CN1950601A - 用于储存热能并发电的设备及方法 - Google Patents

用于储存热能并发电的设备及方法 Download PDF

Info

Publication number
CN1950601A
CN1950601A CNA2005800150578A CN200580015057A CN1950601A CN 1950601 A CN1950601 A CN 1950601A CN A2005800150578 A CNA2005800150578 A CN A2005800150578A CN 200580015057 A CN200580015057 A CN 200580015057A CN 1950601 A CN1950601 A CN 1950601A
Authority
CN
China
Prior art keywords
heat
thermomechanics
storage device
energy
working fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2005800150578A
Other languages
English (en)
Inventor
C·奥勒
D·查托尼
M·拉克纳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB Research Ltd Switzerland
ABB Research Ltd Sweden
Original Assignee
ABB Research Ltd Switzerland
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Research Ltd Switzerland filed Critical ABB Research Ltd Switzerland
Publication of CN1950601A publication Critical patent/CN1950601A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • F28D20/021Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat the latent heat storage material and the heat-exchanging means being enclosed in one container
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas- turbine plants for special use
    • F02C6/14Gas-turbine plants having means for storing energy, e.g. for meeting peak loads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/08Heating air supply before combustion, e.g. by exhaust gases
    • F02C7/10Heating air supply before combustion, e.g. by exhaust gases by means of regenerative heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/10Combinations of wind motors with apparatus storing energy
    • F03D9/18Combinations of wind motors with apparatus storing energy storing heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/22Wind motors characterised by the driven apparatus the apparatus producing heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • F03D9/255Wind motors characterised by the driven apparatus the apparatus being an electrical generator connected to electrical distribution networks; Arrangements therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2220/00Application
    • F05B2220/60Application making use of surplus or waste energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/60Application making use of surplus or waste energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/50Energy storage in industry with an added climate change mitigation effect

Abstract

因为热能储存技术的效率受到固有限制,其有益使用限于非常特定的经济限制情况,即进入该单元电的价值与从该单元输出的电的价值之间的巨大差异。由于风力器材价格以及矿物燃料和/或其燃烧产物的成本的降低,这是针对风力的情况。风是免费燃料并且当存在太小负载需求时风力的价值基本上是零,并且在存在需求时风力的价值的确值得考虑。在这些情况下,电热能量储存和燃料(矿石)燃烧的组合作为附加热源提供了用于储存能量的成本效率高的系统和发电的经济途径。

Description

用于储存热能并发电的设备及方法
技术领域
本发明涉及能量储存以及发电领域。它来自于如权利要求1的前序部分所描述的用于将热能提供到热力学机器以便产生电力的系统以及用于响应电力需求产生电力的方法。
背景技术
用于发电的重要可再生能源向来都是间隙性的。风吹动或者不吹动,太阳发光或者不发光。如果来自这些间歇性能源的电力产生必须是连续的,则需要在富余供给期间储存能量并随着电需求超过供给从中取出能量的能量储存单元。此外,如果不足供给期间持续非常长时,可能需要相当大尺寸的能量储存单元以便支撑该期间内的动力,结果,经常利用来自可以轻易大量储存的矿物燃料的传统动力产生补充这种动力产生系统。
作为第一实例,用于与几个远程家庭互连的高达100kW的岛状电网(island grid)的动力产生系统包括小型风力涡轮、大量的电池以及备用柴油发电机。作为第二实例,太阳-热动力设备将太阳辐射转化成热,热由热流体传递到热力学机器(例如,蒸气涡轮),以便进行发电。为了延长这些动力设备的运转时间,热流体还可以将热传递到热储存单元。该热随后从热储存单元取出。此外,通过矿物燃料的燃烧增大蒸气产生以便进一步延长这种动力设备的运转时间并使它们完全独立于天气情况。
然而,由于能量储存的有益使用不局限于从风或阳光发电的情况。在大型互连电力网中,当基底负载(baseload power)动力设备(例如,核动力设备)满负荷持续供给而电需求很低时,电在夜间是富余并且廉价的。在白天的几个小时内,电需求以及价格达到高峰,并最大负荷动力设备运转。虽然是在不同的时间标度上,这种情形有些类似与富余以及缺乏风力的情况。
水力储存动力设备在富余期间储电并在高峰时间内供电。水力储存是最发达的大型电能储存技术,但是它局限于少数适当的地理位置以及大设备尺寸。
与正常工程直觉相反,作为可间断获得的能源和/或周期性高峰能量需求的补充的所谓电热能量储存是非常值得考虑的。电热能量储存通常包括以下步骤:将电转化成热,储存热,并将该热转化回电。尽管电热能量储存好像缺乏技术含量,但是从经济角度,它是值得关注的,因为与其他电能储存技术相比它具有特殊的成本结构。热相对容易储存并且因而电热能量储存具有很低的每kWh成本(“能量容量成本”)。它还具有中等的每kW成本(“转化成本”或“动力成本”)。由于电到热的转化及其反过程是不涉及任何(电)化学转化的纯物理类转化,因而可以预期到基于其上的储存装置的长循环寿命。不象水力储存,它是不受位置约束的并且相对紧凑,即具有高能量密度。此外,电热能量储存通常遵循有利的比例定律以便放大到更大的功率以及容量等级。
尽管存在上述优点,但电热能量储存仍不是大多数应用的选项,因为这些优点被不良的往复效率(从电回到电)所抵消了。然而,如果需要大容量并且如果初级动力源相对能量储存装置成本不高的话,电热能量储存确实是电能储存的选项。后者特别是针对自然可再生能源及其基本免费的“燃料”太阳以及风力或者针对在低需求期间的成本不高的基底负载电的情况。例如,超过特定碳氢化合物燃料价格水平(例如,反映远程地理位置以及高柴油运输成本或二氧化碳排放税),电热能量储存是对风力产生的正确补充。
在专利US3,080,706中,显示了热储存运转的Stirling循环发动机,其中发动机由储存在相关容器内的热单独运转。热由具有可断开连接件的加热线圈供应到容器内的热储存物质。热储存物质(例如,氢化锂、氢氧化锂以及氟化锂)具有非常高的熔解热以及在发动机运转温度范围内的熔点。
专利US5,384,489公开了包括风能量储存以及用于远离公用电网的远程位置的回收装置的风推进发电系统。在富余风力期间,来自风力发电机的电运转浸入到热流体内的电阻加热器。热流体由配置在加热器和储存容器之间的泵循环。在低风速或高需求期间,来自储存装置内的加热热流体的热由产生用于蒸气推进发电机的蒸气的能量提取器或热交换器转化回电。在以增加总系统投资成本为代价,可以增加备用矿物燃料内燃柴油发动机作为预防。
发明内容
因而,本发明的目的是在没有增加太多系统投资成本的情况下平衡电需求和供给之间的时间相关矛盾。该目的是由根据权利要求1和9的用于将热能提供到热力学机器的系统以及用于产生电力的方法实现的。通过附属的专利权利要求,进一步优选的实施例显而易见。
根据本发明,电力源向将电转化成要储存在热储存装置内的热的第一热产生装置供电。该热通过第一热传递装置从该装置不定时取出并提供到用于发电的热力学机器,例如处于膨胀模式的热机,即涡轮或往复式发动机,例如,Stirling发动机。因而,如果取出的热能不足以满足电需求,由来自第二热产生装置的热进行补充。第二热产生装置向与所述第一热传递装置非常相同的热力学发动机提供热能,因而不需要提供单独一组备用动力产生器材,并且避免了必需部件的加倍。
优选的是,该电力源是间歇性能源,并且特别是间歇性可再生能源(例如风力或太阳辐射),或者是在低需求时间内来自电力网的富余且相对低成本的电。因而,来自间歇性能源的更持久电供给或者来自基底负载动力设备的更可调度电供给是可能的。
在第一优选实施例中,第二热产生装置包括在连接到热力学机器的第二工作流体线路内循环的第二工作流体以及可控热源,例如可以接通以及断开以便加热第二工作流体的简单燃料燃烧器或地热源。因而,热力学机器可以由储存在热储存单元内的热(来源于间歇性电力源)或者来自燃料燃烧(矿石或生物量)或者由二者的组合进行运转。
在更优选的实施例中,热力学机器仅连接到包括一种工作流体的一个流体线路,即来自第一热传递装置的工作流体而第二工作流体不是相异的,而是相同的。这避免了提供几种开关来将两种相异工作流体的任意一种导引到热力学发动机的,并允许甚至在热储存单元处于低温时保持热力学机器的恒定的上工作流体温度。
在第二优选实施例中,热通过连接到供电路的电阻器直接积蓄在热储存装置内。作为备选方案,可以通过利用来自该供给的电运转热泵将热提供到热储存装置。与通过涉及热辐射或对流的热储存装置表面的热传递相比,在装置的内部积蓄热是有利的,因为通过表面的热传递导致较低的温度梯度。
在本发明的又一优选变型中,热储存介质在热储存装置的整个运转温度范围内保持固态,即在供给和提取热的全部过程中。这有助于热储存装置的设计,因为没有必须考虑在基于熔化潜热的储存系统进行加热的过程中到液相的相变所导致的体积变化。此外,可以忽视倾向于具有化学侵蚀性并且使容器材料的腐蚀保护成为必须的熔化的盐或金属的化学反应性以及液相中的层化过程。
优选是的,热储存介质包括耐火材料例如,砖形式或作为熔铸耐火材料的氧化镁或氧化铝。这些成分已经是在高温熔炉应用、钢或玻璃工业中长期工业使用的,并且可以承受高达1500℃的温度并在相对较小的体积内储存大量的热。
在又一优选实施例中,提供可控热阻以便控制传递到第一工作流体的热量。这允许将热储存装置的储存温度上限增加到热力学机器的上工作温度以上。事实上,蒸气运转的热力学机器的上工作温度限制在大约600-700℃,因为在延长的寿命内,这些机器的部件与热的高压蒸气接触。因而,如果向涡轮提取并传递热的热交换器配置在热储存装置内部,那么后者具有限制到600-700℃的上储存温度。另一方面,希望允许热储存单元的更高温度以便增加其能量密度。此外,假设工作温度仍高于储存温度,即使储存温度随时间减小,可以保持蒸气发动机的高上工作温度以便实现相当好的Carnot效率。
优选的是,通过耦合并配置在热储存装置和第一工作流体线路之间的传递线路并且控制该传递线路内的对流式热传递实现可变热阻。例如,通过由用来作为传递或辅助流体的液态金属(铅、纳或银)的阀门或泵调节流速来实现后者。因而,热储存介质和热力学机器的工作介质的上或最佳温度之间的温度差适于最大化储存装置的热容量以及热到电的转化效率。
在本发明的产生电力的方法中,根据电力需量(系统的消费端)和电力供给(由初级电力供给提供)的比率选择各种运转模式。在这种情况下,要以广泛的含义理解需求和供给,并不局限于单纯的物理动力,而是结合经济考量,例如目前或今后的动力价格等。一般说来,如供给超过需求,过剩的电能转化为热并储存在热储存装置内,然而为了满足过剩的需求,储存的热转化回电并由来自可控辅助源的热进行不定时补充。
附图说明
将在下文中参照在所附示意性附图中显示的优选示范性实施例更详细地解释本发明的主题,其中:
图1显示了用于向热力学机器提供热能的系统;
图2显示了用于发电的系统;
图3显示了具有可控热传递阻值的系统。
附图中所使用的参考标记及其含义以概要形式列在参考标记列表中。原则上,在图中相同的部件设有同一参考标记。
附图标记列表
1热储存装置
11热储存材料
12隔热系统
2第一热传递装置
21第一工作流体线路
22热交换器
23冷凝器
24泵
25可控热阻
26传递线路
27流速调节器
3热力学机器
31热推进发电机
4第一热产生装置
41风推进发电机
42第一电路
43电阻器
5第二热产生装置
51可控热源
具体实施方式
图1示意性显示了根据本发明用于将热能提供到热力学机器的系统。它包括热储存装置1、用于将热能从装置1传递到热力学机器3的第一热传递装置2。第一热产生装置4将电能转化成热,而提供第二热产生装置5以便向机器3增加热能。
图2显示了基于本发明的用于向热力学机器提供热能的系统的用于发电的系统的主要部件。热储存装置或热储存单元1包括由适当的隔热系统12所包围的热储存材料11并且通过热交换器22热耦合到第一工作流体线路21。第一线路21包括在热交换器22和热力学机器3(例如以机械方式耦合到发电机31的蒸气涡轮或sterling发动机)之间的适当管件配置中循环的第一工作流体。可控热源或燃料燃烧器51提供在第一线路21中以便如果必要对第一工作流体进行加热。该线路21进一步包括用于支持第一流体的循环的冷凝器23以及泵24。由于可控热源23是第一工作流体线路21的一部分,没有描述独立的第二工作流体线路。风推进发电机41将风转化成电能,电能经包括电阻器43的第一电路42传递到热储存装置1。热储存材料11全部包含在隔热物12内,隔热物12不必是热流体在储存容器和热交换器之间流动的情况。
热储存装置1内的热优选由可再生以及间歇性能源产生。例如,在光电池内可以将太阳能转化成电能,或者在耦合到发电机41的风力涡轮中将风能转化成机械能,风能是最有前途并且最不可预知的可再生能源。
电到热的转化是通过在热储存单元1到处分布的电阻器43完成的。这些电阻器需要与周围的热储存介质11处于良好的热接触以使它们能够将热力传递到这些介质。可能的是,电阻器可以是埋在适当固体熔铸耐火材料之间的简单钢带。到热储存介质的主体的热阻越低,电阻器过热的趋势越小。电阻材料和热储存介质的热膨胀系数需要近似匹配或者设计必须容许热膨胀差。供给电压是两种相互矛盾的要求之间的折中。一方面,如果电阻器在热储存介质到处广泛延展,它们就越少过热。考虑到可靠性,这要求低的供给电压,也就是电并联的多个电阻器;又一方面,电力供给是穿过隔热物的热泄漏路径,考虑到金属中电导率和热导率之间的关系(Wiedemann-Franz定律),这要求高的供给电压,即低电流。
热的储存可以是固态耐火材料中的可感形式或者盐或金属的潜在形式(熔化能)。热储存材料优选具有以下属性:高密度、高热导率、在工作温度的化学稳定性以及兼容性。此外,对于可感热储存需要在相关温度范围内的高比热容或者对于潜在热储存需要高比熔能量以及适当的熔化温度。在下表中列出了典型的数值:
  材料   密度   热容   热导率   熔化温度   潜热   最大温度   有效容积热密度(400-800℃)
  氧化镁耐火砖氧化铝耐火砖氯化钠   3.0g/cm32.7g/cm32.2g/cm3   1.1-1.2JK-1g-1(600℃)0.9-1.1JK-1g-1(600℃)0.85JK-1g-1   3.5-6.5WK-1m-1(600℃)2.1WK-4m-1(600℃)7.0WK-1m-1 802℃ 520Jg-1   1500℃1500℃   370Whl-1(400-800℃)300Whl-1(400-800℃)350Whl-1(400-810℃)Incl.熔化
利用在热储存单元到处分布并配置为减小到热储存材料的温降的热交换管从热储存单元收集热。因为在风能储存中,充满(即加热)速度通常比排放速度高很多,所述集热管配置没有热产生电阻的分布那么关键。
大型烧煤蒸气动力设备的技术发展水平是以从煤的化学能容量到电的41-45%的转化效率运转。现今,Rankine循环的上工作温度限制为ca.650℃,因为高压下的侵蚀性蒸气限制了蒸气发电机内钢管(连接到燃烧室的热交换器)的寿命。结果,从热于650℃的热储存单元进料的蒸气涡轮需要主热储存单元和蒸气发电机之间的附加可控热传递。这种情况通过引入两个更多的热交换器使设计复杂化。另一方面,这种设计允许更高的热储存单元上温度并且由此降低了成本。
在图3中,显示了具有作为第一热传递装置2一部分的可控热阻25的相应系统。该热阻25包括具有传递流体的传递线路26以及用于该传递流体的流速调节器或泵27。例如,后者是经交换器22传递其热能到第一工作流体(例如,蒸气)的液态金属。通过流速调节器27调节热传递以使第一工作流体的温度等于热力学机器3的最佳温度尽可能长的时间。
因为热能储存技术的效率受到固有限制,其有益使用限于非常特定的经济限制情况,即进入该单元电的价值与从该单元输出的电的价值之间的巨大差异。由于风力器材价格以及矿物燃料和/或其燃烧产物的成本的降低,这是针对风力的情况。风是免费燃料并且当存在太小负载需求时风力的价值基本上是零,并且在存在需求时风力的价值的确值得考虑。在这些情况下,电热能量储存和燃料(矿石)燃烧的组合提供了用于储存能量的成本有效的系统和发电的经济途径。
在下文中,给出了本发明的实用实施例:
假设氧化镁耐火材料使用400℃和800℃之间的温度范围。储存单元在400℃为“空”而在800℃为“完全充满”。上温度由用于提取热的热交换管的上工作温度所限定。最小温度限定为Stirling发动机的技术发展现状的最低合理工作温度。结果,不使用该低温以下所包含的那部分热量。
Stirling发动机的技术发展现状对于热到功的转化实现65-70%的Carnot效率是已经公知的。假设TLOW15℃,利用Carnot效率(ηCamot=1-TLow/THigh)这意味着在800℃的温度至少是65%×73%=48%(当热储存单元完全充满时)而在400℃(当热储存单元排放到该实际限制时)为65%×57%=37%。加权平均为43%。
为了在400和800℃之间储存12,000kWh的热能,需要32.8m3或者侧面长3.2米的立方体。这对应于370Wh/升和122Wh/kg的总有效热能密度(在400℃和800℃之间)。参见下文,由于隔热物,净有效能量密度更小。对于实例系统,快速计算给出厚55cm的隔热壁。这使得三米的立方体的热储存材料变为总数为4.4米的立方体,差不多向33m3的“工作”材料上增加了44m3。假设真实温度取决于该隔热系统的热传导属性,储存单元将通过隔热物持续损失5.1的kW热动力(在800℃)。这对应于每天1.0%的自排放。(甚至在上文所假设的低供给电压时,经供电到电阻器的热泄漏仅为ca.540W。)例如,假设蒸气发电机或Stirling发动机的工作气体的热传递系数为1000W/(m2K)(这似乎是保守估计),并且允许从管到流体的温度差为10℃,意味着热交换器需要的表面积为25m2,这可以由直径为4cm、长度为3.20m的63根管(部分串联和并联连接)试验性实现。

Claims (10)

1.一种用于向用于产生电力的热力学机器(3)提供热能的系统,包括:
用于储存热能的热储存装置(1)以及用于将热能从热储存装置(1)传递到热力学机器(3)的第一热传递装置(2),
用于利用电力加热所述热储存装置(1)的第一热产生装置(4),
其特征在于:所述系统包括用于向所述热力学机器(3)提供热能的第二热产生装置(5)。
2.根据权利要求1所述的系统,其特征在于:所述系统包括作为所述第一热产生装置(4)的电力源的间歇性可再生能源,例如风力或来自电力网的低成本基底负载电。
3.根据权利要求1所述的系统,其特征在于:所述第二热产生装置包括具有可连接到所述热力学机器(3)的第二工作流体的第二工作流体线路,以及用于加热所述第二工作流体的可控热源(51)。
4.根据权利要求3所述的系统,其特征在于:所述第一热传递装置(2)包括具有可连接到所述热力学机器(3)的第一工作流体的第一工作流体线路(21),其中所述第二工作流体线路和第一工作流体线路(21)相同。
5.根据权利要求1所述的系统,其特征在于:所述第一热产生装置(4)包括位于所述热储存单元(1)或热泵中的欧姆电阻(43)。
6.根据权利要求1所述的系统,其特征在于:所述热储存装置(1)包括在所述储存装置的低温位处于固态的热储存介质(11)。
7.根据权利要求6所述的系统,其特征在于:所述热储存介质(11)在所述热储存装置的高温位处于固态。
8.根据权利要求1所述的系统,其特征在于:所述第一热传递装置(2)包括用于控制热传递的可控热阻(25)。
9.一种用于响应电力需量产生电力的方法,包括:
经第一热产生装置(4)通过转化来自电力供给的超过电力需量的电力来加热热储存装置(1);
经第一热传递装置(2)将热能从所述热储存装置(1)传递到热力学机器(3),和/或经第二热产生装置(5)将热能提供到所述热力学机器(3)以便满足超过所述电力供给的电力需量。
10.根据权利要求9所述的方法,其特征在于:所述电力需量和/或供给考虑到经济考量。
CNA2005800150578A 2004-03-16 2005-03-10 用于储存热能并发电的设备及方法 Pending CN1950601A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP04405156.3 2004-03-16
EP04405156A EP1577548A1 (en) 2004-03-16 2004-03-16 Apparatus and method for storing thermal energy and generating electricity

Publications (1)

Publication Number Publication Date
CN1950601A true CN1950601A (zh) 2007-04-18

Family

ID=34833826

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2005800150578A Pending CN1950601A (zh) 2004-03-16 2005-03-10 用于储存热能并发电的设备及方法

Country Status (5)

Country Link
US (1) US20080022683A1 (zh)
EP (2) EP1577548A1 (zh)
JP (1) JP2007529665A (zh)
CN (1) CN1950601A (zh)
WO (1) WO2005088122A1 (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102449302A (zh) * 2009-03-26 2012-05-09 太阳存储系统公司 用于蓄热的中压储存系统
CN102459824A (zh) * 2009-06-18 2012-05-16 Abb研究有限公司 具有中间存储池的热电能量存储系统以及用于存储热电能量的方法
CN101720380B (zh) * 2007-05-11 2012-11-21 塞佩姆股份公司 用于存储和返还电能的装置和方法
CN103003531A (zh) * 2010-05-28 2013-03-27 Abb研究有限公司 用于储存热电能的热电能量储存系统和方法
RU2484405C1 (ru) * 2011-09-23 2013-06-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Юго-Западный государственный университет" (ЮЗГУ) Теплообменник
CN103277272A (zh) * 2013-05-08 2013-09-04 哈尔滨工业大学 风能及槽式太阳能一体化发电系统
CN101970832B (zh) * 2008-03-12 2014-09-03 西门子公司 使用热存储器的电能存储和通过热力学循环过程的回送
CN105899766A (zh) * 2013-10-03 2016-08-24 卡尔提Wh诺曼德公司 用于储存/生产电能的热力系统
WO2019174059A1 (en) * 2018-03-13 2019-09-19 China Energy Investment Corporation Limited Process for producing electricity from power plant operated under variable load conditions, and power plant
CN110645147A (zh) * 2019-10-12 2020-01-03 新疆金风科技股份有限公司 储能装置、风力发电机组的储能系统及储能方法
CN112513428A (zh) * 2018-05-23 2021-03-16 爱丁堡大学董事会 超高温热能储存系统

Families Citing this family (86)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006072185A1 (en) * 2005-01-10 2006-07-13 New World Generation Inc. A power plant having a heat storage medium and a method of operation thereof
JP5025930B2 (ja) * 2005-09-13 2012-09-12 株式会社桃屋 ラクトバチルス・プランタラムの菌体を有効成分とする体脂肪率低減剤
DE102006007119A1 (de) * 2006-02-16 2007-08-23 Wolf, Bodo M., Dr. Verfahren zur Speicherung und Rückgewinnung von Energie
WO2007134466A1 (en) * 2006-05-24 2007-11-29 Abb Research Ltd Thermoelectric energy storage system and method for storing thermoelectric energy
DE102007027573A1 (de) * 2006-12-06 2008-07-24 Samak, Nabil Solar- oder wärmebetriebene Klimaanlage und/oder Wärmepumpe mit oder ohne Stromgenerator - Kurz= "SWKS"
KR100797824B1 (ko) * 2006-12-18 2008-01-24 주식회사 포스코 분상 또는 괴상의 일반탄 및 분상의 철함유 광석을 직접사용하는 용철제조장치
EP2020728A1 (en) * 2007-08-03 2009-02-04 Iveco Motorenforschung AG An energy storage process and system
WO2009035363A1 (fr) * 2007-09-14 2009-03-19 Viktor Vladimirovich Tsarev Système d'alimentation électrique autonome
GB2452787A (en) * 2007-09-14 2009-03-18 Clive Bonny Power generation system
ES2416727T3 (es) * 2007-10-03 2013-08-02 Isentropic Limited Aparato de acumulación de energía y método para acumular energía
CA2611424C (en) * 2007-11-21 2017-02-28 Andrew Marks De Chabris A method and system for distributing energy
US7971437B2 (en) * 2008-07-14 2011-07-05 Bell Independent Power Corporation Thermal energy storage systems and methods
DK2182179T3 (da) * 2008-07-16 2011-07-11 Abb Research Ltd Termoelektrisk energioplagringssystem samt fremgangsmåde til oplagring af termoelektrisk energi
EP2157317B2 (en) * 2008-08-19 2019-07-24 ABB Research LTD Thermoelectric energy storage system and method for storing thermoelectric energy
US8522552B2 (en) * 2009-02-20 2013-09-03 American Thermal Power, Llc Thermodynamic power generation system
US20100212316A1 (en) * 2009-02-20 2010-08-26 Robert Waterstripe Thermodynamic power generation system
CA2654339C (en) * 2009-03-09 2009-09-15 Edward James Cargill Heat engine apparatus and method
EP2241737B1 (en) 2009-04-14 2015-06-03 ABB Research Ltd. Thermoelectric energy storage system having two thermal baths and method for storing thermoelectric energy
DE202009006572U1 (de) * 2009-04-30 2010-09-16 Samak, Nabil Die externe oder interne, unabhängige, selbstständige, Ein- oder Zweistrahl-Anergie-Luftturbine, die mit Anergie Antriebskreisläufen und/oder nur mit kältetechnischen bzw. Anergiekreisläufen betrieben wird
US20120138267A1 (en) * 2009-08-10 2012-06-07 Graphite Energy N.V. Release Of Stored Heat Energy To Do Useful Work
EP2312129A1 (en) 2009-10-13 2011-04-20 ABB Research Ltd. Thermoelectric energy storage system having an internal heat exchanger and method for storing thermoelectric energy
JP5024736B2 (ja) 2009-10-15 2012-09-12 住友電気工業株式会社 発電システム
WO2011047484A1 (en) * 2009-10-22 2011-04-28 Renewable Resource Recovery Corp. Wall assembly with photovoltaic panel
US8484986B2 (en) * 2010-02-19 2013-07-16 Phase Change Storage Llc Energy storage systems
US10094219B2 (en) 2010-03-04 2018-10-09 X Development Llc Adiabatic salt energy storage
EP2369288A1 (en) * 2010-03-11 2011-09-28 Siemens Aktiengesellschaft Energy transfer system comprising a phase change material
CN102236349A (zh) * 2010-04-30 2011-11-09 新奥科技发展有限公司 用于能源利用的系统能效控制器、能效增益装置及智能能源服务系统
US20120001436A1 (en) * 2010-07-01 2012-01-05 Twin Disc, Inc. Power generator using a wind turbine, a hydrodynamic retarder and an organic rankine cycle drive
EP2952703B1 (fr) * 2010-12-30 2020-01-22 C3 Chaix & Associes, Consultants en Technologie Dispositif de conversion d'énergie thermique en énergie mécanique
EP2482626B1 (en) 2011-01-31 2014-06-11 ABB Oy A method and an arrangement in connection with a solar energy system
DE102011001273A1 (de) * 2011-03-15 2012-09-20 Isocal Heizkühlsysteme Gmbh Speichertank für ein Energiespeichersystem und Energiespeichersystem mit derartigen Speichertanks
US10012701B2 (en) 2011-03-15 2018-07-03 Vestas Wind Systems A/S Accurate estimation of the capacity and state of charge of an energy storage system used in wind farms
GB2493511B (en) 2011-07-29 2018-01-31 Sondex Wireline Ltd Downhole energy storage system
EP2587005A1 (en) 2011-10-31 2013-05-01 ABB Research Ltd. Thermoelectric energy storage system with regenerative heat exchange and method for storing thermoelectric energy
DE102011086374A1 (de) * 2011-11-15 2013-05-16 Siemens Aktiengesellschaft Hochtemperatur-Energiespeicher mit Rekuperator
EP2594753A1 (en) * 2011-11-21 2013-05-22 Siemens Aktiengesellschaft Thermal energy storage and recovery system comprising a storage arrangement and a charging/discharging arrangement being connected via a heat exchanger
US8653686B2 (en) * 2011-12-06 2014-02-18 Donald E Hinks System for generating electric and mechanical power utilizing a thermal gradient
WO2013180685A1 (en) * 2012-05-28 2013-12-05 William Armstrong System and method for energy storage
FR2991439A1 (fr) * 2012-05-29 2013-12-06 Datanewtech Installation de transformation d'energie thermique
JP5868809B2 (ja) 2012-08-06 2016-02-24 株式会社東芝 発電プラントおよび熱供給方法
EP2698505A1 (de) * 2012-08-14 2014-02-19 Siemens Aktiengesellschaft Verfahren zum Laden und Entladen eines Wärmespeichers und Anlage zur Speicherung und Abgabe von thermischer Energie, geeignet für dieses Verfahren
EP2698506A1 (en) 2012-08-17 2014-02-19 ABB Research Ltd. Electro-thermal energy storage system and method for storing electro-thermal energy
US20140053554A1 (en) * 2012-08-21 2014-02-27 Mehrdad Tartibi Power generation system having thermal energy storage
WO2014052927A1 (en) 2012-09-27 2014-04-03 Gigawatt Day Storage Systems, Inc. Systems and methods for energy storage and retrieval
WO2014063810A2 (de) 2012-10-24 2014-05-01 Peter Kreuter Vorrichtung zum umwandeln thermischer energie in mechanische energie sowie kraftfahrzeug mit einer solchen vorrichtung
CN102996374B (zh) * 2012-12-18 2015-05-20 东方电气集团东方锅炉股份有限公司 太阳能与风能互补型热、电联产系统
EP2759679A1 (de) * 2013-01-23 2014-07-30 Siemens Aktiengesellschaft Thermische Speichereinrichtung zur Nutzung von Niedertemperaturwärme
DE202013002455U1 (de) 2013-02-12 2014-05-16 Carbon-Clean Technologies Ag Wärmespeicher und Wärmespeicherkraftwerk
DE102013004330A1 (de) 2013-02-12 2014-08-14 Carbon-Clean Technologies Gmbh Wärmespeicher und Wärmespeicherkraftwerk
EP2778406A1 (en) * 2013-03-14 2014-09-17 ABB Technology AG Thermal energy storage and generation system and method
DE102013210431A1 (de) * 2013-06-05 2014-12-24 Siemens Aktiengesellschaft Gasturbinen gekoppeltes Speichersystem zur Ansaugfluidvorwärmung
KR101499636B1 (ko) * 2014-02-12 2015-03-06 부산대학교 산학협력단 부착형 태양열 재열 팽창기 모듈을 이용한 열병합 orc 시스템
EP3492841A1 (en) * 2014-12-26 2019-06-05 Daikin Industries, Ltd. Regenerative air conditioner
GB2535181A (en) * 2015-02-11 2016-08-17 Futurebay Ltd Apparatus and method for energy storage
NL2015295B1 (nl) * 2015-08-12 2017-02-28 Johannes Maria Van Nimwegen Cornelis Systeem voor het opslaan van elektrische energie.
CN105422388B (zh) * 2015-12-24 2018-10-09 一能电气有限公司 风光互补蓄热发电装置
CN105470982B (zh) * 2015-12-25 2018-06-26 北京四方继保自动化股份有限公司 一种含介质储能的智能微电网发电功率控制系统及控制方法
CN105717812B (zh) * 2016-01-25 2019-03-29 深圳市合元科技有限公司 一种基于电子烟的智能化控制方法、控制系统及电子烟
JP6696219B2 (ja) * 2016-02-26 2020-05-20 日本製鉄株式会社 発熱システムおよびそれを用いた発電システム
GB2552963A (en) * 2016-08-15 2018-02-21 Futurebay Ltd Thermodynamic cycle apparatus and method
WO2018069396A1 (en) * 2016-10-12 2018-04-19 Kea Holding I Aps A thermal energy storage
US10707400B1 (en) * 2016-10-27 2020-07-07 Jack Morgan Solar power cell
EP3327399B2 (en) * 2016-11-23 2023-02-15 Siemens Gamesa Renewable Energy A/S Method for operating a heat exchange system with a bypass duct and heat exchange system with a bypass duct
US10458284B2 (en) 2016-12-28 2019-10-29 Malta Inc. Variable pressure inventory control of closed cycle system with a high pressure tank and an intermediate pressure tank
US10233787B2 (en) 2016-12-28 2019-03-19 Malta Inc. Storage of excess heat in cold side of heat engine
US10082045B2 (en) 2016-12-28 2018-09-25 X Development Llc Use of regenerator in thermodynamic cycle system
US11053847B2 (en) 2016-12-28 2021-07-06 Malta Inc. Baffled thermoclines in thermodynamic cycle systems
US10233833B2 (en) 2016-12-28 2019-03-19 Malta Inc. Pump control of closed cycle power generation system
US10280804B2 (en) 2016-12-29 2019-05-07 Malta Inc. Thermocline arrays
US10221775B2 (en) 2016-12-29 2019-03-05 Malta Inc. Use of external air for closed cycle inventory control
US10082104B2 (en) 2016-12-30 2018-09-25 X Development Llc Atmospheric storage and transfer of thermal energy
US10801404B2 (en) 2016-12-30 2020-10-13 Malta Inc. Variable pressure turbine
US10436109B2 (en) 2016-12-31 2019-10-08 Malta Inc. Modular thermal storage
CN106677990A (zh) * 2017-01-24 2017-05-17 思安新能源股份有限公司 光热发电系统
CA3088184A1 (en) 2018-01-11 2019-07-18 Lancium Llc Method and system for dynamic power delivery to a flexible datacenter using unutilized energy sources
DE102018109846B4 (de) * 2018-04-24 2020-11-19 Heinrich Graucob Verfahren zur Einspeicherung elektrischer Energie
US10876765B2 (en) * 2018-11-28 2020-12-29 Element 16 Technologies, Inc. Systems and methods of thermal energy storage
TR201911021A2 (tr) * 2019-07-23 2021-02-22 Yasar Ueniversitesi Enerji̇ santralleri̇nde yüksek sicaklik isi depolama si̇stemi̇
CN116557091A (zh) 2019-11-16 2023-08-08 马耳他股份有限公司 具有热存储介质再平衡的双动力系统泵送热能存储
US11519294B2 (en) * 2019-11-25 2022-12-06 Raytheon Technologies Corporation Aircraft propulsion system with vapor absorption refrigeration system
US11396826B2 (en) 2020-08-12 2022-07-26 Malta Inc. Pumped heat energy storage system with electric heating integration
US11286804B2 (en) 2020-08-12 2022-03-29 Malta Inc. Pumped heat energy storage system with charge cycle thermal integration
US11454167B1 (en) * 2020-08-12 2022-09-27 Malta Inc. Pumped heat energy storage system with hot-side thermal integration
US11486305B2 (en) 2020-08-12 2022-11-01 Malta Inc. Pumped heat energy storage system with load following
US11480067B2 (en) 2020-08-12 2022-10-25 Malta Inc. Pumped heat energy storage system with generation cycle thermal integration
DE102022202543A1 (de) 2022-03-15 2023-09-21 Siemens Energy Global GmbH & Co. KG Verfahren und Anlage zur Bereitstellung von Hochtemperatur-Prozesswärme

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3080706A (en) * 1960-02-18 1963-03-12 Gen Motors Corp Heat storage operated stirling cycle engine
DE2553283A1 (de) * 1975-11-27 1977-06-02 Messerschmitt Boelkow Blohm Solarthermisches kraftwerk
US4462213A (en) * 1979-09-26 1984-07-31 Lewis Arlin C Solar-wind energy conversion system
NL8005063A (nl) * 1980-09-08 1982-04-01 Johan Wolterus Van Der Veen Stelsel voor het opwekken, opslaan en distribueren van energie.
US4642988A (en) * 1981-08-14 1987-02-17 New Process Industries, Inc. Solar powered free-piston Stirling engine
US4438630A (en) * 1982-09-07 1984-03-27 Combustion Engineering, Inc. Method and system for maintaining operating temperatures in a molten salt co-generating unit
US5042081A (en) * 1987-11-24 1991-08-20 Steffes Manufacturing, Inc. Electrical thermal storage heating unit with easily replaced heating
US4942736A (en) * 1988-09-19 1990-07-24 Ormat Inc. Method of and apparatus for producing power from solar energy
GB9016483D0 (en) * 1990-07-27 1990-09-12 Dale Electric Of Great Britain Wind powered electricity generating system
DK23391D0 (da) * 1991-02-12 1991-02-12 Soerensen Jens Richard Vindmoelle til selvforsyning og opbevaring af energi
US5384489A (en) * 1994-02-07 1995-01-24 Bellac; Alphonse H. Wind-powered electricity generating system including wind energy storage

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101720380B (zh) * 2007-05-11 2012-11-21 塞佩姆股份公司 用于存储和返还电能的装置和方法
CN101970832B (zh) * 2008-03-12 2014-09-03 西门子公司 使用热存储器的电能存储和通过热力学循环过程的回送
CN102449302A (zh) * 2009-03-26 2012-05-09 太阳存储系统公司 用于蓄热的中压储存系统
CN102449302B (zh) * 2009-03-26 2014-06-04 太阳存储系统公司 用于蓄热的中压储存系统
CN104975891A (zh) * 2009-06-18 2015-10-14 Abb研究有限公司 具有中间存储池的热电能量存储系统以及用于存储热电能量的方法
CN102459824A (zh) * 2009-06-18 2012-05-16 Abb研究有限公司 具有中间存储池的热电能量存储系统以及用于存储热电能量的方法
CN104975891B (zh) * 2009-06-18 2018-01-23 Abb研究有限公司 具有中间存储池的热电能量存储系统以及用于存储热电能量的方法
CN102459824B (zh) * 2009-06-18 2015-08-05 Abb研究有限公司 具有中间存储池的热电能量存储系统以及用于存储热电能量的方法
CN103003531A (zh) * 2010-05-28 2013-03-27 Abb研究有限公司 用于储存热电能的热电能量储存系统和方法
RU2484405C1 (ru) * 2011-09-23 2013-06-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Юго-Западный государственный университет" (ЮЗГУ) Теплообменник
CN103277272A (zh) * 2013-05-08 2013-09-04 哈尔滨工业大学 风能及槽式太阳能一体化发电系统
CN105899766A (zh) * 2013-10-03 2016-08-24 卡尔提Wh诺曼德公司 用于储存/生产电能的热力系统
WO2019174059A1 (en) * 2018-03-13 2019-09-19 China Energy Investment Corporation Limited Process for producing electricity from power plant operated under variable load conditions, and power plant
CN112513428A (zh) * 2018-05-23 2021-03-16 爱丁堡大学董事会 超高温热能储存系统
CN112513428B (zh) * 2018-05-23 2024-04-02 爱丁堡大学董事会 超高温热能储存系统
CN110645147A (zh) * 2019-10-12 2020-01-03 新疆金风科技股份有限公司 储能装置、风力发电机组的储能系统及储能方法

Also Published As

Publication number Publication date
JP2007529665A (ja) 2007-10-25
EP1577548A1 (en) 2005-09-21
WO2005088122A1 (en) 2005-09-22
US20080022683A1 (en) 2008-01-31
EP1725769A1 (en) 2006-11-29

Similar Documents

Publication Publication Date Title
CN1950601A (zh) 用于储存热能并发电的设备及方法
EP1577549A1 (en) Apparatus for storing thermal energy and generating electricity
CN201190639Y (zh) 大功率太阳能蓄能式蒸汽涡轮发电系统
CN202100399U (zh) 太阳能与常规锅炉联合发电供热系统
CN104279756A (zh) 一种采用导热油传热的储能式清洁能源热水锅炉及其制备热水的方法
CN103742374A (zh) 一种聚光太阳能热分布式能源综合利用方法
CN1133940A (zh) 集成式综合动力装置
CN103047778A (zh) 聚光太阳热能分布式能源综合利用系统
CN112260316B (zh) 一种离网型多能互补的冷热电湿联供系统及其方法
CN106969398A (zh) 热电厂区域多能互补能源微网系统
CN109026239A (zh) 一种核反应堆联合太阳能光热发电系统
CN114792987A (zh) 基于固体颗粒储能及二氧化碳发电的虚拟电厂系统及方法
CN112832963A (zh) 太阳能风能与燃气互补联合制氢制甲烷循环热发电装置
CN207688465U (zh) 一种储能式高效空气源热泵供暖系统
CN203770043U (zh) 一种聚光太阳能热分布式能源综合利用系统
CN1243931C (zh) 利用热联合发电的低热水-连续式地区供暖系统
CN111486068B (zh) 一种太阳能辅助海洋温差发电系统
CN204212934U (zh) 聚光太阳能蓄电发电装置
CN216788625U (zh) 一种太阳能能量转换储能供电系统
CN215256355U (zh) 油田汽电联产的低碳能源利用系统
CN115839517A (zh) 一种耦合光伏光热、地热的发电及供能系统
CN211258905U (zh) 太阳能风能与燃气互补联合制氢制甲烷循环热发电装置
CN112963212A (zh) 油田汽电联产的低碳能源利用系统
CN115405383A (zh) 一种基于储热的火电厂灵活调峰系统及方法
Forsberg et al. Nuclear Air-Brayton Combined Cycles Using Electrically-Heated Conductive Firebrick Heat Storage and Hydrogen for Peak Power

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Open date: 20070418