CN1946634A - 纳米结构和制备这种纳米结构的方法 - Google Patents

纳米结构和制备这种纳米结构的方法 Download PDF

Info

Publication number
CN1946634A
CN1946634A CNA2005800124573A CN200580012457A CN1946634A CN 1946634 A CN1946634 A CN 1946634A CN A2005800124573 A CNA2005800124573 A CN A2005800124573A CN 200580012457 A CN200580012457 A CN 200580012457A CN 1946634 A CN1946634 A CN 1946634A
Authority
CN
China
Prior art keywords
layer
cnt
filamentary material
substrate
catalyst layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2005800124573A
Other languages
English (en)
Inventor
P·K·巴克曼
Z·陈
J·默里克希
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips Electronics NV filed Critical Koninklijke Philips Electronics NV
Publication of CN1946634A publication Critical patent/CN1946634A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/04Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method adding crystallising materials or reactants forming it in situ to the melt
    • C30B11/08Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method adding crystallising materials or reactants forming it in situ to the melt every component of the crystal composition being added during the crystallisation
    • C30B11/12Vaporous components, e.g. vapour-liquid-solid-growth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • C30B29/605Products containing multiple oriented crystallites, e.g. columnar crystallites

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Chemical Vapour Deposition (AREA)
  • Inorganic Fibers (AREA)

Abstract

本发明提供纳米结构,即纳米级丝状材料比如碳纳米管(CNT)和其它纳米材料的阵列,尤其涉及连接到衬底比如至少一个顶部电极和一个底部电极上的所述材料,还涉及制备所述纳米结构的方法。根据本发明的器件包括互相分开的第一和第二层(11,13),以及在所述第一和第二层(11,13)之间长出的纳米级丝状材料(10)。所述纳米级丝状材料的形状和尺寸由第二层的形状和尺寸确定。还提供了生长所述纳米级丝状材料的相应方法。

Description

纳米结构和制备这种纳米结构的方法
本发明涉及纳米结构,即纳米级丝状材料比如碳纳米管(CNT)和其它纳米材料的阵列,尤其涉及连接到衬底比如至少一个顶部电极和一个底部电极上的这种材料,还涉及制备这种纳米结构的方法。另外,本发明涉及基于这种纳米结构的器件和制备这种器件的方法。
纳米材料或者纳米级丝状材料比如纳米线和纳米管,作为纳米技术的潜在结构单元已经受到了相当的关注。这种关注可以追索到这些纳米材料的新型结构性质和电子性质。但是,一维(1D)结构由于在合成中遇到的困难,所以其研究受到了很大的限制。
纳米线和纳米管能高效地运送电荷和激子,所以对于例如纳米级电子设备和光电子设备而言是潜在的理想结构单元。例如,碳纳米管(CNT)已经在诸如场效应晶体管和单电子晶体管中得到了应用,但是纳米管元件在构建电子线路方面的实际应用却受到了限制。在过去的十年里,各种纳米材料的合成受到了人们的注意,这是因为这些纳米材料具有充当制备纳米尺度器件的结构单元的潜力。其中,由于纳米线和纳米管具有纳米级的尺寸和高的表面体积比,所以其电子性质和传感性质得到了广泛研究。
一般而言,通过催化剂支持化学气相沉积方法,例如热CVD或者等离子体CVD方法,生长CNT和其它纳米材料是公知的。此外,衬底/缓冲层/催化剂层的一般性堆叠的催化剂层的结构化导致CNT和其它纳米材料发生结构化生长也是公知的。人们还知道的是,等离子体生长的CNT可以从气体混合物垂直排列生长,所述气体混合物包含碳载体(甲烷、乙炔、或其它物质)、氢气和其它气体(氨、氮气)(参见图1和2)。图1的SEM照片示出了在衬底2上通过等离子体CVD垂直排列生长的CNT 1。图2给出了在衬底2上通过等离子体CVD垂直排列生长的碳纳米结构1的SEM照片。
图3举例说明了CNT 1的催化剂辅助CVD生长。通常是例如通过采用掩模在衬底2或者衬底2的部分上以溅射或者蒸镀的连续金属层(例如,Fe、Co、Ni或者其它合适金属)形式提供催化剂3。在生长过程中,这些催化剂层3被加热(步骤1)并破碎成催化剂纳米颗粒4,所述催化剂纳米颗粒4限定了CNT的特征,比如直径、壁数等。单个纳米颗粒4的沉积或者催化剂层3经结构化形成纳米颗粒4导致单个CNT经由CVD在明确的预定位点生长(步骤2)。由此得到的纳米管的直径为40-70nm左右。
而且,已知CNT可以用作晶体管或传感器中的相关元件。在图4中,举例说明了基于CNT的晶体管,它包括衬底2和连接两个金属电极5的单根水平CNT 1。利用在气体吸附或者其它表面改性时CNT性质发生变化的传感器元件也是公知的。在所述器件和传感器中,通过将CNT设置成和电极条水平交叉而接触所述CNT。以此方式测量电子传输现象或者电导率在表面改性时的变化。尽可能通过电容变化进行间接测量,而不是很困难地去测量实际相关性有限的替代物。
在EP-1061043中,描述了采用技术催化剂层合成CNT 150的方法(参见图5)。CNT 150可用于场发射器件(FED)或者白色光源中。优选在形成金属催化剂层之前在第一衬底110的顶部上的绝缘层120的上方形成金属层(未示出)。所述金属层随后可用作所需器件的电极。通过在金属层上面提供用于分解碳源气体的金属催化剂层制备第二衬底(图中未示出)。
随后,通过等离子体蚀刻或者湿法蚀刻技术,将第一衬底110上的金属催化剂层蚀刻成独立孤立的纳米级催化剂金属颗粒130。随后,采用第二衬底的金属催化剂层通过热CVD从催化金属颗粒130生长CNT 150,所述金属催化剂层用于分解碳源气体600,所述碳源气体600用于生长CNT 150。由于在涂覆有催化金属颗粒130的第一衬底110上可以实现均匀反应,所以第一和第二衬底经过排列使得催化金属颗粒130的表面背向碳源气体600的流向。根据EP-1061043的方法,可以制备直径为数纳米至数百纳米,例如1-400nm,长度为十分之几微米至数百微米,例如0.5-300μm的CNT。而且,高纯度、均匀的CNT可以在衬底上均匀而垂直地排列。
但是,这种方法的缺点在于当必须为器件提供接触端子时,仍旧需要在长成的CNT上沉积导电层,从而能够和该器件相接触。由于器件的尺寸小,所以这实施起来很难而且要求另外的步骤。
本发明的目标是提供改进的纳米结构和具有纳米结构的器件以及制备和使用这种结构的方法,其中所述纳米结构的器件包括纳米级丝状材料。
上述目标通过本发明的方法和器件得以实现。
在本发明的一个方面,提供了一种器件,包括互相分开的第一层和第二层以及在第一和第二层之间生长的纳米级丝状材料。通过在第一和第二层之间整体式生长纳米级丝状材料,即,第一和第二层以及位于其间的纳米级材料形成了一个整体结构,避免了必须在所述纳米级丝状材料的顶部施加另外层的问题,所述另外层比如例如但不限于接触层。
所述纳米级丝状材料的形状和尺寸可以由第二层的尺寸和形状确定。和长出的纳米级丝状材料形成的层的结构相比,第二层通常更容易图案化(pattern),所以本发明的优点在于纳米级丝状材料仅仅生长到有用的程度,即第二层在催化剂层顶部所在的位置。
第一和第二层可以具有导电性、半导电性和甚至绝缘性,具体取决于所需的应用。在第一和第二层具有导电性的情况下,生长纳米级丝状材料的步骤建立了和第二层的导电连接。在第一和第二层具有导电性的情况下,该器件可以进一步至少包括底部接触和顶部接触,底部接触连接到第一层,顶部接触连接到第二层。因此,本发明的器件是容易接触的器件,即二端子器件。在一个实施方案中,第一和/或第二层可以由柔性材料构成。
本发明的器件可以包括独立的纳米级丝状材料。所述丝状材料可以包括碳纳米管或者纳米线。纳米线可以由Si、GaAs、Si3N4、Ge、GaN、GaP、InP、AlN、BN或者SiC之一形成。
在本发明的一个实施方案中,器件可以是电子器件,比如例如传感器。
本发明进一步公开了包括多个本发明器件的阵列。
在本发明的第二方面,提供了制备纳米级丝状材料的方法。该方法包括:
提供叠层,所述叠层至少包括第一催化剂层,所述第一催化剂层对纳米级丝状材料的生长具有催化活性并且位于至少第一层和第二层之间,所述第一和第二层对所述纳米级丝状材料的生长显示惰性,和
在所述第一和第二层之间生长纳米级丝状材料,由此将所述第一催化剂层转变成包含所述纳米级丝状材料的层。
通过应用上述方法,长出的纳米级丝状材料例如CNT被连接到两个固体表面上,即,一方面的第一层或者衬底,另一方面的第二层或者盖层。这些固体表面可以由导电、半导电或者绝缘材料制备。在衬底和盖层由导电材料制备的情况下,它们可以用作接触端子。因此,本发明的本实施方案的方法提供了简单的方法来创建用纳米级丝状材料例如CNT大规模连接的、容易和底部端子及顶部端子接触(例如,通过引线结合法)的可接触纳米结构,例如2-端子纳米结构。
提供叠层可以包括提供第一层,在第一层的至少部分上提供第一催化剂层,和在第一催化剂层的至少部分的顶部上提供第二层。在第一层的至少部分的顶部上提供第一催化剂层可以通过在第一层的至少部分上沉积金属层来执行。这可以通过任何合适的沉积技术比如例如化学气相沉积(CVD)来执行。在所述第一催化剂层的至少部分的顶部上提供第二层可以包括沉积导电层。
在一实施方案中,第一层可以位于第一平面内,催化剂层可以位于第二平面内,第二层可以位于第三平面内。第一、第二和第三平面优选互相基本平行。但是,在本发明的另一实施方案中,第一层可以位于第一平面内,第二层可以位于第二平面内,第一和第二平面包括两者之间的第一夹角,催化剂层可以具有楔形形状,所述楔形包括顶角,所述楔形的顶角基本等于所述第一夹角。
在第一和第二层之间生长纳米级丝状材料优选可以通过化学气相沉积(CVD)技术执行。在优选实施方案中,生长纳米级丝状材料可以通过微波等离子体CVD来执行。但是,在其它实施方案中,也可以采用射频(RF)CVD、等离子体增强(PE)CVD或者任何其它合适的CVD技术。
纳米级丝状材料可以包括碳纳米管或者可以包括纳米线。纳米级丝状材料可以包括Si、GaAs、Si3N4、Ge、GaN、GaP、InP、AlN、BN或者SiC之一。
根据下面的详细描述并结合附图,本发明的这些以及其它特性、特征和优点将变得显而易见,所述附图通过举例方式对本发明的原理进行了说明。所述描述仅仅用于示例而不是限制本发明的范围。下面引用的附图标记是指所附的图。
图1是根据现有技术通过等离子体CVD生长的、垂直排列的CNT的SEM照片。
图2是根据现有技术图案化的等离子体CVD(patterned plasma-CVD)生长的、垂直排列的碳纳米结构的SEM照片。
图3示出了常规的催化剂辅助CVD生长CNT。
图4是现有技术的、基于CNT的晶体管原型器件,具有连接两个金属电极的单根水平CNT。
图5示出了现有技术的基于CNT的器件。
图6示意性示出了根据本发明实施方案由夹层衬底/催化剂结构生长纳米级丝状材料。
图7a-7d示出了根据本发明方法制备的实验性CNT结构的一些例子。
图8a和8b示出了根据本发明实施方案在去除盖层后生长的CNT的SEM图片。
图9a和9b示出了根据本发明实施方案可行的材料叠层布置。
图10a和10b示出了从垂直排列的材料叠层开始的CNT生长。
图11示出了根据本发明方面的气体传感器件。
在不同的图中,相同的附图标记是指相同或类似的元件。
参见具体实施方案和一定的附图来描述本发明,但是本发明不限于此而是仅仅由权利要求限定。所述附图仅仅是示意性而非限制性的。在附图中,为了举例说明,某些元件的尺寸可能被放大,没有安比例绘制。在涉及单数名词时采用了定冠词或不定冠词,例如,“一”、“一个”、“该”,但这包括所述名词的复数形式,除非另外具有说明。
另外,说明书和权利要求中的术语第一、第二、第三等等,是用于对相似元件进行区别,而不一定是在描述顺序或者时间上的次序。应该理解的是,如此使用的术语在适当情况下可以互换,而且本文所述的本发明实施方案能够以本文描述或者举例说明的以外的其它顺序操作。
另外,说明书和权利要求中的术语顶部、底部、上方和下方等,是用于描述,而不一定是在描述相对位置。应该理解的是,如此使用的术语在合适情况下可以互换,而且本文所述的本发明实施方案能够以本文描述或者举例说明的以外的其它方位操作。
应该注意的是权利要求中采用的术语“包含”不应被理解成限制在其后面所列出的装置,它并不排除其它元件或步骤。因此,“包括装置A和B的器件”这种描述的范围不应理解成限于仅仅由部件A和B构成的器件。这意味着就本发明而言,该器件仅仅相关的部件是A和B。
本发明提供了用于制备催化生长的纳米材料或者纳米级丝状材料的方法,所述材料比如例如连接到衬底上的纳米管(尤其是碳纳米管,CNT)或者纳米线。所述衬底可以是至少一个接触端子,优选至少两个接触端子,例如,至少一个顶部接触端子和至少一个底部接触端子。本发明还提供了包括这种纳米级丝状材料的多端子电子器件和传感器以及制备这种器件的方法。另外,本发明提供了上述器件的阵列结构。
在下列描述中,将以CNT作为纳米材料对本发明进行解释。但是,本发明并不限于CNT的生长和使用,而是涉及不同种类的纳米材料,尤其是纳米级丝状材料,比如包含例如Si、GaAs、Si3N4、Ge、GaN、GaP、InP、AlN、BN和/或SiC的纳米线或纳米管。纳米管是纳米线的子族。在例如碳的情况下,如果适当选择了生长条件(浓度、温度、压力…),则形成纳米管。如果例如温度太低,则出现缺陷,得到的是线状的丝状结构。这些线是填充了的而不是中空的,是有序性较弱的结构。制备纳米线和纳米管的材料当然取决于原材料。它们各自的结构(线vs管vs无定形物质)依赖于所用催化剂的尺寸和种类以及施加的沉积条件。在下列描述中,当采用术语比如纳米材料、纳米线、纳米管时,是指具有至少一维尺寸小于150nm,即1-150nm的结构。
纳米管是中空的、管状的、笼状的分子,可以具有导电性(例如,金属的)、半导电性或者甚至绝缘性。碳纳米管(CNT)是导电的或者半导电的,因此有可能创建电子器件结构例如半导体-半导体结和半导体-金属结。另外,CNT是具有良好电性质和机械性质的高长径比结构。CNT的性质和结构可以参见“Handbook of Nanoscience,Engineering and Technology”,W.A.Goddard III,D.W.Brenner,S.E.Lyshevski和G.J.Lafrate编辑,CRC Press,2003。
在本发明的第一方面,描述了独立的CNT 10的阵列的制备方法。图6示意性示出了根据本发明实施方案的CNT 10的生长工艺。第一,提供CNT 10将在其上生长的衬底11。衬底11可以例如是半导体层,比如硅或者任何其它的合适半导体材料、金属层比如例如铜或者金、或者导电聚合物层。在本发明的一个实施方案中,衬底11可以是绝缘体。在本发明另一实施方案中,衬底11可以是柔性的,可以例如是薄金属膜或者聚合物。应该注意的是,衬底11材料应该对CNT生长没有催化性。
在衬底11上提供第一催化层12。第一催化层12可以是连续层,例如包含例如Ni、Fe、Co的金属层,或者包含任何其它的具有合适催化性质的合适材料的层,所述合适材料比如例如PdSe、FeZrN、金属合金(例如,Co-/Mo)或者在加工过程中溶解、旋涂上、干燥并转变成催化剂的Co-、Ni-、Fe-盐。可替换地,第一催化剂层12可以包括纳米颗粒,比如例如先位(ex-situ)形成的喷射纳米颗粒。
在第一催化剂层12是连续层的情况下,如同现在描述的本发明的所述实施方案中所述,它可以通过任何常规沉积技术比如例如蒸镀、溅射、CVD、湿化学方法等沉积在衬底11上。第一催化剂层12的厚度随后确定了形成的CNT 10的尺寸。该层以后将破裂成颗粒16(参见下面),这些颗粒16的尺寸将确定CNT的尺寸。
接下来,在第一催化剂层12的至少部分的顶部上例如通过沉积提供覆盖材料层,该覆盖材料层对CNT生长也没有催化性,在后面的描述中称作盖层13。覆盖材料层可以例如包括半导体层比如硅或者任何其它合适的半导体材料,可以包括金属层比如例如铜或者金,或者可以包括导电聚合物层。但是,也可以采用绝缘体。盖层13可以例如通过任何合适的沉积技术比如例如蒸镀、溅射、CVD、湿化学法等提供。盖层13可以优选位于和衬底11的平面以及催化剂层12的平面基本平行的平面内。但是,催化剂层12可以是楔形层,导致盖层包括和衬底11的平面所成的角度,但是位于和催化剂层12的平面基本平行的平面内。
盖层13的尺寸和形状随后确定将形成的CNT纳米管的尺寸和形状(参见下面)。盖层13的厚度可以例如是2nm-2mm,例如0.5mm。盖层13可以尽可能薄至仍旧为连续层的程度。如果该层太薄,则可能包含孔,并因而可能不能形成连续层。
因此,如图6所示,相应于衬底11上的明确限定的区域,第一催化剂层12被包含覆盖材料的盖层13覆盖。
上述层形成了衬底/催化剂/盖层叠层14,如图6所示。根据本发明,衬底11和盖层13可以由相同材料形成,但并不必须。
根据本发明的方法则包括两个步骤:催化剂纳米颗粒形成步骤,和纳米材料生长步骤。
在催化剂纳米颗粒形成步骤中,将整个叠层加热。所述加热可以例如通过等离子体15执行,所述等离子体15例如是含有纳米管材料的等离子体,其随后也被用于生长纳米管。可替换地,也可以通过任何其它合适的加热源来加热,比如例如在衬底11下方、在和其上施加了第一催化剂层的侧相对的侧提供电阻加热器。可以升温至高于100℃,优选高于300℃(图6中的步骤1)。在该步骤中,催化剂层12变形形成催化剂纳米颗粒16。
在又一步骤即纳米材料生长步骤(图6中的步骤2)中,采用含纳米管的等离子体通过例如等离子体CVD生长CNT 10(在给出的例子中)。对本发明而言,CNT生长优选采用微波等离子体增强化学气相沉积(MPECVD),这是因为公知和其它CVD方法相比,采用这种生长方法使生长状态的纳米管10排列得更好,并具有采用较低沉积温度的能力。但是,也可以采用其它CNT生长方法,比如例如热化学气相沉积(TCVD)或者等离子体增强化学气相沉积(PECVD)或者任何其它合适的CVD技术。
观察发现,和衬底11没有被盖层13覆盖的位置相比,在衬底11上被盖层13覆盖的那些位置CNT的生长速度快得多,直径也小得多,即使整个衬底11都涂覆了催化剂材料12也是如此。在盖层13下面生长的CNT 10的直径是其它位置CNT 10的20-50%。试验发现,在盖层13下面的生长速率是衬底11没有被盖层13覆盖的位置处的5-15倍。这导致出现如下结构:盖层13被正生长的CNT 10上举并保持在长出的CNT尖端的顶部。根据本实施方案的方法长出的CNT 10的生长方向基本垂直于衬底11的平面。通过应用上述方法,CNT 10连接到两个固体表面上,即一方面是衬底11和另一方面是盖层13。这些固体表面可以由导电、半导电或者绝缘材料制备。在衬底11和盖层13由导电或者半导电材料制备的情况下,它们可以用作接触端子。因此,本发明第一实施方案的方法提供了简单的方法来创建用独立CNT 10大规模连接的、容易和底部端子及顶部端子(分别是衬底11和盖层13)接触(例如,通过引线结合法)的2-端子纳米结构。
图7a-7d举例说明了采用本发明第一实施方案的方法制备的一些试验结构,包括可以形成底部接触端子的衬底11、排列方向基本和衬底11的平面或者底部接触端子的平面垂直的CNT 10、和可以形成顶部接触端子的盖层13。
为了构建复杂的器件结构,本发明提供了通过光蚀刻技术使CNT生长结构化的方法。虽然在图7a-7d中可以看见的衬底11的整个表面都覆盖了催化材料12,但是仅仅在“夹层”区域中发现了快速的CNT生长,所述“夹层”区域即其中催化层12置于或者夹在两个没有催化活性的部分之间,即衬底11和盖层13之间,的区域。
另外,图7a-7d还说明了CNT 10的排列方向基本和衬底11的平面垂直,即在给出的例子的情况下垂直排列,并且能够上举盖层13和使其悬吊。另外,图7说明了盖层13的形状确定了CNT生长区域的形状,以及采用本发明方法在衬底11和盖层13之间长出的CNT 10的长度均匀。图8示出了在生长过程后去除盖层13后的CNT 10的SEM照片。在盖层13下方长出的CNT 10排列得非常好并且长度均匀,因此表现了本发明方法的一个优点。
在该方法的第一个实施方案中,材料叠层14包括衬底11、催化剂层12和盖层13。但是,在本发明其它实施方案中,叠层14可以更加复杂以改善其性能。除了衬底11、第一催化剂层12和盖层13以外,在一个实施方案中叠层14可以进一步包括位于衬底11和第一催化剂层12之间的第一扩散阻挡层17和/或位于第一催化剂层12和盖层13之间的第二扩散阻挡层18,以防一方面在第一催化剂层12和衬底11之间另一方面在第一催化剂层12和盖层13之间发生化学反应。第一和第二扩散层17、18可以例如包含氮化物,例如TiN、氧化物、碳化物或其混合物,厚度可以是例如0.1-100nm。同样,不同类型的无定形碳层和CVD金刚石层可以充当扩散阻挡层。任选的,叠层14可以包括位于第一催化剂层12和盖层13之间的、位于第一催化剂层12顶部的牺牲层(sacrificial layer),以及位于牺牲层19和盖层13之间的第二催化剂层20。牺牲层19可以是任何能够选择性去除但不会影响催化剂层12、20的催化作用的合适材料,比如例如在图案化后溶解的或者在升高的温度下蒸发的有机层(例如,聚乙酸乙烯酯(PVA)、丙烯酸酯层)。牺牲层19的厚度可以是1-100nm。
第二催化剂层20可以是连续层,例如,包含例如Ni、Fe、Co的金属层,或者包括任何具有合适催化性质的其它合适材料的层,所述合适材料比如例如PdSe、FeZrN、金属合金(例如,Co-/Mo)或者在加工过程中溶解、旋涂上、干燥并转变成催化剂的Co-、Ni-、Fe-盐;或者,第一催化剂层12可以包含纳米颗粒比如例如先位形成的喷射纳米颗粒。第二催化剂层20可以和第一催化剂层12的材料相同,或者可以是不同材料。
叠层14无论是最简单的叠层还是最复杂的叠层,其所有层都可以通过任何合适的沉积方法比如例如蒸镀、溅射、CVD或者湿化学方法沉积。这些层可以通过例如光刻法或者任何其它合适技术根据所需的器件进行结构化。
图9a和9b举例说明了一种叠层14,它包括衬底11、第一和第二催化剂12、20、位于第一和第二催化剂层12、20之间的牺牲层19、以及第一和第二扩散阻挡层17、18。该材料叠层14可以垂直(图9a)或者水平(图9b)排列。但是,在该图中举例说明的层的顺序例子并不是对本发明的限制。它仅仅是举例,所述层和合适的其它层的多种不同结合也是可行的,并可用于本发明的实施方案。
图10a和10b举例说明了CNT从垂直排列的叠层14开始生长,所述叠层14包括衬底11、第一和第二催化剂层12、20、和盖层13,由支架21支撑。在本例中叠层14是通过将分别涂有第一和第二催化剂层12、20的两个固体表面(即分别是衬底11和盖层13)互相叠置形成,其中催化剂层12、20互相面对。
在该例子中,盖层13可以包含和衬底11相同的材料,可以例如是半导体(例如,硅)、金属(例如,铜)、导电聚合物或者甚至绝缘体。图中所示的垂直排列叠层取向导致获得了图10b所示的水平排列的CNT结构。
下面,将描述有关本发明方法的一些具体实施例。
在第一实施例中,CNT从叠层14开始生长,其中所述叠层14包括作为衬底11的硅层、作为催化剂层12的厚度为2nm的铁层、和作为盖层13的硅层。叠层14水平安装(如图9b所示)在反应器微波腔内部的衬底加热台上。随后,以200sccm的速率向反应器中引入氢气。反应器的压力保持为28毫巴。将硅衬底11加热到600℃,点燃1kW2.45GHz的微波等离子体15。随后,以10sccm的速率向反应器内的气相中加入甲烷,同时压力保持不变。在1分钟的生长时间后,在覆盖的区域下面长出5μm长的CNT 10,由此通过多个垂直排列的CNT 10将该器件结构的水平底部和顶部电连接。
在第二实施例中,现在将和第一实施例中相同的叠层14垂直安装在反应器微波腔内部的衬底加热台上(如图9a和10a所述)。执行和第一实施例中相同的工艺流程,除了生长时间以外。现在,CNT 10生长3分钟。这导致在衬底11和盖层13之间获得了水平排列的20μm长的CNT 10,由此通过大量水平排列的CNT 10将该器件结构的两个固体垂直端子电连接。
在本发明的另一方面,提供了如上所述的包括CNT结构的器件。如下的任何器件,比如例如传感器或者电子器件比如例如晶体管,都包括在本发明的范围之内:所述器件包含通过本发明方法形成的纳米级丝状材料,并因而包含至少两个被直接连接的接触端子,以及由此和一个或多个独立的CNT 10相接触。
为了举例而非限制本发明,下面描述两端子器件30,例如,基于吸附气体分子而诱导电阻变化的传感器,如图11所示。图11的器件30中,CNT 10根据上述方法从叠层14开始生长,所述叠层14包括衬底11和盖层13(两者的材料可能相同)以及位于之间的第一催化剂层12,所述第一催化剂层12通过等离子体CVD转变成CNT 10。叠层14可以进一步包含第一和第二扩散阻挡层17,18。衬底11和盖层13可以通过分别连接到衬底11的固体材料和盖层13的材料的底部接触31和顶部接触32来接触。多个垂直排列的CNT 10将衬底11和盖层13电连接,并由此将底部接触和顶部接触电连接。
从现有技术已知,当CNT 10表面上吸收了气体比如例如氨气、NO2…时,其电阻发生变化。在该器件30中,多个独立的CNT 10可以和在其间流过的气体相互作用,由此改变其电导率。这种电导率变化可以很容易在顶部接触和底部接触31、32之间测量。所述器件30可以例如在医疗领域中用作例如呼吸分析中的生物传感器以检测CO2、NH3、NO2、NO和其它呼出的呼吸成分。相应地,本发明包括根据本发明任何实施方案制备的、耦合到电子传感线路上的CNT器件,所述电子传感线路例如用于测量CNT电学性质,比如检测传导率、阻抗和频率响应等的变化的电子传感线路。另一应用领域是例如对环境污染物的灵敏性测量。
在本发明的另一方面,提供了包括如上所述的多个纳米结构二端子器件30的阵列。器件30可以通过采用例如光刻法制备到相同衬底11上。
根据本发明,使用“夹层式”衬底-催化剂-盖层的叠层14和没有所述“夹层”结构的常规技术方法相比,获得了完全不同的结构和性质。
本发明的另一优点在于通过正确选择盖层13,可以很容易制备出具有各种尺寸和形式的CNT阵列,或者一般而言,纳米级丝状材料的阵列。而且,通过本发明方法长出的CNT 10或者任何其它的纳米级丝状材料具有均匀的高度。另外,本发明的方法开创了通过光刻技术使CNT生长结构化的新方法,以便构建复杂的器件结构。
应该理解的是,尽管在此针对本发明的器件讨论了优选的实施方案、具体构造和配置以及材料,但是可以对形态和细节进行各种改变或修改,而不会偏离本发明的范围和精神。例如,除了CNT 10以外,根据本发明方法还可以长出其它的纳米材料,比如纳米线。另外,所述纳米级丝状材料可以包括例如Si、GaAs、Si3N4、Ge、GaN、GaP、InP、AlN、BN和/或SiC。

Claims (12)

1、一种器件,包括:
互相分开的第一和第二层(11,13);和
在所述第一和所述第二层(11,13)之间长出的纳米级丝状材料(10)。
2、权利要求1的器件,其中所述纳米级丝状材料(10)的尺寸和形状由所述第二层(13)的尺寸和形状确定。
3、权利要求1的器件,其中所述第一和第二层(11,13)具有导电性。
4、权利要求3的器件,进一步包括:
至少底部接触和顶部接触(31,32),所述底部接触(31)和所述第一导电层(11)连接,所述顶部接触(32)和所述第二导电层(13)连接。
5、权利要求1的器件,其中所述器件是电子器件。
6、权利要求5的器件,其中所述器件是传感器。
7、一种阵列,包括多个权利要求1的器件。
8、制备纳米级丝状材料(10)的方法,所述方法包括:
提供叠层(14),所述叠层至少包括第一催化剂层(12),所述第一催化剂层对纳米级丝状材料(10)的生长具有催化活性并且位于至少第一层(11)和第二层(13)之间,所述第一和第二层(11,13)对所述纳米级丝状材料(10)的生长显示惰性;
在所述第一和第二层(11,13)之间生长纳米级丝状材料(10),由此将所述第一催化剂层(12)转变成包含所述纳米级丝状材料(10)的层。
9、权利要求8的方法,其中在所述第一和第二层(11,13)之间生长纳米级丝状材料(10)通过化学气相沉积(CVD)技术执行。
10、权利要求8的方法,其中提供叠层(14)包括:
提供所述第一层(11),
在所述第一层(11)的至少部分上提供所述第一催化剂层(12),和
在所述第一催化剂层(12)的至少部分的顶部提供所述第二层(13)。
11、权利要求10的方法,其中在所述第一层(11)的至少部分上提供所述第一催化剂层(12)是通过在所述第一层(11)的至少部分上沉积金属层来执行。
12、权利要求10的方法,其中在所述第一催化剂层(12)的至少部分上的顶部提供所述第二层(13)是通过沉积导电层来执行。
CNA2005800124573A 2004-04-20 2005-04-15 纳米结构和制备这种纳米结构的方法 Pending CN1946634A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP04101616.3 2004-04-20
EP04101616 2004-04-20

Publications (1)

Publication Number Publication Date
CN1946634A true CN1946634A (zh) 2007-04-11

Family

ID=34964540

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2005800124573A Pending CN1946634A (zh) 2004-04-20 2005-04-15 纳米结构和制备这种纳米结构的方法

Country Status (5)

Country Link
US (1) US20090188695A1 (zh)
EP (1) EP1751055A1 (zh)
JP (1) JP2007534508A (zh)
CN (1) CN1946634A (zh)
WO (1) WO2005102922A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103837583A (zh) * 2013-11-13 2014-06-04 电子科技大学 一种双向生长型碳纳米管阵列传感器及其制备方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008119138A1 (en) * 2007-04-03 2008-10-09 Commonwealth Scientific And Industrial Research Organisation Production of nanotube forests
US7563425B2 (en) * 2007-06-28 2009-07-21 Korea Advanced Institute Of Science And Technology Carbonnitride nanotubes with nano-sized pores on their stems, their preparation method and control method of size and quantity of pore thereof
JP2009155693A (ja) * 2007-12-27 2009-07-16 Sonac Kk 基板ユニット
KR101472512B1 (ko) 2008-06-27 2014-12-24 삼성전자주식회사 나노 필라멘트 구조체
WO2010053568A1 (en) * 2008-11-05 2010-05-14 Carbon Nanoprobes, Inc. Nanostructure growth
CN101811658B (zh) * 2009-02-20 2012-09-19 清华大学 碳纳米管阵列传感器及其制备方法
JP5028502B2 (ja) * 2010-01-22 2012-09-19 株式会社豊田中央研究所 金型、凝固体およびそれらの製造方法
DE102011051705A1 (de) * 2011-07-08 2013-01-10 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Schichtsystem mit einer Schicht aus parallel zueinander angeordneten Kohlenstoffröhren und einer elektrisch leitenden Deckschicht, Verfahren zur Herstellung des Schichtsystems und dessen Verwendung in der Mikrosystemtechnik
RU2532428C1 (ru) * 2013-07-16 2014-11-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Пензенский государственный университет" (ФГБОУ ВПО "Пензенский государственный университет") Способ изготовления газового сенсора с наноструктурой и газовый сенсор на его основе
RU2687869C1 (ru) * 2018-10-09 2019-05-16 Федеральное государственное бюджетное образовательное учреждение высшего образования "Пензенский государственный университет" (ФГБОУ ВО "ПГУ") Способ изготовления газового сенсора с наноструктурой со сверхразвитой поверхностью и газовый сенсор на его основе
RU2718710C1 (ru) * 2019-10-02 2020-04-14 Игорь Александрович Аверин Способ изготовления газового сенсора на основе механоактивированного порошка оксида цинка и газовый сенсор на его основе

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AUPP976499A0 (en) * 1999-04-16 1999-05-06 Commonwealth Scientific And Industrial Research Organisation Multilayer carbon nanotube films
JP3474142B2 (ja) * 2000-02-24 2003-12-08 シャープ株式会社 電界放出型電子源アレイの製造方法、電界放出型電子源アレイ、及びその製造装置
US6919119B2 (en) * 2000-05-30 2005-07-19 The Penn State Research Foundation Electronic and opto-electronic devices fabricated from nanostructured high surface to volume ratio thin films
EP1384322A1 (en) * 2001-03-30 2004-01-28 California Institute Of Technology Carbon nanotube array rf filter
US20040152240A1 (en) * 2003-01-24 2004-08-05 Carlos Dangelo Method and apparatus for the use of self-assembled nanowires for the removal of heat from integrated circuits

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103837583A (zh) * 2013-11-13 2014-06-04 电子科技大学 一种双向生长型碳纳米管阵列传感器及其制备方法
CN103837583B (zh) * 2013-11-13 2017-03-08 电子科技大学 一种双向生长型碳纳米管阵列传感器及其制备方法

Also Published As

Publication number Publication date
EP1751055A1 (en) 2007-02-14
WO2005102922A1 (en) 2005-11-03
JP2007534508A (ja) 2007-11-29
US20090188695A1 (en) 2009-07-30

Similar Documents

Publication Publication Date Title
CN1946634A (zh) 纳米结构和制备这种纳米结构的方法
Xu et al. Recent progress in fabrication techniques of graphene nanoribbons
Huang et al. Graphene‐based materials: synthesis, characterization, properties, and applications
Chai et al. Low-resistance electrical contact to carbon nanotubes with graphitic interfacial layer
KR101400686B1 (ko) 그래핀 기판 상에 나노물질이 적층되어 있는 3차원 나노구조체 및 그 제조방법
KR101513574B1 (ko) 디포지트와 이를 포함한 전자 디바이스
Cui et al. Low-temperature synthesis of multilayer graphene/amorphous carbon hybrid films and their potential application in solar cells
TW558740B (en) Single-electron transistors and fabrication methods in which a projecting feature defines spacing between electrodes
CN109682866B (zh) 基于磷钼酸分子修饰的碳纳米管气敏传感器
CN101054467A (zh) 碳纳米管复合材料及其制备方法
TWI544645B (zh) 薄膜電晶體及其製備方法
US8394664B2 (en) Electrical device fabrication from nanotube formations
KR20120120358A (ko) 결합된 나노구조체 및 이를 위한 방법
JP2003231097A (ja) 炭素からなる骨格を持つ薄膜状粒子を基板に載せた構造物およびその作製方法
US7122461B2 (en) Method to assemble structures from nano-materials
US20150129280A1 (en) Structure including molecular monolayer and graphene electrode, flexible electronic device, and method of producing the same
US20150210549A1 (en) Covalent functionalization of carbon nanotubes grown on a surface
CN102354668A (zh) 一种碳基纳米材料晶体管的制备方法
Gao et al. Recent progress in the transfer of graphene films and nanostructures
Li et al. Direct synthesis of graphene/carbon nanotube hybrid films from multiwalled carbon nanotubes on copper
Do et al. Solution-mediated selective nanosoldering of carbon nanotube junctions for improved device performance
KR20120120101A (ko) 그래핀 기판 상에 나노물질이 적층되어 있는 3차원 나노구조체 및 그 제조방법
CN101492151A (zh) 高电导率透明金属型单壁纳米碳管薄膜及其制造方法
Yang et al. Borophenes: monolayer, bilayer and heterostructures
KR101568159B1 (ko) 원자층 증착법을 이용한 결함 치유 방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Open date: 20070411