CN1963575A - 放大光纤 - Google Patents

放大光纤 Download PDF

Info

Publication number
CN1963575A
CN1963575A CNA2006101444128A CN200610144412A CN1963575A CN 1963575 A CN1963575 A CN 1963575A CN A2006101444128 A CNA2006101444128 A CN A2006101444128A CN 200610144412 A CN200610144412 A CN 200610144412A CN 1963575 A CN1963575 A CN 1963575A
Authority
CN
China
Prior art keywords
fiber
core
mold
quantum dot
adulterant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2006101444128A
Other languages
English (en)
Other versions
CN100498391C (zh
Inventor
克里斯蒂安·西莫诺
洛朗·加斯卡
斯特凡妮·布朗尚丹
多米尼克·巴亚尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Usao Investment Co.,Ltd.
Original Assignee
Alcatel NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcatel NV filed Critical Alcatel NV
Publication of CN1963575A publication Critical patent/CN1963575A/zh
Application granted granted Critical
Publication of CN100498391C publication Critical patent/CN100498391C/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094003Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light the pumped medium being a fibre
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06708Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
    • H01S3/06716Fibre compositions or doping with active elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06754Fibre amplifiers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/0229Optical fibres with cladding with or without a coating characterised by nanostructures, i.e. structures of size less than 100 nm, e.g. quantum dots
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094003Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light the pumped medium being a fibre
    • H01S3/094007Cladding pumping, i.e. pump light propagating in a clad surrounding the active core
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/169Nanoparticles, e.g. doped nanoparticles acting as a gain material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/041Optical pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/341Structures having reduced dimensionality, e.g. quantum wires
    • H01S5/3412Structures having reduced dimensionality, e.g. quantum wires quantum box or quantum dash

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Lasers (AREA)

Abstract

本发明涉及一种放大光纤,其包括含有掺杂剂(30)的纤芯(22),以及包层(28),其中所述纤芯包括:用于传播光信号的单模纤芯(24),半导体材料的量子点(32)分布在所述单模纤芯(24)中或所述单模纤芯(24)附近;以及环绕单模纤芯(24)的用于接收泵浦信号的多模纤芯(26)。

Description

放大光纤
技术领域
本发明涉及放大光纤和光纤放大器的领域。
背景技术
图1概略地示出了一个光纤放大器。该放大器2包括一个输入端口4和一个输出端口6,用于连接到线路光纤。该放大器包括掺杂光纤8,泵浦源10和光耦合器12。泵浦源一般为激光器,其发出泵浦光信号,通过光耦合器12将该泵浦光信号注入掺杂光纤8。该泵浦光信号被掺杂光纤的纤芯中的掺杂剂(可以是选自稀土的,并且特别地可以是铒)吸收,所述光纤在去激励后,将所吸收能量的一部分传送给在端口4和端口6之间传播的光信号,由此来放大该光信号。
掺杂光纤可包括一个单模纤芯,该纤芯中有掺杂剂,并且泵浦光信号注入该纤芯中。掺杂光纤也可包括含有掺杂剂的单模纤芯和环绕该单模纤芯的用于接收泵浦信号的多模纤芯。此第二种实施例的优势在于能够注入更强的泵浦信号,并且能够在泵浦光信号和掺杂剂之间产生更好的耦合。
另外,例如根据J.D.Holmes等人的论文“Highly luminescent siliconnanocrystal with discrete optical transitions(非连续光跃迁的高发光硅纳米晶体)”(J.Am.Chem.Soc.123(2001)pp3743-3748),已知可以通过使用量子点,特别是通过选择量子点的类型和量子点的尺寸来选择泵浦信号的波长。
然而量子点的吸收截面很大。相应地,在单模光纤的情况下,泵浦信号在50μm量级的光纤长度上被量子点吸收。利用目前的技术不可能在这样短的距离上插入足够浓度的掺杂剂,因此不可能有效地将量子点吸收的能量传送给掺杂剂。
为了解决这个难题,在J.Lee等人的论文“Optical gain at 1.5μm innanocrystal Si sensitized,Er-doped silica waveguide using top-doping 470nm LED(使用顶部掺杂470nm发光二极管的硅敏化纳米晶体掺铒二氧化硅波导在1.5μm处的光增益)”(OFC’04,PD19)中,提出了图2所示的装置。该装置包括一个具有硅量子点和铒掺杂剂、置于两个线光纤单元16和18之间的平面波导14,以及一个光电二极管条带20。条带20横向地向平面波导发送泵浦信号22,因此泵浦信号在足够长度的平面波导上注入。所描述的例子中平面波导的长度为11mm。
然而这个方法仍然不尽人意。实际上,显然波导不能太长(其长度与光电二极管条带长度的量级相同),因此仍然需要对波导进行强掺杂。这将造成掺杂剂离子之间的相互作用,大大降低光转换的效果,从而降低要放大的光信号的放大效果。
而且,平面波导和圆形的线路光纤之间不可避免地会有耦合损耗。
发明内容
本发明的一个目的是在含有量子点的放大光纤的情况下,减少现有技术的缺陷。
更确切地,本发明涉及一种放大光纤,其包括含有掺杂剂的纤芯,以及包层,其特征在于所述纤芯包括:用于传播光信号的单模纤芯,半导体材料的量子点分布在所述单模纤芯中或所述单模纤芯附近;以及环绕单模纤芯的用于接收泵浦信号的多模纤芯。
所述半导体材料的量子点和/或所述掺杂剂优选地分布在单模纤芯中。
在一个优选实施例中,所述半导体材料的量子点和/或所述掺杂剂分布在单模纤芯周围的环中。
半导体材料优选地至少包括Si、Ge、PbTe、PbS材料之一。
本发明还涉及一种光纤放大器,包括根据本发明的放大光纤、光泵浦源以及用于将泵浦光信号注入放大光纤的多模纤芯的装置。
附图说明
通过阅读下文中参照附图借助示意性和非穷尽的例举给出的描述,可以更清楚地了解本发明的特征和优点,其中附图包括:
图1如上文所述概略地示出了一个光纤放大器的结构;
图2如上文所述示出了根据现有技术的包括含有量子点的掺杂波导的光纤放大器;
图3示出了根据本发明的放大光纤的第一实施例,以及
图4示出了根据本发明的放大光纤的第二实施例。
具体实施方式
图3的透视图中示出了根据本发明的第一实施例的放大光纤。该光纤包括纤芯22,其包括周围环绕着多模纤芯26的单模纤芯24,以及包层28。
单模纤芯24包括掺杂剂30,用于放大单模纤芯中传播的光信号。掺杂剂可以属于任何已知的类型,特别是一种稀土,并且特别是铒。单模纤芯还包括半导体材料的量子点32。
多模纤芯26用于接收泵浦光信号。这样,与图2所示的现有技术相比,本发明使泵浦信号在被量子点32吸收前可以传播很长距离。多模纤芯中对泵浦信号的吸收与多模纤芯的直径成反比。由于提供了更大的长度来吸收泵浦光信号,使掺杂剂能够在更长的距离上分布,从而降低了掺杂剂的浓度。
在本发明的一个优选的实施例中,半导体量子点由硅组成,并且掺杂剂为稀土(例如铒)离子。单模纤芯直径为4μm,并且多模纤芯直径为400μm。泵浦波长的选择应使半导体量子点对泵浦波长的有效截面小于或等于稀土离子的有效吸收截面的100倍。因此该波长取决于半导体量子点的尺寸和性质。硅量子点优选的尺寸为直径约3nm(不包括氧化层)。这个尺寸可以促进量子点和稀土离子之间的能量传送,同时使这些量子点的散射损耗最小。然而量子点的尺寸可以优选地在2nm-5nm的范围中。在硅量子点直径为3nm的情况下,泵浦波长可以优选地为400μm-500μm。在本实施例中,优选地铒离子的浓度不超过每立方厘米7.1018个离子,以限制离子间相互作用的效应,并且保持良好的转换效率。在此情况下,光纤的典型长度应为7m,以获得21dB的增益。
可以根据目标应用来选择量子点。特别地,所采用的材料和量子点的尺寸根据选定的泵浦信号波长而选定。
例如,量子点的半导体材料选择以下材料中的至少一种:Si、Ge、PbTe、PbS。
图4示出了根据本发明的第二实施例的放大光纤。与图3中相同的元件采用相同的参考标号。
图4的实施例与图3的实施例的不同之处在于:掺杂剂粒子30和半导体材料量子点32分布在单模纤芯24周围的环34中。
该实施例减小了多模纤芯的尺寸。如果环的位置和尺寸使得单模信号和掺杂面积之间的重叠部分的积分相对于纤芯中的掺杂减小3.33的因子,则散射损耗也降低3.33的因子。此外,与前面的情况比较,多模纤芯直径减小10的因子。因此在本实施例中,多模纤芯的直径为40μm,并且光纤长度为70m的量级。
该配置也可降低由量子点产生的散射所引起的损耗。事实上,量子点的折射率一般比光纤材料(一般为硅)的折射率高很多,随量子点尺寸的增大造成米氏(Mie)散射的增加。米氏(Mie)散射指振荡半径为波长的0.1~10倍的粒子的散射。注意当波长与粒子半径接近时散射能量最大。与瑞利定理相反,反射能量比入射波方向上的散射能量高。如果量子点位于单模纤芯周围的环中,就只有场边缘与量子点相互作用,因此降低了损耗。事实上,场和散射源(此处为量子点)之间的重叠部分的积分越小,散射损耗越低。
根据本发明的放大光纤用于与诸如源10之类的泵浦源,以及诸如装置12之类的用于将泵浦信号注入多模纤芯的装置相关联,以构成具有图1示出的结构的光纤放大器。

Claims (8)

1.一种放大光纤,包括含有掺杂剂(30)的纤芯(22),以及包层(28),其特征在于所述纤芯包括:
-用于传播光信号的单模纤芯(24),半导体材料的量子点(32)分布在所述单模纤芯(24)中或所述单模纤芯(24)附近;以及
-环绕单模纤芯(24)的用于接收泵浦信号的多模纤芯(26)。
2.根据权利要求1的光纤,其特征在于所述半导体材料的量子点(32)分布在单模纤芯(24)中。
3.根据权利要求1的光纤,其特征在于所述掺杂剂(30)分布在单模纤芯(24)中。
4.根据权利要求1的光纤,其特征在于所述半导体材料的量子点(32)分布在单模纤芯(24)周围的环(34)中。
5.根据权利要求1的放大光纤,其特征在于所述掺杂剂(30)分布在单模纤芯(24)周围的环(34)中。
6.根据权利要求1的放大光纤,其特征在于所述半导体材料至少包括Si、Ge、PbTe、PbS材料之一。
7.根据权利要求1的放大光纤,其特征在于所述掺杂剂为稀土。
8.一种光纤放大器,包括:
-放大光纤,其包括含有掺杂剂(30)的纤芯(22),以及包层(28),其中所述纤芯(22)包括:用于传播光信号的单模纤芯(24),半导体材料的量子点(32)分布在所述单模纤芯(24)中或所述单模纤芯(24)附近,以及环绕所述单模纤芯(24)的用于接收泵浦信号的多模纤芯(26);
-一个光泵浦源(10);以及
-用于将光泵浦信号注入所述放大光纤的多模纤芯(26)的装置。
CNB2006101444128A 2005-11-08 2006-11-07 放大光纤 Active CN100498391C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0553374A FR2896315B1 (fr) 2005-11-08 2005-11-08 Fibre optique amplificatrice
FR0553374 2005-11-08

Publications (2)

Publication Number Publication Date
CN1963575A true CN1963575A (zh) 2007-05-16
CN100498391C CN100498391C (zh) 2009-06-10

Family

ID=36729304

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2006101444128A Active CN100498391C (zh) 2005-11-08 2006-11-07 放大光纤

Country Status (4)

Country Link
US (2) US7869686B2 (zh)
EP (1) EP1783872A1 (zh)
CN (1) CN100498391C (zh)
FR (1) FR2896315B1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101764344B (zh) * 2010-01-13 2011-11-30 北京交通大学 单模有源纤芯外腔耦合多模有源纤芯超亮度单模激光器
CN101764340B (zh) * 2009-12-25 2011-11-30 北京交通大学 强耦合多模掺稀土环芯超亮度单模光纤激光器
WO2015157980A1 (zh) * 2014-04-17 2015-10-22 华为技术有限公司 一种光波导和印刷电路板
CN108982427A (zh) * 2018-10-15 2018-12-11 中国计量大学 球形熔接长周期光纤光栅表面等离子体共振氢敏传感器
CN113568244A (zh) * 2021-07-16 2021-10-29 上海大学 一种半导体量子点和稀土共掺石英放大光纤及其制备方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8135244B1 (en) * 2007-11-14 2012-03-13 The United States Of America As Represented By The United States Deparment Of Energy Real time measurement of shock pressure
ITTO20090969A1 (it) * 2009-12-10 2011-06-11 Torino Politecnico "dispositivo in fibra ottica per emissione laser"
CN104518417A (zh) * 2015-01-20 2015-04-15 厦门大学 量子点随机光纤激光器
FR3082955B1 (fr) * 2018-06-22 2021-07-23 Commissariat Energie Atomique Procede de fabrication d'une fibre optique pour une mesure repartie de temperature ou de deformation en environnement severe par exploitation du signal retrodiffuse rayleigh

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4017332A (en) * 1975-02-27 1977-04-12 Varian Associates Solar cells employing stacked opposite conductivity layers
US4815079A (en) * 1987-12-17 1989-03-21 Polaroid Corporation Optical fiber lasers and amplifiers
GB2239983A (en) * 1989-12-22 1991-07-17 Univ Southampton Optical fibre laser
EP0783784B1 (en) * 1994-09-29 2000-11-08 BRITISH TELECOMMUNICATIONS public limited company Optical fibre with quantum dots
DE69738178T2 (de) * 1996-01-18 2008-07-03 British Telecommunications P.L.C. Optischer wellenleiter mit einem mantel mit photoempfindlichem brechungsindex
AUPO281896A0 (en) * 1996-10-04 1996-10-31 Unisearch Limited Reactive ion etching of silica structures for integrated optics applications
US6611640B2 (en) * 2000-10-03 2003-08-26 Evident Technologies Optical dispersion compensator
US20020186921A1 (en) * 2001-06-06 2002-12-12 Schumacher Lynn C. Multiwavelength optical fiber devices
EP1304774B1 (en) * 2001-10-02 2006-05-03 University Of Southampton Low phonon energy gain medium and its method of fabrication
US6879435B2 (en) * 2002-03-04 2005-04-12 The Boeing Company Fiber amplifier having an anisotropic numerical aperture for efficient coupling of pump energy
FR2852154B1 (fr) * 2003-03-04 2005-05-20 Cit Alcatel Fibre optique amplificatrice a anneau dope et amplificateur contenant une telle fibre
US7061028B2 (en) * 2003-03-12 2006-06-13 Taiwan Semiconductor Manufacturing, Co., Ltd. Image sensor device and method to form image sensor device
US7054513B2 (en) * 2003-06-09 2006-05-30 Virginia Tech Intellectual Properties, Inc. Optical fiber with quantum dots
US7120340B2 (en) * 2003-06-19 2006-10-10 Corning Incorporated Single polarization optical fiber laser and amplifier
WO2005013442A2 (en) * 2003-08-01 2005-02-10 Massachusetts Institute Of Technology Planar multiwavelength optical power supply on a silicon platform
CN1234041C (zh) * 2003-08-08 2005-12-28 中国科学院上海光学精密机械研究所 多波长刺猬量子点双包层光纤放大器件
EP2261650A3 (en) * 2004-09-15 2011-07-06 IntegenX Inc. Microfluidic devices
US7203407B2 (en) * 2004-10-21 2007-04-10 Corning Incorporated Rare earth doped single polarization double clad optical fiber and a method for making such fiber
US7817896B2 (en) * 2005-04-29 2010-10-19 Corning Incorporated Optical waveguides containing quantum dot guiding layers and methods of manufacture
US7860142B2 (en) * 2006-02-07 2010-12-28 Raytheon Company Laser with spectral converter
US9515218B2 (en) * 2008-09-04 2016-12-06 Zena Technologies, Inc. Vertical pillar structured photovoltaic devices with mirrors and optical claddings

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101764340B (zh) * 2009-12-25 2011-11-30 北京交通大学 强耦合多模掺稀土环芯超亮度单模光纤激光器
CN101764344B (zh) * 2010-01-13 2011-11-30 北京交通大学 单模有源纤芯外腔耦合多模有源纤芯超亮度单模激光器
WO2015157980A1 (zh) * 2014-04-17 2015-10-22 华为技术有限公司 一种光波导和印刷电路板
CN105308487A (zh) * 2014-04-17 2016-02-03 华为技术有限公司 一种光波导和印刷电路板
CN105308487B (zh) * 2014-04-17 2018-09-21 华为技术有限公司 一种光波导和印刷电路板
CN108982427A (zh) * 2018-10-15 2018-12-11 中国计量大学 球形熔接长周期光纤光栅表面等离子体共振氢敏传感器
CN113568244A (zh) * 2021-07-16 2021-10-29 上海大学 一种半导体量子点和稀土共掺石英放大光纤及其制备方法

Also Published As

Publication number Publication date
FR2896315B1 (fr) 2010-09-17
US20100020388A1 (en) 2010-01-28
EP1783872A1 (fr) 2007-05-09
US20070127877A1 (en) 2007-06-07
US7869686B2 (en) 2011-01-11
FR2896315A1 (fr) 2007-07-20
CN100498391C (zh) 2009-06-10
US7813614B2 (en) 2010-10-12

Similar Documents

Publication Publication Date Title
CN100498391C (zh) 放大光纤
US5708669A (en) Article comprising a cladding-pumped optical fiber laser
CA1324517C (en) Optical fiber lasers and amplifiers
CA2293132C (en) Triple-clad rare-earth doped optical fiber and applications
US5007698A (en) Optical fiber amplifier/multiplexer
US5933437A (en) Optical fiber laser
EP1280247B1 (en) Optical fiber amplifier device and communications system using the optical fiber amplifier device
EP1443347A3 (en) Single mode optical fibre
US6411757B1 (en) Article comprising a waveguide structure with improved pump utilization
JPH09139534A (ja) 希土類元素添加ファイバ増幅器
JP2713031B2 (ja) 希土類元素添加マルチコアファイバ及びそれを用いた光増幅器
CN1438503A (zh) 高功率光纤耦合
US20030112497A1 (en) Optical amplifier with distributed evanescently-coupled pump
US20080130100A1 (en) High-efficiency, high-reliability fiber amplifier using engineered passband of photonic bandgap optical fiber
US20050225815A1 (en) Compact optical amplifier
US6853787B2 (en) Silica optical fiber with a double polymer cladding
CN1165788C (zh) 稀土掺杂光纤
JP2955780B2 (ja) 光ファイバ増幅器
JPH09205239A (ja) 増幅用光ファイバ
RU2309500C2 (ru) Оптический усилитель с накачкой на множественных длинах волн
WO2005031927A3 (en) High power 938 nanometer fiber laser and amplifier
JPH10339822A (ja) 増幅用光ファイバ
CN115349204A (zh) 多芯光放大光纤、多芯光纤放大器及光通信系统
WO2001042819A3 (en) Multi-clad optical fiber and amplifier
US20030142388A1 (en) Waveguide optical amplifier

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20210510

Address after: texas

Patentee after: Usao Investment Co.,Ltd.

Address before: Fa Guobalishi

Patentee before: ALCATEL