subterranean formation; and treating a portion of the subterranean formation. The terms “treatment” and “treating” do not imply any particular action with or by the self-degrading fibers or degradation products of the self-degrading fibers of the present invention. Moreover, the self-degrading fibers of the present invention are especially suitable for subterranean applications including, but not limited to, cementing (e.g., regular or acid soluble cement compositions), fracturing, or gravel packing applications.
  • In some embodiments, the self-degrading fibers of this invention may be used in conjunction with hydraulic cement compositions and their associated applications, including, but not limited to, primary cementing, sand control, and fracturing. In an example of a primary cementing method embodiment, a plurality of self-degrading fibers of this invention may be included in a cement composition that comprises a hydraulic cement, water, and any optional additives. The cement composition can then be used in a primary cementing application in a subterranean operation. An example of such a method comprises the steps of: providing a cement composition that comprises a hydraulic cement, water, and a plurality self-degrading fibers of this invention; placing the cement composition in the subterranean formation; and allowing the cement composition to set therein and the self-degrading fibers to degrade. The quantity of self-degrading fibers to include in a cement composition used in a primary cementing operation may range from about 0.01% to about 15% based on the amount of hydraulic cement in the composition. An example of an embodiment of a method is a method comprising: providing a cement composition that comprises a hydraulic cement, water, and a plurality of self-degrading fibers, the self-degrading fibers comprising an outer shell and a core liquid; placing the cement composition in a subterranean formation; and allowing the cement composition to set therein.
  • The self-degrading fibers of this invention also may be used in a sand control application in a permeable cement composition. An embodiment of a method is a method of providing some degree of sand control to a portion of a subterranean formation penetrated by a well bore comprising: providing a gravel pack fluid comprising gravel particulates and a plurality of self-degrading fibers, the self-degrading fibers comprising an outer shell and a core liquid; and placing the gravel pack fluid into the subterranean formation so that a permeable gravel pack forms adjacent to a portion of the subterranean formation. Another embodiment of providing sand control in a well bore penetrating a subterranean formation comprises the following steps: placing a perforated shroud having perforations, the perforations being sealed by a temporary sealant, in the well bore adjacent to a chosen portion of the subterranean formation; providing a permeable cement composition, the permeable cement composition comprising a hydraulic cement, water, and a plurality of self-degrading fibers; placing the permeable cement composition in an annulus between the perforated shroud and the portion of the subterranean formation; allowing the permeable cement composition to set to form a permeable cement mass in the annulus; and removing the temporary sealant sealing the perforations of the perforated shroud to restore liquid communication between the well bore and the subterranean formation.
  • The self-degrading fibers may be used in fracturing applications as well, either in conjunction with any suitable fracturing fluid, including a conventional fracturing fluid that comprises a base fluid and a viscosifying agent or a fracturing fluid that comprises a cement composition. One example of these methods of the present invention includes the following steps. A permeable cement composition of the present invention is prepared (either on-the-fly or by a preblending process) that comprises a hydraulic cement, water, and a plurality of self-degrading fibers of this invention. The permeable cement composition is injected into the subterranean formation at a sufficient pressure to create a fracture in the formation. The permeable cement composition is allowed to set in the fracture, whereby the composition fills and forms a permeable cement matrix therein. After the permeable cement proppant matrix has been formed in the well bore, the well is produced and the permeable cement matrix acts, inter alia, to maintain the integrity of the fractures within the formation and allow formation fluids to flow into the well bore. Produced liquids and gases are allowed to flow through the permeable cement matrix, but formation sands in the formation are substantially prevented from passing through the matrix. The self-degrading fibers may be incorporated into the cement composition and become distributed throughout the resultant cement matrix, most preferably uniformly, as the cement matrix forms. After the requisite time period dictated by the characteristics of the self-degrading fibers utilized, the self-degrading fibers are substantially removed from the matrix. As a result, voids are created in the matrix. These voids enhance the permeability of the matrix, which results in, inter alia, enhanced fracture conductivity. Enhanced fracture conductivity enhances well productivity, as well productivity is a function of, inter alia, fracture conductivity. In certain preferred embodiments, these voids are channel-like and interconnected so that the permeability of the matrix is enhanced.
  • The self-degrading fibers also may be used in a fracturing operation that does not involve a cement composition to form a proppant pack in a fracture having voids to increase its permeability. An example of such a method of the present invention is a method of increasing the conductivity of a fracture in a subterranean formation that comprises the steps of: providing a fracturing treatment fluid comprising a proppant composition, the proppant composition comprising proppant particulates and a plurality of self-degrading fibers; introducing the proppant composition into the fracture; and allowing the proppant composition to form a proppant matrix having voids in the fracture. In these fracturing methods, any suitable fracturing fluid and any suitable proppant particulates may be used. The fracturing fluid may comprise a base fluid (such as an aqueous fluid) and any suitable viscosifying agent (such as a biopolymer).
  • The self-degrading fibers also may be incorporated within a gravel pack composition so as to form a gravel pack down hole that has some permeability from the degradation of the self-degrading fibers. In an example of such a method, a gravel pack fluid that comprises gravel and a plurality of self-degrading fibers is placed within a well bore so as to form a gravel pack therein. The self-degrading fibers are allowed to degrade so that the gravel pack develops some permeability.
  • In another embodiment, the self-degrading fibers may be incorporated into a gravel pack composition such that when they degrade, they assist in the degradation of a filter cake neighboring the gravel pack. This method is most suited for use with self-degrading fibers that form an acid upon degradation. This acid can be used to degrade an acid-soluble component in the filter cake. An example of such a method of degrading a filter cake in a subterranean formation comprises the steps of: providing a gravel pack composition that comprises gravel particulates and a plurality of self-degrading fibers; placing the gravel pack composition into a subterranean formation so that a gravel pack forms that neighbors a filter cake; allowing the self-degrading fibers to degrade so as to produce an acid; and allowing the acid to contact and degrade a portion of the filter cake. In these sand control methods, any suitable gravel pack composition and any suitable gravel particulates may be used.
  • Therefore, the present invention is well adapted to attain the ends and advantages mentioned as well as those that are inherent therein. While numerous changes may be made by those skilled in the art, such changes are encompassed within the spirit of this invention as defined by the appended claims.

Claims (20)

1. A self degrading fiber comprising:
an outer shell, and
a core liquid.
2. The fiber of claim 1 further comprising a coating.
3. The fiber of claim 2 wherein the coating comprises at least one of the following: an adhesive or an enzyme.
4. The fiber of claim 1 wherein the fiber has a round cross-sectional shape, an oval cross-sectional shape, a trilobal shape, a star shape, a flat shape, or a rectangular shape.
5. The fiber of claim 1 wherein the fiber has a diameter of about 2 microns to about 200 microns and a length of at least about 1 millimeter.
6. The fiber of claim 1 wherein the fiber has an aspect ratio of greater than about 100.
7. The fiber of claim 1 wherein the fiber is straight, crimped, curved, or spiral-shaped.
8. The fiber of claim 1 wherein the fiber has a density of about 1 to about 4 g/cm3.
9. The fiber of claim 1 wherein the outer shell of at least one of the self-degrading fibers comprises at least one of the following: an aliphatic polyester; a poly(lactide); a poly(glycolide); a poly(ε-caprolactone); a poly(hydroxybutyrate); a polyanhydride; an aliphatic polycarbonate; a poly(orthoester); a poly(amide); a poly(urethane); a poly(hydroxy ester ether); or a poly(phosphazene).
10. The fiber of claim 1 wherein the core liquid of at least one of the self-degrading fibers comprises at least one of the following: an alcohol, an acid, or an aqueous-based fluid.
11. The fiber of claim 1 wherein the core liquid comprises an additive.
12. The fiber of claim 11 wherein the additive is a corrosion inhibitor, a chelator, an enzyme, or a breaker.
13. The fiber of claim 1 wherein the outer shell has a closed fiber end.
14. The fiber of claim 1 wherein the core liquid comprises a plurality of core liquids.
15. A subterranean treatment fluid comprising a base fluid and a plurality of self-degrading fibers, the self-degrading fibers comprising an outer shell and a core fluid.
16. The subterranean treatment fluid of claim 15 wherein the treatment fluid is a fracturing fluid or a gravel pack fluid.
17. The subterranean treatment fluid of claim 15 wherein the outer shell of at least one of the self-degrading fibers comprises at least one of the following: an aliphatic polyester; a poly(lactide); a poly(glycolide); a poly(ε-caprolactone); a poly(hydroxybutyrate); a polyanhydride; an aliphatic polycarbonate; a poly(orthoester); a poly(amide); a poly(urethane); a poly(hydroxy ester ether); or a poly(phosphazene).
18. The subterranean treatment fluid of claim 15 wherein the core liquid of at least one of the self-degrading fibers comprises at least one of the following: an alcohol, an acid, or an aqueous-based fluid.
19. A cement composition comprising a hydraulic cement, and a plurality of self-degrading fibers, the self-degrading fibers comprising an outer shell and a core fluid.
20. The cement composition of claim 19 wherein the outer shell of at least one of the self-degrading fibers comprises at least one of the following: an aliphatic polyester; a poly(lactide); a poly(glycolide); a poly(ε-caprolactone); a poly(hydroxybutyrate); a polyanhydride; an aliphatic polycarbonate; a poly(orthoester); a poly(amide); a poly(urethane); a poly(hydroxy ester ether); or a poly(phosphazene).
US11/047,876 2005-01-31 2005-01-31 Self-degrading fibers and associated methods of use and manufacture Abandoned US20080009423A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US11/047,876 US20080009423A1 (en) 2005-01-31 2005-01-31 Self-degrading fibers and associated methods of use and manufacture
PCT/GB2006/000064 WO2006079779A1 (en) 2005-01-31 2006-01-09 Self-degrading fibers and associated methods of use manufacture
CA002596649A CA2596649A1 (en) 2005-01-31 2006-01-09 Self-degrading fibers and associated methods of use manufacture
ARP060100218A AR055023A1 (en) 2005-01-31 2006-01-20 AUTO DEGRADABLE FIBERS AND ASSOCIATED USE AND MANUFACTURE METHODS
US12/401,736 US8188013B2 (en) 2005-01-31 2009-03-11 Self-degrading fibers and associated methods of use and manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/047,876 US20080009423A1 (en) 2005-01-31 2005-01-31 Self-degrading fibers and associated methods of use and manufacture

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/401,736 Division US8188013B2 (en) 2005-01-31 2009-03-11 Self-degrading fibers and associated methods of use and manufacture

Publications (1)

Publication Number Publication Date
US20080009423A1 true US20080009423A1 (en) 2008-01-10

Family

ID=36088486

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/047,876 Abandoned US20080009423A1 (en) 2005-01-31 2005-01-31 Self-degrading fibers and associated methods of use and manufacture
US12/401,736 Expired - Fee Related US8188013B2 (en) 2005-01-31 2009-03-11 Self-degrading fibers and associated methods of use and manufacture

Family Applications After (1)

Application Number Title Priority Date Filing Date
US12/401,736 Expired - Fee Related US8188013B2 (en) 2005-01-31 2009-03-11 Self-degrading fibers and associated methods of use and manufacture

Country Status (4)

Country Link
US (2) US20080009423A1 (en)
AR (1) AR055023A1 (en)
CA (1) CA2596649A1 (en)
WO (1) WO2006079779A1 (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060169454A1 (en) * 2005-02-01 2006-08-03 Savery Mark R Methods of isolating zones in subterranean formations using self-degrading cement compositions
US20060169452A1 (en) * 2005-02-01 2006-08-03 Savery Mark R Methods of directional drilling and forming kickoff plugs using self-degrading cement in subterranean well bores
US20060247135A1 (en) * 2005-04-29 2006-11-02 Halliburton Energy Services, Inc. Acidic treatment fluids comprising scleroglucan and/or diutan and associated methods
US20060254774A1 (en) * 2005-05-12 2006-11-16 Halliburton Energy Services, Inc. Degradable surfactants and methods for use
US20070042912A1 (en) * 2005-08-16 2007-02-22 Halliburton Energy Services, Inc. Delayed tackifying compositions and associated methods involving controlling particulate migration
US20070039733A1 (en) * 2005-08-16 2007-02-22 Halliburton Energy Services, Inc. Delayed tackifying compositions and associated methods involving controlling particulate migration
US20070066492A1 (en) * 2005-09-22 2007-03-22 Halliburton Energy Services, Inc. Orthoester-based surfactants and associated methods
US20080078549A1 (en) * 2006-09-29 2008-04-03 Halliburton Energy Services, Inc. Methods and Compositions Relating to the Control of the Rates of Acid-Generating Compounds in Acidizing Operations
US20080293843A1 (en) * 2005-11-28 2008-11-27 The Surrey Technology Centre. Comminutable Polyesters
US20090197780A1 (en) * 2008-02-01 2009-08-06 Weaver Jimmie D Ultrafine Grinding of Soft Materials
US20090258798A1 (en) * 2003-09-17 2009-10-15 Trinidad Munoz Methods and compositions using crosslinked aliphatic polyesters in well bore applications
US20100212906A1 (en) * 2009-02-20 2010-08-26 Halliburton Energy Services, Inc. Method for diversion of hydraulic fracture treatments
US7833943B2 (en) 2008-09-26 2010-11-16 Halliburton Energy Services Inc. Microemulsifiers and methods of making and using same
US7906464B2 (en) 2008-05-13 2011-03-15 Halliburton Energy Services, Inc. Compositions and methods for the removal of oil-based filtercakes
US8006760B2 (en) * 2008-04-10 2011-08-30 Halliburton Energy Services, Inc. Clean fluid systems for partial monolayer fracturing
US8082992B2 (en) 2009-07-13 2011-12-27 Halliburton Energy Services, Inc. Methods of fluid-controlled geometry stimulation
US8220548B2 (en) 2007-01-12 2012-07-17 Halliburton Energy Services Inc. Surfactant wash treatment fluids and associated methods
US20120213998A1 (en) * 2009-10-29 2012-08-23 Basf Se Process for the Preparation of Hyperbranched Hollow Fibers
US20150275607A1 (en) * 2014-03-31 2015-10-01 Schlumberger Technology Corporation Method for treating subterranean formation
US20160003022A1 (en) * 2014-07-01 2016-01-07 Research Triangle Institute Cementitious fracture fluid and methods of use thereof
WO2017022680A1 (en) * 2015-07-31 2017-02-09 株式会社Adeka Capsule and viscosity-variable fluid
WO2017022681A1 (en) * 2015-07-31 2017-02-09 株式会社Adeka Capsule, production method therefor, and viscosity-variable fluid
US10138407B2 (en) * 2013-03-15 2018-11-27 Forta Corporation Modified deformed reinforcement fibers, methods of making, and uses
CN113614295A (en) * 2019-03-28 2021-11-05 卡比奥斯公司 Multicomponent thermoplastic article
CN115875004A (en) * 2023-02-23 2023-03-31 陕西中立合创能源科技有限责任公司 Fracturing method for improving salt-resistant temperature-resistant performance of oil-gas well

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10011763B2 (en) 2007-07-25 2018-07-03 Schlumberger Technology Corporation Methods to deliver fluids on a well site with variable solids concentration from solid slurries
US9040468B2 (en) 2007-07-25 2015-05-26 Schlumberger Technology Corporation Hydrolyzable particle compositions, treatment fluids and methods
EP2085449A1 (en) 2007-12-28 2009-08-05 Services Pétroliers Schlumberger Cement composition comprising mixture of organic and inorganic fibres for curing severe losses especially in the reservoir section
US20160257872A9 (en) * 2010-09-17 2016-09-08 Schlumberger Technology Corporation Solid state dispersion
US20120067581A1 (en) * 2010-09-17 2012-03-22 Schlumberger Technology Corporation Mechanism for treating subteranean formations with embedded additives
JP6062868B2 (en) 2010-12-15 2017-01-18 スリーエム イノベイティブ プロパティズ カンパニー Degradation control fiber
WO2012109740A1 (en) * 2011-02-17 2012-08-23 Groupe Ctt Inc. Thermally insulating fiber
US20120285695A1 (en) * 2011-05-11 2012-11-15 Schlumberger Technology Corporation Destructible containers for downhole material and chemical delivery
US8985213B2 (en) 2012-08-02 2015-03-24 Halliburton Energy Services, Inc. Micro proppants for far field stimulation
DE102015113210A1 (en) 2015-08-11 2017-02-16 heiler GmbH & Co. KG Fiber-reinforced turf layer
MX2018014090A (en) 2016-05-19 2019-04-01 Carbios A process for degrading plastic products.

Citations (95)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3173484A (en) * 1958-09-02 1965-03-16 Gulf Research Development Co Fracturing process employing a heterogeneous propping agent
US3302719A (en) * 1965-01-25 1967-02-07 Union Oil Co Method for treating subterranean formations
US3364995A (en) * 1966-02-14 1968-01-23 Dow Chemical Co Hydraulic fracturing fluid-bearing earth formations
US3366178A (en) * 1965-09-10 1968-01-30 Halliburton Co Method of fracturing and propping a subterranean formation
US4010071A (en) * 1974-10-10 1977-03-01 Merck & Co., Inc. Clarification of xanthan gum
US4068718A (en) * 1975-09-26 1978-01-17 Exxon Production Research Company Hydraulic fracturing method using sintered bauxite propping agent
US4252421A (en) * 1978-11-09 1981-02-24 John D. McCarry Contact lenses with a colored central area
US4261421A (en) * 1980-03-24 1981-04-14 Union Oil Company Of California Method for selectively acidizing the less permeable zones of a high temperature subterranean formation
US4265673A (en) * 1978-06-23 1981-05-05 Talres Development (N.A.) N.V. Polymer solutions for use in oil recovery containing a complexing agent for multivalentions
US4322381A (en) * 1975-12-29 1982-03-30 Nippon Zeon Co., Ltd. Method of manufacturing hollow fiber
US4502540A (en) * 1981-06-01 1985-03-05 Mobil Oil Corporation Tertiary oil recovery
US4506734A (en) * 1983-09-07 1985-03-26 The Standard Oil Company Fracturing fluid breaker system which is activated by fracture closure
US4817721A (en) * 1987-12-14 1989-04-04 Conoco Inc. Reducing the permeability of a rock formation
US4822500A (en) * 1988-02-29 1989-04-18 Texas United Chemical Corporation Saturated brine well treating fluids and additives therefore
US4829100A (en) * 1987-10-23 1989-05-09 Halliburton Company Continuously forming and transporting consolidatable resin coated particulate materials in aqueous gels
US4894231A (en) * 1987-07-28 1990-01-16 Biomeasure, Inc. Therapeutic agent delivery system
US5203834A (en) * 1990-12-21 1993-04-20 Union Oil Company Of California Foamed gels having selective permeability
US5213446A (en) * 1991-01-31 1993-05-25 Union Oil Company Of California Drilling mud disposal technique
US5304620A (en) * 1992-12-21 1994-04-19 Halliburton Company Method of crosslinking cellulose and guar derivatives for treating subterranean formations
US5314031A (en) * 1992-10-22 1994-05-24 Shell Oil Company Directional drilling plug
US5484881A (en) * 1992-10-02 1996-01-16 Cargill, Inc. Melt-stable amorphous lactide polymer film and process for manufacturing thereof
US5487897A (en) * 1989-07-24 1996-01-30 Atrix Laboratories, Inc. Biodegradable implant precursor
US5492177A (en) * 1994-12-01 1996-02-20 Mobil Oil Corporation Method for consolidating a subterranean formation
US5496557A (en) * 1990-01-30 1996-03-05 Akzo N.V. Article for the controlled delivery of an active substance, comprising a hollow space fully enclosed by a wall and filled in full or in part with one or more active substances
US5501276A (en) * 1994-09-15 1996-03-26 Halliburton Company Drilling fluid and filter cake removal methods and compositions
US5594095A (en) * 1993-07-30 1997-01-14 Cargill, Incorporated Viscosity-modified lactide polymer composition and process for manufacture thereof
US5602083A (en) * 1995-03-31 1997-02-11 Baker Hughes Inc. Use of sized salts as bridging agent for oil based fluids
US5607905A (en) * 1994-03-15 1997-03-04 Texas United Chemical Company, Llc. Well drilling and servicing fluids which deposit an easily removable filter cake
US5613558A (en) * 1995-06-02 1997-03-25 Bj Services Company Method for controlling the set time of cement
US5723416A (en) * 1997-04-01 1998-03-03 Liao; W. Andrew Well servicing fluid for trenchless directional drilling
US6172011B1 (en) * 1993-04-05 2001-01-09 Schlumberger Technolgy Corporation Control of particulate flowback in subterranean wells
US6189615B1 (en) * 1998-12-15 2001-02-20 Marathon Oil Company Application of a stabilized polymer gel to an alkaline treatment region for improved hydrocarbon recovery
US6202751B1 (en) * 2000-07-28 2001-03-20 Halliburton Energy Sevices, Inc. Methods and compositions for forming permeable cement sand screens in well bores
US6209646B1 (en) * 1999-04-21 2001-04-03 Halliburton Energy Services, Inc. Controlling the release of chemical additives in well treating fluids
US6209643B1 (en) * 1995-03-29 2001-04-03 Halliburton Energy Services, Inc. Method of controlling particulate flowback in subterranean wells and introducing treatment chemicals
US6214773B1 (en) * 1999-09-29 2001-04-10 Halliburton Energy Services, Inc. High temperature, low residue well treating fluids and methods
US6357527B1 (en) * 2000-05-05 2002-03-19 Halliburton Energy Services, Inc. Encapsulated breakers and method for use in treating subterranean formations
US20020036088A1 (en) * 2000-08-01 2002-03-28 Todd Bradley L. Well drilling and servicing fluids and methods of removing filter cake deposited thereby
US6380138B1 (en) * 1999-04-06 2002-04-30 Fairmount Minerals Ltd. Injection molded degradable casing perforation ball sealers fluid loss additive and method of use
US6387986B1 (en) * 1999-06-24 2002-05-14 Ahmad Moradi-Araghi Compositions and processes for oil field applications
US6390195B1 (en) * 2000-07-28 2002-05-21 Halliburton Energy Service,S Inc. Methods and compositions for forming permeable cement sand screens in well bores
US6394185B1 (en) * 2000-07-27 2002-05-28 Vernon George Constien Product and process for coating wellbore screens
US6509301B1 (en) * 1999-08-26 2003-01-21 Daniel Patrick Vollmer Well treatment fluids and methods for the use thereof
US6508305B1 (en) * 1999-09-16 2003-01-21 Bj Services Company Compositions and methods for cementing using elastic particles
US6527051B1 (en) * 2000-05-05 2003-03-04 Halliburton Energy Services, Inc. Encapsulated chemicals for use in controlled time release applications and methods
US20030054962A1 (en) * 2001-08-14 2003-03-20 England Kevin W. Methods for stimulating hydrocarbon production
US6566310B2 (en) * 1999-08-12 2003-05-20 Atlantic Richfield Company Tandem spacer fluid system and method for positioning a cement slurry in a wellbore annulus
US6569814B1 (en) * 1998-12-31 2003-05-27 Schlumberger Technology Corporation Fluids and techniques for hydrocarbon well completion
US20040014607A1 (en) * 2002-07-16 2004-01-22 Sinclair A. Richard Downhole chemical delivery system for oil and gas wells
US20040014606A1 (en) * 2002-07-19 2004-01-22 Schlumberger Technology Corp Method For Completing Injection Wells
US6681856B1 (en) * 2003-05-16 2004-01-27 Halliburton Energy Services, Inc. Methods of cementing in subterranean zones penetrated by well bores using biodegradable dispersants
US6686328B1 (en) * 1998-07-17 2004-02-03 The Procter & Gamble Company Detergent tablet
US6691780B2 (en) * 2002-04-18 2004-02-17 Halliburton Energy Services, Inc. Tracking of particulate flowback in subterranean wells
US6702023B1 (en) * 1999-07-02 2004-03-09 Cleansorb Limited Method for treatment of underground reservoirs
US6710019B1 (en) * 1998-07-30 2004-03-23 Christopher Alan Sawdon Wellbore fluid
US6716797B2 (en) * 1997-02-13 2004-04-06 Masi Technologies, L.L.C. Aphron-containing well drilling and servicing fluids
US20040070093A1 (en) * 1995-07-21 2004-04-15 Brown University Research Foundation Process for preparing microparticles through phase inversion phenomena
US6737385B2 (en) * 2000-08-01 2004-05-18 Halliburton Energy Services, Inc. Well drilling and servicing fluids and methods of removing filter cake deposited thereby
US20040094300A1 (en) * 2002-08-26 2004-05-20 Schlumberger Technology Corp. Dissolving Filter Cake
US20040099416A1 (en) * 2002-06-13 2004-05-27 Vijn Jan Pieter Cementing subterranean zones using cement compositions containing biodegradable dispersants
US6837309B2 (en) * 2001-09-11 2005-01-04 Schlumberger Technology Corporation Methods and fluid compositions designed to cause tip screenouts
US20050006095A1 (en) * 2003-07-08 2005-01-13 Donald Justus Reduced-density proppants and methods of using reduced-density proppants to enhance their transport in well bores and fractures
US20050028976A1 (en) * 2003-08-05 2005-02-10 Nguyen Philip D. Compositions and methods for controlling the release of chemicals placed on particulates
US20050034865A1 (en) * 2003-08-14 2005-02-17 Todd Bradley L. Compositions and methods for degrading filter cake
US20050034868A1 (en) * 2003-08-14 2005-02-17 Frost Keith A. Orthoester compositions and methods of use in subterranean applications
US20050034861A1 (en) * 2003-08-14 2005-02-17 Saini Rajesh K. On-the fly coating of acid-releasing degradable material onto a particulate
US20050059557A1 (en) * 2003-09-17 2005-03-17 Todd Bradley L. Subterranean treatment fluids and methods of treating subterranean formations
US20050059558A1 (en) * 2003-06-27 2005-03-17 Blauch Matthew E. Methods for improving proppant pack permeability and fracture conductivity in a subterranean well
US6883608B2 (en) * 2003-08-06 2005-04-26 Schlumberger Technology Corporation Gravel packing method
US20050103496A1 (en) * 2003-11-18 2005-05-19 Todd Bradley L. Compositions and methods for weighting a breaker coating for uniform distribution in a particulate pack
US6896058B2 (en) * 2002-10-22 2005-05-24 Halliburton Energy Services, Inc. Methods of introducing treating fluids into subterranean producing zones
US6981552B2 (en) * 2003-03-21 2006-01-03 Halliburton Energy Services, Inc. Well treatment fluid and methods with oxidized polysaccharide-based polymers
US6983801B2 (en) * 2001-01-09 2006-01-10 Bj Services Company Well treatment fluid compositions and methods for their use
US6987083B2 (en) * 2003-04-11 2006-01-17 Halliburton Energy Services, Inc. Xanthan gels in brines and methods of using such xanthan gels in subterranean formations
US20060016596A1 (en) * 2004-07-23 2006-01-26 Pauls Richard W Treatment fluids and methods of use in subterranean formations
US6997259B2 (en) * 2003-09-05 2006-02-14 Halliburton Energy Services, Inc. Methods for forming a permeable and stable mass in a subterranean formation
US20060032633A1 (en) * 2004-08-10 2006-02-16 Nguyen Philip D Methods and compositions for carrier fluids comprising water-absorbent fibers
US20060046938A1 (en) * 2004-09-02 2006-03-02 Harris Philip C Methods and compositions for delinking crosslinked fluids
US7007752B2 (en) * 2003-03-21 2006-03-07 Halliburton Energy Services, Inc. Well treatment fluid and methods with oxidized polysaccharide-based polymers
US20060048938A1 (en) * 2004-09-03 2006-03-09 Kalman Mark D Carbon foam particulates and methods of using carbon foam particulates in subterranean applications
US20060065397A1 (en) * 2004-09-24 2006-03-30 Nguyen Philip D Methods and compositions for inducing tip screenouts in frac-packing operations
US7021337B2 (en) * 2004-02-27 2006-04-04 Markham Allen R Plumbing test plug and method
US7032663B2 (en) * 2003-06-27 2006-04-25 Halliburton Energy Services, Inc. Permeable cement and sand control methods utilizing permeable cement in subterranean well bores
US7036587B2 (en) * 2003-06-27 2006-05-02 Halliburton Energy Services, Inc. Methods of diverting treating fluids in subterranean zones and degradable diverting materials
US7036586B2 (en) * 2004-01-30 2006-05-02 Halliburton Energy Services, Inc. Methods of cementing in subterranean formations using crack resistant cement compositions
US7044220B2 (en) * 2003-06-27 2006-05-16 Halliburton Energy Services, Inc. Compositions and methods for improving proppant pack permeability and fracture conductivity in a subterranean well
US20060105917A1 (en) * 2004-11-17 2006-05-18 Halliburton Energy Services, Inc. In-situ filter cake degradation compositions and methods of use in subterranean formations
US20060105918A1 (en) * 2004-11-17 2006-05-18 Halliburton Energy Services, Inc. Methods of degrading filter cakes in subterranean formations
US7156174B2 (en) * 2004-01-30 2007-01-02 Halliburton Energy Services, Inc. Contained micro-particles for use in well bore operations
US7165617B2 (en) * 2004-07-27 2007-01-23 Halliburton Energy Services, Inc. Viscosified treatment fluids and associated methods of use
US7168489B2 (en) * 2001-06-11 2007-01-30 Halliburton Energy Services, Inc. Orthoester compositions and methods for reducing the viscosified treatment fluids
US7172022B2 (en) * 2004-03-17 2007-02-06 Halliburton Energy Services, Inc. Cement compositions containing degradable materials and methods of cementing in subterranean formations
US7195068B2 (en) * 2003-12-15 2007-03-27 Halliburton Energy Services, Inc. Filter cake degradation compositions and methods of use in subterranean operations
US7204312B2 (en) * 2004-01-30 2007-04-17 Halliburton Energy Services, Inc. Compositions and methods for the delivery of chemical components in subterranean well bores
US7322412B2 (en) * 2004-08-30 2008-01-29 Halliburton Energy Services, Inc. Casing shoes and methods of reverse-circulation cementing of casing

Family Cites Families (186)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2238671A (en) * 1940-02-09 1941-04-15 Du Pont Method of treating wells
US2703316A (en) * 1951-06-05 1955-03-01 Du Pont Polymers of high melting lactide
US3272650A (en) 1963-02-21 1966-09-13 Union Carbide Corp Process for cleaning conduits
US3195635A (en) 1963-05-23 1965-07-20 Pan American Petroleum Corp Spacers for fracture props
US3455390A (en) 1965-12-03 1969-07-15 Union Oil Co Low fluid loss well treating composition and method
US3784585A (en) * 1971-10-21 1974-01-08 American Cyanamid Co Water-degradable resins containing recurring,contiguous,polymerized glycolide units and process for preparing same
US3747681A (en) 1972-05-26 1973-07-24 Marathon Oil Co Hydraulic fracturing process using polyethylene oxide based fracturing fluid
US3819525A (en) 1972-08-21 1974-06-25 Avon Prod Inc Cosmetic cleansing preparation
US3828854A (en) 1973-04-16 1974-08-13 Shell Oil Co Dissolving siliceous materials with self-acidifying liquid
US3912692A (en) 1973-05-03 1975-10-14 American Cyanamid Co Process for polymerizing a substantially pure glycolide composition
US3968840A (en) 1973-05-25 1976-07-13 Texaco Inc. Controlled rate acidization process
US3948672A (en) * 1973-12-28 1976-04-06 Texaco Inc. Permeable cement composition and method
US3955993A (en) 1973-12-28 1976-05-11 Texaco Inc. Method and composition for stabilizing incompetent oil-containing formations
US3868998A (en) * 1974-05-15 1975-03-04 Shell Oil Co Self-acidifying treating fluid positioning process
US3960736A (en) 1974-06-03 1976-06-01 The Dow Chemical Company Self-breaking viscous aqueous solutions and the use thereof in fracturing subterranean formations
US4172066A (en) 1974-06-21 1979-10-23 The Dow Chemical Company Cross-linked, water-swellable polymer microgels
US3986355A (en) 1974-08-15 1976-10-19 Klaeger Joseph H Well head gas counter balanced and operated actuator for oil well pumps
US3998744A (en) 1975-04-16 1976-12-21 Standard Oil Company Oil fracturing spacing agents
US3998272A (en) 1975-04-21 1976-12-21 Union Oil Company Of California Method of acidizing wells
US4169798A (en) 1976-11-26 1979-10-02 Celanese Corporation Well-treating compositions
US4385017A (en) 1977-06-30 1983-05-24 Nippon Zeon Co., Ltd. Method of manufacturing hollow fiber
JPS5812932B2 (en) * 1977-06-30 1983-03-10 日本ゼオン株式会社 Hollow fiber manufacturing method
CA1141114A (en) * 1978-11-24 1983-02-15 Masamichi Ishida Regenerated cellulose hollow fiber and process for manufacturing same
US4299825A (en) 1980-07-03 1981-11-10 Celanese Corporation Concentrated xanthan gum solutions
US4498995A (en) 1981-08-10 1985-02-12 Judith Gockel Lost circulation drilling fluid
US4526695A (en) 1981-08-10 1985-07-02 Exxon Production Research Co. Composition for reducing the permeability of subterranean formations
US4716964A (en) * 1981-08-10 1988-01-05 Exxon Production Research Company Use of degradable ball sealers to seal casing perforations in well treatment fluid diversion
US4387769A (en) 1981-08-10 1983-06-14 Exxon Production Research Co. Method for reducing the permeability of subterranean formations
US4460052A (en) 1981-08-10 1984-07-17 Judith Gockel Prevention of lost circulation of drilling muds
US4470915A (en) 1982-09-27 1984-09-11 Halliburton Company Method and compositions for fracturing subterranean formations
US4521316A (en) 1983-03-11 1985-06-04 Fmc Corporation Oil well completion fluid
NL8401912A (en) * 1984-06-15 1986-01-02 Tno BIODEGRADABLE POLYMER SUBSTRATES LOADED WITH ACTIVE SUBSTANCE, SUITABLE FOR THE CONTROLLED DELIVERY OF THE ACTIVE SUBSTANCE BY MEMBRANE.
FR2580666B1 (en) 1985-04-19 1988-01-15 Elf Aquitaine IMPROVEMENT IN IMMOBILIZATION OF ENZYMES
US4632876A (en) 1985-06-12 1986-12-30 Minnesota Mining And Manufacturing Company Ceramic spheroids having low density and high crush resistance
US4750562A (en) * 1985-08-30 1988-06-14 Mobil Oil Corporation Method to divert fractures induced by high impulse fracturing
US4715967A (en) 1985-12-27 1987-12-29 E. I. Du Pont De Nemours And Company Composition and method for temporarily reducing permeability of subterranean formations
US4772346A (en) 1986-02-14 1988-09-20 International Business Machines Corporation Method of bonding inorganic particulate material
US4694905A (en) 1986-05-23 1987-09-22 Acme Resin Corporation Precured coated particulate material
US4785884A (en) 1986-05-23 1988-11-22 Acme Resin Corporation Consolidation of partially cured resin coated particulate material
US4693808A (en) * 1986-06-16 1987-09-15 Shell Oil Company Downflow fluidized catalytic cranking reactor process and apparatus with quick catalyst separation means in the bottom thereof
US4737295A (en) 1986-07-21 1988-04-12 Venture Chemicals, Inc. Organophilic polyphenolic acid adducts
MX168601B (en) 1986-10-01 1993-06-01 Air Prod & Chem PROCEDURE FOR THE PREPARATION OF A HIGH MOLECULAR WEIGHT VINYLAMINE HOMOPOLYMER
US4793416A (en) 1987-06-30 1988-12-27 Mobile Oil Corporation Organic crosslinking of polymers for CO2 flooding profile control
US4836940A (en) 1987-09-14 1989-06-06 American Colloid Company Composition and method of controlling lost circulation from wellbores
US5152781A (en) 1987-12-17 1992-10-06 Allied-Signal Inc. Medical devices fabricated from homopolymers and copolymers having recurring carbonate units
US4867934A (en) * 1987-12-23 1989-09-19 Cuno, Inc. Production of hollow nylon fibers
US4809783A (en) * 1988-01-14 1989-03-07 Halliburton Services Method of dissolving organic filter cake
US4957165A (en) 1988-02-16 1990-09-18 Conoco Inc. Well treatment process
US4848467A (en) 1988-02-16 1989-07-18 Conoco Inc. Formation fracturing process
US4886354A (en) 1988-05-06 1989-12-12 Conoco Inc. Method and apparatus for measuring crystal formation
US5216050A (en) 1988-08-08 1993-06-01 Biopak Technology, Ltd. Blends of polyactic acid
US6323307B1 (en) 1988-08-08 2001-11-27 Cargill Dow Polymers, Llc Degradation control of environmentally degradable disposable materials
US4986353A (en) * 1988-09-14 1991-01-22 Conoco Inc. Placement process for oil field chemicals
US4986354A (en) * 1988-09-14 1991-01-22 Conoco Inc. Composition and placement process for oil field chemicals
US4961466A (en) 1989-01-23 1990-10-09 Halliburton Company Method for effecting controlled break in polysaccharide gels
US4986355A (en) * 1989-05-18 1991-01-22 Conoco Inc. Process for the preparation of fluid loss additive and gel breaker
US5034139A (en) 1989-06-19 1991-07-23 Nalco Chemical Company Polymer composition comprising phosphorous-containing gelling agent and process thereof
GB8920990D0 (en) * 1989-09-15 1989-11-01 British Petroleum Co Plc Membrane fabrication
US5464060A (en) 1989-12-27 1995-11-07 Shell Oil Company Universal fluids for drilling and cementing wells
US5082056A (en) * 1990-10-16 1992-01-21 Marathon Oil Company In situ reversible crosslinked polymer gel used in hydrocarbon recovery applications
FR2668490B1 (en) 1990-10-29 1994-04-29 Elf Aquitaine SCLEROGLUCANE GEL APPLIES TO THE OIL INDUSTRY.
GB9108665D0 (en) 1991-04-23 1991-06-12 Unilever Plc Liquid cleaning products
US5161615A (en) 1991-06-27 1992-11-10 Union Oil Company Of California Method for reducing water production from wells
JPH07500264A (en) 1991-10-10 1995-01-12 アルザ・コーポレーション Osmotic drug delivery device with hydrophobic wall material
JP3232117B2 (en) * 1991-11-19 2001-11-26 鐘淵化学工業株式会社 Polysulfone porous hollow fiber
US5247059A (en) 1992-01-24 1993-09-21 Cargill, Incorporated Continuous process for the manufacture of a purified lactide from esters of lactic acid
US6326458B1 (en) 1992-01-24 2001-12-04 Cargill, Inc. Continuous process for the manufacture of lactide and lactide polymers
US5142023A (en) 1992-01-24 1992-08-25 Cargill, Incorporated Continuous process for manufacture of lactide polymers with controlled optical purity
US5251697A (en) 1992-03-25 1993-10-12 Chevron Research And Technology Company Method of preventing in-depth formation damage during injection of water into a formation
US5249628A (en) 1992-09-29 1993-10-05 Halliburton Company Horizontal well completions
US5325923A (en) 1992-09-29 1994-07-05 Halliburton Company Well completions with expandable casing portions
US5396957A (en) * 1992-09-29 1995-03-14 Halliburton Company Well completions with expandable casing portions
US5295542A (en) * 1992-10-05 1994-03-22 Halliburton Company Well gravel packing methods
US5363916A (en) 1992-12-21 1994-11-15 Halliburton Company Method of gravel packing a well
US5316587A (en) 1993-01-21 1994-05-31 Church & Dwight Co., Inc. Water soluble blast media containing surfactant
JPH06225848A (en) 1993-02-01 1994-08-16 Tootaru Service:Kk Cleaning method for outer wall surface of building
US5330005A (en) 1993-04-05 1994-07-19 Dowell Schlumberger Incorporated Control of particulate flowback in subterranean wells
US5360068A (en) 1993-04-19 1994-11-01 Mobil Oil Corporation Formation fracturing
US5373901A (en) 1993-07-27 1994-12-20 Halliburton Company Encapsulated breakers and method for use in treating subterranean formations
US5386874A (en) * 1993-11-08 1995-02-07 Halliburton Company Perphosphate viscosity breakers in well fracture fluids
US5402846A (en) * 1993-11-15 1995-04-04 Mobil Oil Corporation Unique method of hydraulic fracturing
DK0656459T3 (en) 1993-11-27 2001-06-18 Aea Technology Plc Process for treating oil wells
US5460226A (en) 1994-05-18 1995-10-24 Shell Oil Company Formation fracturing
US5499678A (en) * 1994-08-02 1996-03-19 Halliburton Company Coplanar angular jetting head for well perforating
US5591700A (en) * 1994-12-22 1997-01-07 Halliburton Company Fracturing fluid with encapsulated breaker
US5604186A (en) * 1995-02-15 1997-02-18 Halliburton Company Encapsulated enzyme breaker and method for use in treating subterranean formations
GB9503949D0 (en) 1995-02-28 1995-04-19 Atomic Energy Authority Uk Oil well treatment
US5833000A (en) 1995-03-29 1998-11-10 Halliburton Energy Services, Inc. Control of particulate flowback in subterranean wells
US5775425A (en) 1995-03-29 1998-07-07 Halliburton Energy Services, Inc. Control of fine particulate flowback in subterranean wells
US6047772A (en) 1995-03-29 2000-04-11 Halliburton Energy Services, Inc. Control of particulate flowback in subterranean wells
US5497830A (en) * 1995-04-06 1996-03-12 Bj Services Company Coated breaker for crosslinked acid
US5670473A (en) 1995-06-06 1997-09-23 Sunburst Chemicals, Inc. Solid cleaning compositions based on hydrated salts
US6028113A (en) * 1995-09-27 2000-02-22 Sunburst Chemicals, Inc. Solid sanitizers and cleaner disinfectants
US5849401A (en) 1995-09-28 1998-12-15 Cargill, Incorporated Compostable multilayer structures, methods for manufacture, and articles prepared therefrom
US5697440A (en) 1996-01-04 1997-12-16 Halliburton Energy Services, Inc. Control of particulate flowback in subterranean wells
US5985312A (en) 1996-01-26 1999-11-16 Brown University Research Foundation Methods and compositions for enhancing the bioadhesive properties of polymers
US5799734A (en) 1996-07-18 1998-09-01 Halliburton Energy Services, Inc. Method of forming and using particulate slurries for well completion
US5964295A (en) 1996-10-09 1999-10-12 Schlumberger Technology Corporation, Dowell Division Methods and compositions for testing subterranean formations
US6667279B1 (en) 1996-11-13 2003-12-23 Wallace, Inc. Method and composition for forming water impermeable barrier
US5698322A (en) 1996-12-02 1997-12-16 Kimberly-Clark Worldwide, Inc. Multicomponent fiber
US5765642A (en) 1996-12-23 1998-06-16 Halliburton Energy Services, Inc. Subterranean formation fracturing methods
US6123159A (en) 1997-02-13 2000-09-26 Actisystems, Inc. Aphron-containing well drilling and servicing fluids of enhanced stability
US6110875A (en) 1997-03-07 2000-08-29 Bj Services Company Methods and materials for degrading xanthan
US5791415A (en) 1997-03-13 1998-08-11 Halliburton Energy Services, Inc. Stimulating wells in unconsolidated formations
US6169058B1 (en) * 1997-06-05 2001-01-02 Bj Services Company Compositions and methods for hydraulic fracturing
US5924488A (en) 1997-06-11 1999-07-20 Halliburton Energy Services, Inc. Methods of preventing well fracture proppant flow-back
US5908073A (en) 1997-06-26 1999-06-01 Halliburton Energy Services, Inc. Preventing well fracture proppant flow-back
US6004400A (en) 1997-07-09 1999-12-21 Phillip W. Bishop Carbon dioxide cleaning process
AU738096B2 (en) 1997-08-15 2001-09-06 Halliburton Energy Services, Inc. Light weight high temperature well cement compositions and methods
US6302209B1 (en) 1997-09-10 2001-10-16 Bj Services Company Surfactant compositions and uses therefor
US6135987A (en) 1997-12-22 2000-10-24 Kimberly-Clark Worldwide, Inc. Synthetic fiber
EP0926310A1 (en) 1997-12-24 1999-06-30 Shell Internationale Researchmaatschappij B.V. Apparatus and method for injecting treatment fluids into an underground formation
US6308788B1 (en) 1998-01-08 2001-10-30 M-I Llc Conductive medium for openhole logging and logging while drilling
US6162766A (en) 1998-05-29 2000-12-19 3M Innovative Properties Company Encapsulated breakers, compositions and methods of use
US6024170A (en) * 1998-06-03 2000-02-15 Halliburton Energy Services, Inc. Methods of treating subterranean formation using borate cross-linking compositions
US6114410A (en) 1998-07-17 2000-09-05 Technisand, Inc. Proppant containing bondable particles and removable particles
US5916849A (en) 1998-07-24 1999-06-29 Venture Innovations, Inc. Polysaccharide-containing well drilling and servicing fluids
US6148917A (en) 1998-07-24 2000-11-21 Actisystems, Inc. Method of releasing stuck pipe or tools and spotting fluids therefor
US6242390B1 (en) * 1998-07-31 2001-06-05 Schlumberger Technology Corporation Cleanup additive
US6131661A (en) 1998-08-03 2000-10-17 Tetra Technologies Inc. Method for removing filtercake
US5996693A (en) 1998-09-15 1999-12-07 Halliburton Energy Services, Inc. Methods and compositions for cementing pipe in well bores
DE19852971A1 (en) 1998-11-17 2000-05-18 Cognis Deutschland Gmbh Lubricants for drilling fluids
US20030130133A1 (en) 1999-01-07 2003-07-10 Vollmer Daniel Patrick Well treatment fluid
US6599863B1 (en) 1999-02-18 2003-07-29 Schlumberger Technology Corporation Fracturing process and composition
US6234251B1 (en) 1999-02-22 2001-05-22 Halliburton Energy Services, Inc. Resilient well cement compositions and methods
GB9906484D0 (en) 1999-03-19 1999-05-12 Cleansorb Ltd Method for treatment of underground reservoirs
US6291013B1 (en) 1999-05-03 2001-09-18 Southern Biosystems, Inc. Emulsion-based processes for making microparticles
PT1183385E (en) 1999-05-21 2006-11-30 Cargill Dow Llc Methods and materials for the synthesis of organic products
US6454004B2 (en) 1999-07-15 2002-09-24 Halliburton Energy Services, Inc. Cementing casing strings in deep water offshore wells
US6300286B1 (en) 1999-08-05 2001-10-09 Texas United Chemical Company, L.L.C. Divalent cation-containing well drilling and service fluid
US6818594B1 (en) 1999-11-12 2004-11-16 M-I L.L.C. Method for the triggered release of polymer-degrading agents for oil field use
DE60024677T2 (en) 1999-12-08 2006-07-06 National Institute Of Advanced Industrial Science And Technology BIODEGRADABLE RESIN COMPOSITIONS
US6578630B2 (en) 1999-12-22 2003-06-17 Weatherford/Lamb, Inc. Apparatus and methods for expanding tubulars in a wellbore
US6311773B1 (en) 2000-01-28 2001-11-06 Halliburton Energy Services, Inc. Resin composition and methods of consolidating particulate solids in wells with or without closure pressure
DE10012063A1 (en) 2000-03-14 2001-09-20 Basf Ag Soft plasticizer-free capsules for use in pharmaceuticals, cosmetics, detergents or plant protectants are made from a polymers obtained by polymerizing a vinyl ester in presence of a polyether substrate
AU2001256356A1 (en) 2000-05-15 2001-11-26 Drochon, Bruno Permeable cements
US6454003B1 (en) 2000-06-14 2002-09-24 Ondeo Nalco Energy Services, L.P. Composition and method for recovering hydrocarbon fluids from a subterranean reservoir
WO2002012674A1 (en) 2000-08-07 2002-02-14 T R Oil Services Limited Method for delivering chemicals to an oil or gas well
US6432155B1 (en) 2000-08-11 2002-08-13 Cp Kelco U.S., Inc. Compositions containing phosphate and xanthan gum variants
US7276466B2 (en) 2001-06-11 2007-10-02 Halliburton Energy Services, Inc. Compositions and methods for reducing the viscosity of a fluid
US6737473B2 (en) 2001-07-13 2004-05-18 Dow Corning Corporation High solids emulsions of elastomeric polymers
WO2003027431A2 (en) 2001-09-26 2003-04-03 Cooke Claude E Jr Method and materials for hydraulic fracturing of wells
US20030147965A1 (en) 2001-12-10 2003-08-07 Spherics, Inc. Methods and products useful in the formation and isolation of microparticles
US6861394B2 (en) 2001-12-19 2005-03-01 M-I L.L.C. Internal breaker
US6761218B2 (en) 2002-04-01 2004-07-13 Halliburton Energy Services, Inc. Methods and apparatus for improving performance of gravel packing systems
US6852173B2 (en) 2002-04-05 2005-02-08 Boc, Inc. Liquid-assisted cryogenic cleaning
US6840318B2 (en) 2002-06-20 2005-01-11 Schlumberger Technology Corporation Method for treating subterranean formation
US7219731B2 (en) 2002-08-26 2007-05-22 Schlumberger Technology Corporation Degradable additive for viscoelastic surfactant based fluid systems
US6886635B2 (en) * 2002-08-28 2005-05-03 Tetra Technologies, Inc. Filter cake removal fluid and method
US6959767B2 (en) 2002-09-12 2005-11-01 M-I Llc Remediation treatment of sustained casing pressures (SCP) in wells with top down surface injection of fluids and additives
US6817414B2 (en) * 2002-09-20 2004-11-16 M-I Llc Acid coated sand for gravel pack and filter cake clean-up
WO2004037946A1 (en) 2002-10-28 2004-05-06 Schlumberger Canada Limited Self-destructing filter cake
JP2004181820A (en) 2002-12-04 2004-07-02 Unitika Ltd Biodegradable concrete form
US7147067B2 (en) 2002-12-10 2006-12-12 Halliburton Energy Services, Inc. Zeolite-containing drilling fluids
EP1431368A1 (en) 2002-12-18 2004-06-23 Eliokem Fluid loss reducer for high temperature high pressure water-based mud application
AU2003288607A1 (en) * 2002-12-19 2004-07-14 Sofitech N.V. Method for providing treatment chemicals in a subterranean well
US20040170836A1 (en) * 2003-01-07 2004-09-02 The Procter & Gamble Company Hollow fiber fabrics
CA2455249A1 (en) 2003-01-17 2004-07-17 Bj Services Company Crosslinking delaying agents for acid fluids
US7069994B2 (en) 2003-03-18 2006-07-04 Cooke Jr Claude E Method for hydraulic fracturing with squeeze pressure
US6764981B1 (en) 2003-03-21 2004-07-20 Halliburton Energy Services, Inc. Well treatment fluid and methods with oxidized chitosan-based compound
WO2004085419A1 (en) 2003-03-24 2004-10-07 Basf Aktiengesellschaft Trifluoromethyl-thiophene carboxylic acid anilides and use thereof as fungicides
US7114570B2 (en) 2003-04-07 2006-10-03 Halliburton Energy Services, Inc. Methods and compositions for stabilizing unconsolidated subterranean formations
US6904971B2 (en) 2003-04-24 2005-06-14 Halliburton Energy Services, Inc. Cement compositions with improved corrosion resistance and methods of cementing in subterranean formations
US20040231845A1 (en) 2003-05-15 2004-11-25 Cooke Claude E. Applications of degradable polymers in wells
US7228904B2 (en) 2003-06-27 2007-06-12 Halliburton Energy Services, Inc. Compositions and methods for improving fracture conductivity in a subterranean well
US7044224B2 (en) 2003-06-27 2006-05-16 Halliburton Energy Services, Inc. Permeable cement and methods of fracturing utilizing permeable cement in subterranean well bores
US7497278B2 (en) 2003-08-14 2009-03-03 Halliburton Energy Services, Inc. Methods of degrading filter cakes in a subterranean formation
US8076271B2 (en) 2004-06-09 2011-12-13 Halliburton Energy Services, Inc. Aqueous tackifier and methods of controlling particulates
US7131491B2 (en) 2004-06-09 2006-11-07 Halliburton Energy Services, Inc. Aqueous-based tackifier fluids and methods of use
US7021377B2 (en) 2003-09-11 2006-04-04 Halliburton Energy Services, Inc. Methods of removing filter cake from well producing zones
US7096947B2 (en) 2004-01-27 2006-08-29 Halliburton Energy Services, Inc. Fluid loss control additives for use in fracturing subterranean formations
US20050183741A1 (en) 2004-02-20 2005-08-25 Surjaatmadja Jim B. Methods of cleaning and cutting using jetted fluids
US7063151B2 (en) 2004-03-05 2006-06-20 Halliburton Energy Services, Inc. Methods of preparing and using coated particulates
US7093664B2 (en) 2004-03-18 2006-08-22 Halliburton Energy Services, Inc. One-time use composite tool formed of fibers and a biodegradable resin
US7353879B2 (en) 2004-03-18 2008-04-08 Halliburton Energy Services, Inc. Biodegradable downhole tools
GB2412389A (en) 2004-03-27 2005-09-28 Cleansorb Ltd Process for treating underground formations
US7151077B2 (en) 2004-03-29 2006-12-19 Halliburton Energy Services, Inc. Polymersome compositions and associated methods of use
US20060014648A1 (en) * 2004-07-13 2006-01-19 Milson Shane L Brine-based viscosified treatment fluids and associated methods
US7665522B2 (en) * 2004-09-13 2010-02-23 Schlumberger Technology Corporation Fiber laden energized fluids and methods of use
US7303014B2 (en) 2004-10-26 2007-12-04 Halliburton Energy Services, Inc. Casing strings and methods of using such strings in subterranean cementing operations
US8030249B2 (en) 2005-01-28 2011-10-04 Halliburton Energy Services, Inc. Methods and compositions relating to the hydrolysis of water-hydrolysable materials
US20060169182A1 (en) 2005-01-28 2006-08-03 Halliburton Energy Services, Inc. Methods and compositions relating to the hydrolysis of water-hydrolysable materials
US7267170B2 (en) * 2005-01-31 2007-09-11 Halliburton Energy Services, Inc. Self-degrading fibers and associated methods of use and manufacture
US7497258B2 (en) * 2005-02-01 2009-03-03 Halliburton Energy Services, Inc. Methods of isolating zones in subterranean formations using self-degrading cement compositions
US7353876B2 (en) * 2005-02-01 2008-04-08 Halliburton Energy Services, Inc. Self-degrading cement compositions and methods of using self-degrading cement compositions in subterranean formations
US20070298977A1 (en) 2005-02-02 2007-12-27 Halliburton Energy Services, Inc. Degradable particulate generation and associated methods

Patent Citations (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3173484A (en) * 1958-09-02 1965-03-16 Gulf Research Development Co Fracturing process employing a heterogeneous propping agent
US3302719A (en) * 1965-01-25 1967-02-07 Union Oil Co Method for treating subterranean formations
US3366178A (en) * 1965-09-10 1968-01-30 Halliburton Co Method of fracturing and propping a subterranean formation
US3364995A (en) * 1966-02-14 1968-01-23 Dow Chemical Co Hydraulic fracturing fluid-bearing earth formations
US4010071A (en) * 1974-10-10 1977-03-01 Merck & Co., Inc. Clarification of xanthan gum
US4068718A (en) * 1975-09-26 1978-01-17 Exxon Production Research Company Hydraulic fracturing method using sintered bauxite propping agent
US4322381A (en) * 1975-12-29 1982-03-30 Nippon Zeon Co., Ltd. Method of manufacturing hollow fiber
US4265673A (en) * 1978-06-23 1981-05-05 Talres Development (N.A.) N.V. Polymer solutions for use in oil recovery containing a complexing agent for multivalentions
US4252421A (en) * 1978-11-09 1981-02-24 John D. McCarry Contact lenses with a colored central area
US4261421A (en) * 1980-03-24 1981-04-14 Union Oil Company Of California Method for selectively acidizing the less permeable zones of a high temperature subterranean formation
US4502540A (en) * 1981-06-01 1985-03-05 Mobil Oil Corporation Tertiary oil recovery
US4506734A (en) * 1983-09-07 1985-03-26 The Standard Oil Company Fracturing fluid breaker system which is activated by fracture closure
US4894231A (en) * 1987-07-28 1990-01-16 Biomeasure, Inc. Therapeutic agent delivery system
US4829100A (en) * 1987-10-23 1989-05-09 Halliburton Company Continuously forming and transporting consolidatable resin coated particulate materials in aqueous gels
US4817721A (en) * 1987-12-14 1989-04-04 Conoco Inc. Reducing the permeability of a rock formation
US4822500A (en) * 1988-02-29 1989-04-18 Texas United Chemical Corporation Saturated brine well treating fluids and additives therefore
US5487897A (en) * 1989-07-24 1996-01-30 Atrix Laboratories, Inc. Biodegradable implant precursor
US5496557A (en) * 1990-01-30 1996-03-05 Akzo N.V. Article for the controlled delivery of an active substance, comprising a hollow space fully enclosed by a wall and filled in full or in part with one or more active substances
US5203834A (en) * 1990-12-21 1993-04-20 Union Oil Company Of California Foamed gels having selective permeability
US5213446A (en) * 1991-01-31 1993-05-25 Union Oil Company Of California Drilling mud disposal technique
US5484881A (en) * 1992-10-02 1996-01-16 Cargill, Inc. Melt-stable amorphous lactide polymer film and process for manufacturing thereof
US5314031A (en) * 1992-10-22 1994-05-24 Shell Oil Company Directional drilling plug
US5304620A (en) * 1992-12-21 1994-04-19 Halliburton Company Method of crosslinking cellulose and guar derivatives for treating subterranean formations
US6172011B1 (en) * 1993-04-05 2001-01-09 Schlumberger Technolgy Corporation Control of particulate flowback in subterranean wells
US5594095A (en) * 1993-07-30 1997-01-14 Cargill, Incorporated Viscosity-modified lactide polymer composition and process for manufacture thereof
US5607905A (en) * 1994-03-15 1997-03-04 Texas United Chemical Company, Llc. Well drilling and servicing fluids which deposit an easily removable filter cake
US5501276A (en) * 1994-09-15 1996-03-26 Halliburton Company Drilling fluid and filter cake removal methods and compositions
US5492177A (en) * 1994-12-01 1996-02-20 Mobil Oil Corporation Method for consolidating a subterranean formation
US6209643B1 (en) * 1995-03-29 2001-04-03 Halliburton Energy Services, Inc. Method of controlling particulate flowback in subterranean wells and introducing treatment chemicals
US5602083A (en) * 1995-03-31 1997-02-11 Baker Hughes Inc. Use of sized salts as bridging agent for oil based fluids
US5613558A (en) * 1995-06-02 1997-03-25 Bj Services Company Method for controlling the set time of cement
US20040070093A1 (en) * 1995-07-21 2004-04-15 Brown University Research Foundation Process for preparing microparticles through phase inversion phenomena
US6716797B2 (en) * 1997-02-13 2004-04-06 Masi Technologies, L.L.C. Aphron-containing well drilling and servicing fluids
US5723416A (en) * 1997-04-01 1998-03-03 Liao; W. Andrew Well servicing fluid for trenchless directional drilling
US6686328B1 (en) * 1998-07-17 2004-02-03 The Procter & Gamble Company Detergent tablet
US6710019B1 (en) * 1998-07-30 2004-03-23 Christopher Alan Sawdon Wellbore fluid
US6189615B1 (en) * 1998-12-15 2001-02-20 Marathon Oil Company Application of a stabilized polymer gel to an alkaline treatment region for improved hydrocarbon recovery
US6569814B1 (en) * 1998-12-31 2003-05-27 Schlumberger Technology Corporation Fluids and techniques for hydrocarbon well completion
US6380138B1 (en) * 1999-04-06 2002-04-30 Fairmount Minerals Ltd. Injection molded degradable casing perforation ball sealers fluid loss additive and method of use
US6209646B1 (en) * 1999-04-21 2001-04-03 Halliburton Energy Services, Inc. Controlling the release of chemical additives in well treating fluids
US6387986B1 (en) * 1999-06-24 2002-05-14 Ahmad Moradi-Araghi Compositions and processes for oil field applications
US6702023B1 (en) * 1999-07-02 2004-03-09 Cleansorb Limited Method for treatment of underground reservoirs
US6566310B2 (en) * 1999-08-12 2003-05-20 Atlantic Richfield Company Tandem spacer fluid system and method for positioning a cement slurry in a wellbore annulus
US6509301B1 (en) * 1999-08-26 2003-01-21 Daniel Patrick Vollmer Well treatment fluids and methods for the use thereof
US6508305B1 (en) * 1999-09-16 2003-01-21 Bj Services Company Compositions and methods for cementing using elastic particles
US6214773B1 (en) * 1999-09-29 2001-04-10 Halliburton Energy Services, Inc. High temperature, low residue well treating fluids and methods
US6527051B1 (en) * 2000-05-05 2003-03-04 Halliburton Energy Services, Inc. Encapsulated chemicals for use in controlled time release applications and methods
US6554071B1 (en) * 2000-05-05 2003-04-29 Halliburton Energy Services, Inc. Encapsulated chemicals for use in controlled time release applications and methods
US6357527B1 (en) * 2000-05-05 2002-03-19 Halliburton Energy Services, Inc. Encapsulated breakers and method for use in treating subterranean formations
US6394185B1 (en) * 2000-07-27 2002-05-28 Vernon George Constien Product and process for coating wellbore screens
US6364945B1 (en) * 2000-07-28 2002-04-02 Halliburton Energy Services, Inc. Methods and compositions for forming permeable cement sand screens in well bores
US6390195B1 (en) * 2000-07-28 2002-05-21 Halliburton Energy Service,S Inc. Methods and compositions for forming permeable cement sand screens in well bores
US6202751B1 (en) * 2000-07-28 2001-03-20 Halliburton Energy Sevices, Inc. Methods and compositions for forming permeable cement sand screens in well bores
US20020036088A1 (en) * 2000-08-01 2002-03-28 Todd Bradley L. Well drilling and servicing fluids and methods of removing filter cake deposited thereby
US6737385B2 (en) * 2000-08-01 2004-05-18 Halliburton Energy Services, Inc. Well drilling and servicing fluids and methods of removing filter cake deposited thereby
US6983801B2 (en) * 2001-01-09 2006-01-10 Bj Services Company Well treatment fluid compositions and methods for their use
US7168489B2 (en) * 2001-06-11 2007-01-30 Halliburton Energy Services, Inc. Orthoester compositions and methods for reducing the viscosified treatment fluids
US20030054962A1 (en) * 2001-08-14 2003-03-20 England Kevin W. Methods for stimulating hydrocarbon production
US6837309B2 (en) * 2001-09-11 2005-01-04 Schlumberger Technology Corporation Methods and fluid compositions designed to cause tip screenouts
US6691780B2 (en) * 2002-04-18 2004-02-17 Halliburton Energy Services, Inc. Tracking of particulate flowback in subterranean wells
US20040099416A1 (en) * 2002-06-13 2004-05-27 Vijn Jan Pieter Cementing subterranean zones using cement compositions containing biodegradable dispersants
US20040014607A1 (en) * 2002-07-16 2004-01-22 Sinclair A. Richard Downhole chemical delivery system for oil and gas wells
US20040014606A1 (en) * 2002-07-19 2004-01-22 Schlumberger Technology Corp Method For Completing Injection Wells
US20040094300A1 (en) * 2002-08-26 2004-05-20 Schlumberger Technology Corp. Dissolving Filter Cake
US6896058B2 (en) * 2002-10-22 2005-05-24 Halliburton Energy Services, Inc. Methods of introducing treating fluids into subterranean producing zones
US7007752B2 (en) * 2003-03-21 2006-03-07 Halliburton Energy Services, Inc. Well treatment fluid and methods with oxidized polysaccharide-based polymers
US6981552B2 (en) * 2003-03-21 2006-01-03 Halliburton Energy Services, Inc. Well treatment fluid and methods with oxidized polysaccharide-based polymers
US6987083B2 (en) * 2003-04-11 2006-01-17 Halliburton Energy Services, Inc. Xanthan gels in brines and methods of using such xanthan gels in subterranean formations
US6681856B1 (en) * 2003-05-16 2004-01-27 Halliburton Energy Services, Inc. Methods of cementing in subterranean zones penetrated by well bores using biodegradable dispersants
US7036587B2 (en) * 2003-06-27 2006-05-02 Halliburton Energy Services, Inc. Methods of diverting treating fluids in subterranean zones and degradable diverting materials
US7178596B2 (en) * 2003-06-27 2007-02-20 Halliburton Energy Services, Inc. Methods for improving proppant pack permeability and fracture conductivity in a subterranean well
US7032663B2 (en) * 2003-06-27 2006-04-25 Halliburton Energy Services, Inc. Permeable cement and sand control methods utilizing permeable cement in subterranean well bores
US20050059558A1 (en) * 2003-06-27 2005-03-17 Blauch Matthew E. Methods for improving proppant pack permeability and fracture conductivity in a subterranean well
US7044220B2 (en) * 2003-06-27 2006-05-16 Halliburton Energy Services, Inc. Compositions and methods for improving proppant pack permeability and fracture conductivity in a subterranean well
US20050006095A1 (en) * 2003-07-08 2005-01-13 Donald Justus Reduced-density proppants and methods of using reduced-density proppants to enhance their transport in well bores and fractures
US20050028976A1 (en) * 2003-08-05 2005-02-10 Nguyen Philip D. Compositions and methods for controlling the release of chemicals placed on particulates
US6883608B2 (en) * 2003-08-06 2005-04-26 Schlumberger Technology Corporation Gravel packing method
US20050034861A1 (en) * 2003-08-14 2005-02-17 Saini Rajesh K. On-the fly coating of acid-releasing degradable material onto a particulate
US20050034868A1 (en) * 2003-08-14 2005-02-17 Frost Keith A. Orthoester compositions and methods of use in subterranean applications
US20050034865A1 (en) * 2003-08-14 2005-02-17 Todd Bradley L. Compositions and methods for degrading filter cake
US6997259B2 (en) * 2003-09-05 2006-02-14 Halliburton Energy Services, Inc. Methods for forming a permeable and stable mass in a subterranean formation
US20050059557A1 (en) * 2003-09-17 2005-03-17 Todd Bradley L. Subterranean treatment fluids and methods of treating subterranean formations
US20050059556A1 (en) * 2003-09-17 2005-03-17 Trinidad Munoz Treatment fluids and methods of use in subterranean formations
US20050103496A1 (en) * 2003-11-18 2005-05-19 Todd Bradley L. Compositions and methods for weighting a breaker coating for uniform distribution in a particulate pack
US7195068B2 (en) * 2003-12-15 2007-03-27 Halliburton Energy Services, Inc. Filter cake degradation compositions and methods of use in subterranean operations
US7204312B2 (en) * 2004-01-30 2007-04-17 Halliburton Energy Services, Inc. Compositions and methods for the delivery of chemical components in subterranean well bores
US7156174B2 (en) * 2004-01-30 2007-01-02 Halliburton Energy Services, Inc. Contained micro-particles for use in well bore operations
US7036586B2 (en) * 2004-01-30 2006-05-02 Halliburton Energy Services, Inc. Methods of cementing in subterranean formations using crack resistant cement compositions
US7021337B2 (en) * 2004-02-27 2006-04-04 Markham Allen R Plumbing test plug and method
US7172022B2 (en) * 2004-03-17 2007-02-06 Halliburton Energy Services, Inc. Cement compositions containing degradable materials and methods of cementing in subterranean formations
US20060016596A1 (en) * 2004-07-23 2006-01-26 Pauls Richard W Treatment fluids and methods of use in subterranean formations
US7165617B2 (en) * 2004-07-27 2007-01-23 Halliburton Energy Services, Inc. Viscosified treatment fluids and associated methods of use
US20060032633A1 (en) * 2004-08-10 2006-02-16 Nguyen Philip D Methods and compositions for carrier fluids comprising water-absorbent fibers
US7322412B2 (en) * 2004-08-30 2008-01-29 Halliburton Energy Services, Inc. Casing shoes and methods of reverse-circulation cementing of casing
US20060046938A1 (en) * 2004-09-02 2006-03-02 Harris Philip C Methods and compositions for delinking crosslinked fluids
US20060048938A1 (en) * 2004-09-03 2006-03-09 Kalman Mark D Carbon foam particulates and methods of using carbon foam particulates in subterranean applications
US20060065397A1 (en) * 2004-09-24 2006-03-30 Nguyen Philip D Methods and compositions for inducing tip screenouts in frac-packing operations
US20060105917A1 (en) * 2004-11-17 2006-05-18 Halliburton Energy Services, Inc. In-situ filter cake degradation compositions and methods of use in subterranean formations
US20060105918A1 (en) * 2004-11-17 2006-05-18 Halliburton Energy Services, Inc. Methods of degrading filter cakes in subterranean formations

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090258798A1 (en) * 2003-09-17 2009-10-15 Trinidad Munoz Methods and compositions using crosslinked aliphatic polyesters in well bore applications
US7833944B2 (en) 2003-09-17 2010-11-16 Halliburton Energy Services, Inc. Methods and compositions using crosslinked aliphatic polyesters in well bore applications
US20060169452A1 (en) * 2005-02-01 2006-08-03 Savery Mark R Methods of directional drilling and forming kickoff plugs using self-degrading cement in subterranean well bores
US20060169454A1 (en) * 2005-02-01 2006-08-03 Savery Mark R Methods of isolating zones in subterranean formations using self-degrading cement compositions
US20060247135A1 (en) * 2005-04-29 2006-11-02 Halliburton Energy Services, Inc. Acidic treatment fluids comprising scleroglucan and/or diutan and associated methods
US20060254774A1 (en) * 2005-05-12 2006-11-16 Halliburton Energy Services, Inc. Degradable surfactants and methods for use
US7677315B2 (en) 2005-05-12 2010-03-16 Halliburton Energy Services, Inc. Degradable surfactants and methods for use
US20070042912A1 (en) * 2005-08-16 2007-02-22 Halliburton Energy Services, Inc. Delayed tackifying compositions and associated methods involving controlling particulate migration
US20070039733A1 (en) * 2005-08-16 2007-02-22 Halliburton Energy Services, Inc. Delayed tackifying compositions and associated methods involving controlling particulate migration
US7700525B2 (en) 2005-09-22 2010-04-20 Halliburton Energy Services, Inc. Orthoester-based surfactants and associated methods
US7713916B2 (en) 2005-09-22 2010-05-11 Halliburton Energy Services, Inc. Orthoester-based surfactants and associated methods
US20070066492A1 (en) * 2005-09-22 2007-03-22 Halliburton Energy Services, Inc. Orthoester-based surfactants and associated methods
US20080293843A1 (en) * 2005-11-28 2008-11-27 The Surrey Technology Centre. Comminutable Polyesters
US8101675B2 (en) 2005-11-28 2012-01-24 Cleansors Limited Comminutable polyesters
US20080078549A1 (en) * 2006-09-29 2008-04-03 Halliburton Energy Services, Inc. Methods and Compositions Relating to the Control of the Rates of Acid-Generating Compounds in Acidizing Operations
US8220548B2 (en) 2007-01-12 2012-07-17 Halliburton Energy Services Inc. Surfactant wash treatment fluids and associated methods
US20090197780A1 (en) * 2008-02-01 2009-08-06 Weaver Jimmie D Ultrafine Grinding of Soft Materials
US8006760B2 (en) * 2008-04-10 2011-08-30 Halliburton Energy Services, Inc. Clean fluid systems for partial monolayer fracturing
US7906464B2 (en) 2008-05-13 2011-03-15 Halliburton Energy Services, Inc. Compositions and methods for the removal of oil-based filtercakes
US7960314B2 (en) 2008-09-26 2011-06-14 Halliburton Energy Services Inc. Microemulsifiers and methods of making and using same
US20110021388A1 (en) * 2008-09-26 2011-01-27 Halliburton Energy Services, Inc. Microemulsifiers and methods of making and using same
US7833943B2 (en) 2008-09-26 2010-11-16 Halliburton Energy Services Inc. Microemulsifiers and methods of making and using same
US20100212906A1 (en) * 2009-02-20 2010-08-26 Halliburton Energy Services, Inc. Method for diversion of hydraulic fracture treatments
US8082992B2 (en) 2009-07-13 2011-12-27 Halliburton Energy Services, Inc. Methods of fluid-controlled geometry stimulation
US9234302B2 (en) * 2009-10-29 2016-01-12 Basf Se Process for the preparation of hyperbranched hollow fibers
US20120213998A1 (en) * 2009-10-29 2012-08-23 Basf Se Process for the Preparation of Hyperbranched Hollow Fibers
US10138407B2 (en) * 2013-03-15 2018-11-27 Forta Corporation Modified deformed reinforcement fibers, methods of making, and uses
US20150275607A1 (en) * 2014-03-31 2015-10-01 Schlumberger Technology Corporation Method for treating subterranean formation
US9797212B2 (en) * 2014-03-31 2017-10-24 Schlumberger Technology Corporation Method of treating subterranean formation using shrinkable fibers
US20160003022A1 (en) * 2014-07-01 2016-01-07 Research Triangle Institute Cementitious fracture fluid and methods of use thereof
US9567841B2 (en) * 2014-07-01 2017-02-14 Research Triangle Institute Cementitious fracture fluid and methods of use thereof
WO2017022680A1 (en) * 2015-07-31 2017-02-09 株式会社Adeka Capsule and viscosity-variable fluid
WO2017022681A1 (en) * 2015-07-31 2017-02-09 株式会社Adeka Capsule, production method therefor, and viscosity-variable fluid
RU2723070C2 (en) * 2015-07-31 2020-06-08 Адэка Корпорейшн Encapsulated agent and variable viscosity fluid
RU2723068C2 (en) * 2015-07-31 2020-06-08 Адэка Корпорейшн Encapsulated additive, an encapsulated additive manufacturing method and an operating fluid characterized by variable viscosity
CN113614295A (en) * 2019-03-28 2021-11-05 卡比奥斯公司 Multicomponent thermoplastic article
CN115875004A (en) * 2023-02-23 2023-03-31 陕西中立合创能源科技有限责任公司 Fracturing method for improving salt-resistant temperature-resistant performance of oil-gas well

Also Published As

Publication number Publication date
CA2596649A1 (en) 2006-08-03
US20090176665A1 (en) 2009-07-09
US8188013B2 (en) 2012-05-29
WO2006079779A1 (en) 2006-08-03
AR055023A1 (en) 2007-08-01

Similar Documents

Publication Publication Date Title
US7267170B2 (en) Self-degrading fibers and associated methods of use and manufacture
US8188013B2 (en) Self-degrading fibers and associated methods of use and manufacture
US7829507B2 (en) Subterranean treatment fluids comprising a degradable bridging agent and methods of treating subterranean formations
US9080440B2 (en) Proppant pillar placement in a fracture with high solid content fluid
US7044220B2 (en) Compositions and methods for improving proppant pack permeability and fracture conductivity in a subterranean well
US8936086B2 (en) Methods of fluid loss control, diversion, and sealing using deformable particulates
US8763699B2 (en) Heterogeneous proppant placement in a fracture with removable channelant fill
US8636065B2 (en) Heterogeneous proppant placement in a fracture with removable channelant fill
US7581590B2 (en) Heterogeneous proppant placement in a fracture with removable channelant fill
US7080688B2 (en) Compositions and methods for degrading filter cake
US20090062157A1 (en) Methods and compositions related to the degradation of degradable polymers involving dehydrated salts and other associated methods
US20050130848A1 (en) Compositions and methods for improving fracture conductivity in a subterranean well
EP1619351A1 (en) Treatment fluids for filter cake degradation in subterranean formations
CN106795750A (en) For the steering of well treatment operation
US20140116702A1 (en) Expanded Wellbore Servicing Materials and Methods of Making and Using Same
WO2005071223A1 (en) Fluid loss control additives for use in fracturing subterranean formations
WO2013147796A1 (en) Proppant pillar placement in a fracture with high solid content fluid
CA2822208C (en) Triggered polymer viscous pill and methods of using the same

Legal Events

Date Code Title Description
AS Assignment

Owner name: HILLIBURTON ENERGY SERVICES, INC., TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MANG, MICHAEL N.;TODD, BRADLEY L.;REEL/FRAME:016246/0258;SIGNING DATES FROM 20050118 TO 20050127

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION