CN1944264A - 一种均匀致密的取向性多元金属氧化物纳米薄膜的制备方法 - Google Patents
一种均匀致密的取向性多元金属氧化物纳米薄膜的制备方法 Download PDFInfo
- Publication number
- CN1944264A CN1944264A CNA2006101143402A CN200610114340A CN1944264A CN 1944264 A CN1944264 A CN 1944264A CN A2006101143402 A CNA2006101143402 A CN A2006101143402A CN 200610114340 A CN200610114340 A CN 200610114340A CN 1944264 A CN1944264 A CN 1944264A
- Authority
- CN
- China
- Prior art keywords
- film
- mmo
- orientation
- nano thin
- metal oxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910044991 metal oxide Inorganic materials 0.000 title claims abstract description 13
- 150000004706 metal oxides Chemical class 0.000 title claims abstract description 12
- 239000002120 nanofilm Substances 0.000 title claims description 8
- 238000004519 manufacturing process Methods 0.000 title 1
- 239000002243 precursor Substances 0.000 claims abstract description 14
- 238000000034 method Methods 0.000 claims abstract description 13
- 229910052751 metal Inorganic materials 0.000 claims abstract description 12
- 239000002184 metal Substances 0.000 claims abstract description 7
- 239000010409 thin film Substances 0.000 claims description 29
- 238000002360 preparation method Methods 0.000 claims description 13
- 239000002245 particle Substances 0.000 claims description 5
- 150000001768 cations Chemical class 0.000 claims description 4
- 229910052596 spinel Inorganic materials 0.000 claims description 4
- 239000011029 spinel Substances 0.000 claims description 4
- 239000002904 solvent Substances 0.000 claims description 3
- 238000000280 densification Methods 0.000 claims description 2
- 239000013078 crystal Substances 0.000 abstract description 12
- 239000000203 mixture Substances 0.000 abstract description 8
- 229910000000 metal hydroxide Inorganic materials 0.000 abstract description 4
- 150000004692 metal hydroxides Chemical class 0.000 abstract description 4
- 238000003746 solid phase reaction Methods 0.000 abstract description 4
- 239000002131 composite material Substances 0.000 abstract description 2
- 238000005516 engineering process Methods 0.000 abstract description 2
- 230000008569 process Effects 0.000 abstract description 2
- 230000001939 inductive effect Effects 0.000 abstract 1
- 230000001105 regulatory effect Effects 0.000 abstract 1
- 229910003455 mixed metal oxide Inorganic materials 0.000 description 25
- 239000000758 substrate Substances 0.000 description 5
- 238000002441 X-ray diffraction Methods 0.000 description 4
- RJTANRZEWTUVMA-UHFFFAOYSA-N boron;n-methylmethanamine Chemical compound [B].CNC RJTANRZEWTUVMA-UHFFFAOYSA-N 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 230000004913 activation Effects 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 239000010408 film Substances 0.000 description 3
- 238000010671 solid-state reaction Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 238000006555 catalytic reaction Methods 0.000 description 2
- 238000001311 chemical methods and process Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 230000005291 magnetic effect Effects 0.000 description 2
- 229910021645 metal ion Inorganic materials 0.000 description 2
- 239000002086 nanomaterial Substances 0.000 description 2
- 239000002105 nanoparticle Substances 0.000 description 2
- 238000000053 physical method Methods 0.000 description 2
- 238000004549 pulsed laser deposition Methods 0.000 description 2
- 238000003980 solgel method Methods 0.000 description 2
- 150000001450 anions Chemical class 0.000 description 1
- 229910052599 brucite Inorganic materials 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 229910021419 crystalline silicon Inorganic materials 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000005566 electron beam evaporation Methods 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 238000001659 ion-beam spectroscopy Methods 0.000 description 1
- 238000001182 laser chemical vapour deposition Methods 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- -1 metal oxide organic compound Chemical class 0.000 description 1
- 239000011858 nanopowder Substances 0.000 description 1
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/02—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
- C23C18/12—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
- C23C18/1204—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
- C23C18/1208—Oxides, e.g. ceramics
- C23C18/1216—Metal oxides
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
一种均匀致密的取向性多元金属氧化物纳米薄膜的制备方法,属于多元金属氧化物纳米薄膜技术领域。采用有序复合金属氢氧化物前体法,在适当的温度条件下进行固态反应,使其晶体结构向特定的晶型转变形成均匀致密的取向性MMO纳米薄膜。本发明的优点在于:所制备的MMO纳米薄膜致密均匀、具有取向性、大面积连续;可根据需要调控LDHs前体的层板金属元素种类和组成,得到不同组成及结构的MMO纳米薄膜;无需单晶基片诱导生长,设备要求简单、操作容易。
Description
所属领域
本发明属于多元金属氧化物纳米薄膜技术领域,具体涉及一种均匀致密的取向性多元金属氧化物纳米薄膜的制备方法。
背景技术
多元金属氧化物(Mixed Metal Oxides,简写为MMO)纳米薄膜是目前薄膜研究的主要方向之一,在半导体材料、介电材料、电极材料、催化剂和传感器等领域得到广泛应用。多元MMO纳米薄膜将多种金属氧化物进行有机复合,优化了各组份金属氧化物的性能,而且可能具有各组份金属氧化物所没有的新性能,从而进一步拓展其应用,因而成为广受关注的研究对象。
有序纳米薄膜是指由纳米微粒、纳米孔或分子构筑的、在长程范围内具有一定排布规律的纳米薄膜。取向性纳米薄膜是一类重要的有序纳米薄膜,其中的粒子长程有序排列且具有特定的取向性。以长程有序、特定取向的纳米结构阵列为研究模型,可在原子尺度直接观察晶相转化过程,有利于研究其转化机理。将MMO制备成取向性纳米薄膜后,由于长程有序的晶体结构和特异的取向性使其表现出异于无序纳米薄膜及纳米粉体材料的特性,从而为纳米结构阵列材料的高效化、智能化、小型化等提供了契机。
常见的取向性MMO纳米薄膜的制备方法可分为物理方法和化学方法。物理方法主要有真空蒸发法(如电子束蒸发、脉冲激光沉积)和溅射法(如磁控溅射、离子束溅射)等;化学方法主要有化学气相沉积(如金属有机物化学气相沉积、等离子体增强化学气相沉积、激光诱导化学气相沉积)、化学液相沉积和溶胶-凝胶法等。上述各种制备方法均对基片要求较高,比如需要在具有某一特定晶面的单晶基片上进行晶格诱导生长,或基片必须经预处理、活化方能使用;且除溶胶-凝胶法外均存在装置复杂以及运行成本较高的缺点,在研究及应用中受到限制。
文献[Kim S.S.,Moon J.H.,Lee B.T.,et al.Appl.Surf.Sci.,2004,221,231-236]使用掺有5mol%Eu的Y2O3粉末混合压制烧结而成的靶材,在O2气氛中、单晶Si片的(001)晶面上采用脉冲激光沉积法制备(111)择优取向的掺Eu Y2O3薄膜。
文献[Shinagawa T.,Lzaki M.,Inui H.,et al.Chem.Mater.,2006,18,763-770]采用化学液相沉积法在预先被Pd催化剂活化的玻璃基片上制备了ZnO-Spinel复合薄膜。将Zn(NO3)2·6H2O与二甲胺硼烷(DMAB)的反应产物ZnO沉积在被催化剂活化过的玻璃基片上,再使其浸入Fe(NO3)3·9H2O与二甲胺硼烷(DMAB)的反应溶液中,制备得到(0001)择优取向的ZnO-ZnxFe3-xO4薄膜(x≈0.5)。
以复合金属氢氧化物(Layered Double Hydroxides,简写为LDHs)为前体,在不同温度下进行固态反应可得到组成和结构可调控的MMO。LDHs是由层间阴离子及带正电荷层板堆积而成的层状化合物,其结构类似于水镁石Mg(OH)2,由MO6八面体共用棱边而形成主体层板,层板上的二价金属离子M2+可在一定范围被半径相似的三价金属离子M3+同晶取代。LDHs在300~700℃焙烧时,其固态反应的产物MMO为二价金属氧化物和三价金属氧化物的均相复合物,晶型由LDHs的六方R-3m空间点群转变为类似M2+O的晶体结构。LDHs的焙烧温度高于700℃时,其固态反应产物MMO为M2+O和尖晶石型氧化物的多相复合物。,LDHs内部发生固相反应,
不同制备方法得到的MMO因其化学组成和结构的差异而表现出多样的物理化学性能,以取向性LDHs为前体制备的MMO纳米薄膜受晶格能最低效应及晶格定位效应的影响,具有金属元素高度分散、组分均匀、金属元素种类和组成的可调变、粒径分布窄、结构长程有序且晶粒呈现特定的取向等特性;并且此方法克服了上述其它制备方法的缺点,对基片无特殊要求,设备简单、操作容易,在电子器件、传感器、磁学器件、催化以及医学等研究领域中具有广阔的应用前景。
发明内容
本发明的目的在于:提供一种均匀致密的取向性多元金属氧化物纳米薄膜的制备方法一有序复合金属氢氧化物前体法。该方法制备的MMO纳米薄膜不仅具有金属元素高度分散、组分均匀、金属元素种类和组成的可调变、粒径分布窄、结构长程有序且晶粒呈现特定的取向等优点,而且能够克服其它制备方法在研究及应用中的局限,拓展其在电子器件、传感器、磁学器件、催化以及医学等研究领域中的应用。
本发明利用有序复合金属氢氧化物前体法制备取向性MMO纳米薄膜。首先制备出粒径分布均匀的片状LDHs纳米粒子,将其配制成一定浓度的悬浮液,采用溶剂蒸发法制备取向性LDHs前体,然后在适当温度下焙烧,晶体结构向特定晶型转变,即可得到不同结构的取向性MMO纳米薄膜。具体操作步骤如下:
A.采用溶剂蒸发法(见中国专利申请200510130781.7)制备所需的取向性LDHs前体。
B.将取向性LDHs前体在300~700℃焙烧10min~36小时,即可得到具有与M2+O相似晶体结构的取向性MMO纳米薄膜;将取向性LDHs前体在700~1300℃的温度下焙烧10min~36小时,便可得到同时具备类似M2+O晶体结构和尖晶石型结构的取向性MMO纳米薄膜。
其中MMO纳米薄膜的二价、三价金属阳离子摩尔比(M2+/M3+)为2~4∶1,二价金属阳离子M2+可以是Mg2+、Ni2+、Zn2+、Co2+、Mn2+、Cd2+或Ca2+中的一种,三价金属阳离子M3+可以是Al3+、Fe3+、Co3+、Cr3+、Ti3+或Ga3+中的1~4种。
将上述材料进行XRD、SEM等表征证明该方法成功制备取向性MMO纳米薄膜。MMO纳米薄膜的XRD谱图中最强衍射峰对应的晶面均为M2+O的(002)晶面(M2+=Zn2+)或(111)晶面(M2+=Mg2+、Ni2+、Co2+、Mn2+、Cd2+或Ca2+),且该衍射峰的强度远大于其它衍射峰的强度,表明MMO纳米薄膜的晶粒具有良好的(002)取向或(111)取向。SEM照片显示MMO纳米薄膜表面平整致密,粒径为纳米量级且分布均匀,粒子分散性好。
本发明的优点在于:所制备的MMO纳米薄膜致密均匀、具有取向性、大面积(毫米级以上)连续;可根据需要调控LDHs前体的层板金属元素种类和组成,得到不同组成、不同结构的MMO纳米薄膜;无需单晶基片诱导生长,设备要求简单、操作容易。
附图说明
图1为本发明实施例1所得到的NiAl-MMO900纳米薄膜的X-射线衍射(XRD)谱图。
图2为本发明实施例1所得到的NiAl-MMO900纳米薄膜表面放大10,000倍的场发射扫描电子显微镜(FESEM)照片。
图3为本发明实施例1所得到的NiAl-MMO900纳米薄膜表面放大100,000倍的场发射扫描电子显微镜(FESEM)照片。
具体实施方式
实施例1
步骤A:称取38.68g Ni(NO3)2·6H2O和24.99g Al(NO3)3·9H2O溶于250mL去CO2的水中,配制成混合盐溶液,另取15.20g NaOH溶于250mL去CO2的水中,室温下迅速将碱溶液和混合盐溶液倒入全返混旋转液膜反应器中反应1min,所得浆液在100℃、N2保护下晶化8小时,离心分离,洗涤至中性后称取一定量的产物配制成10mL浓度为4.3wt%的水溶液,室温下搅拌均匀,倒入直径为90mm的培养皿中,在20℃下干燥4天,即可得到NiAl-NO3LDHs前体,其Ni2+/Al3+=2。
步骤B:将步骤A得到的NiAl-NO3LDHs前体放入900℃的马弗炉中焙烧2小时后,即得到NiAl-MMO900纳米薄膜。
所得到的NiAl-MMO900纳米薄膜的XRD谱图如图1所示,可以看出,最强衍射峰为NiO的(111)晶面特征衍射峰,峰形尖锐且峰强较强;其余衍射峰强度均相对较弱,表明NiAl-MMO900纳米薄膜的粒子具有良好的(111)取向性。图2和图3为NiAl-MMO900纳米薄膜表面放大10,000倍以及100,000倍的FESEM照片。由图2及图3可见,该薄膜表面平整致密,粒径为纳米量级且分布均匀,粒子分散性好。
实施例2
步骤A:称取38.68g Ni(NO3)2·6H2O和26.91g Fe(NO3)3·9H2O溶于250mL去CO2的水中,配制成混合盐溶液,另取15.20g NaOH溶于250mL去CO2的水中,室温下迅速将碱溶液和混合盐溶液倒入全返混旋转液膜反应器中反应1min,所得浆液在100℃、N2保护下晶化8小时,离心分离,洗涤至中性后称取一定量的产物配制成10mL浓度为5wt%的水溶液,室温下搅拌均匀,倒入直径为90mm的培养皿中,在40℃下干燥8小时,即可得到NiFe-NO3LDHs前体,其Ni2+/Fe3+=2。
步骤B:将步骤A得到的NiFe-NO3LDHs前体放入1000℃的马弗炉中焙烧24小时后,即得到NiFe-MMO1000纳米薄膜。
通过NiFe-MMO1000纳米薄膜的XRD、SEM表征证明该方法成功制备取向性NiFe-MMO1000纳米薄膜。NiFe-MMO1000纳米薄膜的XRD谱图中最强衍射峰为NiO的(111)晶面特征衍射峰,峰形尖锐且峰强较强;其余衍射峰强度均相对较弱,表明NiFe-MMO1000纳米薄膜的粒子具有良好的(111)取向性。SEM照片显示NiFe-MMO1000纳米薄膜表面平整致密,粒径为纳米量级且分布均匀,粒子分散性好。
实施例3
步骤A:称取28.56g Zn(NO3)2·6H2O和18.01g Al(NO3)3·9H2O溶于150mL去CO2的水中,配制成混合盐溶液,另取9.12g NaOH溶于150mL去CO2的水中,室温下迅速将碱溶液和混合盐溶液倒入全返混旋转液膜反应器中反应1min,所得浆液在100℃、N2保护下晶化8小时,离心分离,洗涤至中性后称取一定量的产物配制成10mL浓度为3.6wt%的水溶液,室温下搅拌均匀,倒入直径为90mm的培养皿中,在50℃下干燥6小时,即可得到ZnAl-NO3LDHs前体,其Zn2+/Al3+=2。
步骤B:将步骤A得到的ZnAl-NO3LDHs前体放入马弗炉中,在500℃下焙烧15min,即得到ZnAl-MMO500纳米薄膜。
通过ZnAl-MMO500纳米薄膜的XRD、SEM表征证明该方法成功制备取向性ZnAl-MMO500纳米薄膜。ZnAl-MMO500纳米薄膜的XRD谱图中仅出现一个强度较高且峰形尖锐的衍射峰,该衍射峰为ZnO的(002)晶面特征衍射峰;其余衍射峰强度均相对较弱,表明ZnAl-MMO500纳米薄膜的粒子具有良好的(002)取向性。SEM照片显示ZnAl-MMO500纳米薄膜表面平整致密,粒径为纳米量级且分布均匀,粒子分散性好。
Claims (3)
1、一种均匀致密的取向性多元金属氧化物纳米薄膜的制备方法,其特征在于:
a.采用溶剂蒸发法制备所需的取向性LDHs前体;
b.将取向性LDHs前体在300~700℃焙烧10分钟~36小时,得到具有与M2+O相似晶体结构的取向性MMO纳米薄膜;将取向性LDHs前体在700~1000℃的温度下焙烧10分钟~36小时,得到同时具备类似M2+O晶体结构和尖晶石型结构的取向性MMO纳米薄膜。
2、按照权利要求1所述的方法,其特征在于:MMO纳米薄膜的二价、三价金属阳离子摩尔比(M2+/M3+)为2~4∶1,二价金属阳离子M2+为Mg2+、Ni2+、Zn2+、Co2+、Mn2+、Cd2+或Ca2+中的一种,三价金属阳离子M3+为Al3+、Fe3+、Co3+、Cr3+、Ti3+或Ga3+中的1~4种。
3、按照权利要求1所述的方法,其特征在于:MMO纳米薄膜具有(002)取向(M2+=Zn2+)或(111)取向,M2+为Mg2+、Ni2+、Co2+、Mn2+、Cd2+或Ca2+中的一种;MMO纳米薄膜表面平整致密,粒径为纳米量级且分布均匀,粒子分散性好。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA2006101143402A CN1944264A (zh) | 2006-11-07 | 2006-11-07 | 一种均匀致密的取向性多元金属氧化物纳米薄膜的制备方法 |
US11/853,773 US20080108498A1 (en) | 2006-11-07 | 2007-09-11 | Method for preparing a large continuous oriented nanostructured mixed metal oxide film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA2006101143402A CN1944264A (zh) | 2006-11-07 | 2006-11-07 | 一种均匀致密的取向性多元金属氧化物纳米薄膜的制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN1944264A true CN1944264A (zh) | 2007-04-11 |
Family
ID=38043948
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNA2006101143402A Pending CN1944264A (zh) | 2006-11-07 | 2006-11-07 | 一种均匀致密的取向性多元金属氧化物纳米薄膜的制备方法 |
Country Status (2)
Country | Link |
---|---|
US (1) | US20080108498A1 (zh) |
CN (1) | CN1944264A (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101255556B (zh) * | 2008-03-28 | 2010-06-16 | 北京化工大学 | 一种制备多孔氧化锌颗粒镶嵌复合薄膜的方法 |
CN101818346A (zh) * | 2010-04-15 | 2010-09-01 | 北京化工大学 | 一种取向ZnO纳米棒薄膜及其制备方法 |
CN104903240A (zh) * | 2013-12-27 | 2015-09-09 | 日本碍子株式会社 | 层状双氢氧化物取向膜及其制造方法 |
CN106835237A (zh) * | 2017-01-06 | 2017-06-13 | 西北大学 | 一种花瓣状薄膜型Zn‑Al类气敏材料的制备方法 |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10252245B2 (en) | 2016-03-17 | 2019-04-09 | Saudi Arabian Oil Company | High temperature layered mixed-metal oxide materials with enhanced stability |
US10106482B2 (en) | 2016-03-17 | 2018-10-23 | Saudi Arabian Oil Company | Synthesis of magnesium adamantane salts and magnesium oxide nanocomposites, and systems and methods including the salts or the nanocomposites |
US10087355B2 (en) | 2016-03-17 | 2018-10-02 | Saudi Arabian Oil Company | Oil-based drilling fluids containing an alkaline-earth diamondoid compound as rheology modifier |
US10138199B2 (en) | 2016-03-17 | 2018-11-27 | Saudi Arabian Oil Company | High aspect ratio layered double hydroxide materials and methods for preparation thereof |
CN109476505B (zh) | 2016-03-17 | 2021-06-01 | 沙特阿拉伯石油公司 | 过渡金属金刚烷盐和氧化物纳米复合材料的合成 |
US10875092B2 (en) | 2017-05-19 | 2020-12-29 | Saudi Arabian Oil Company | Methods for preparing mixed-metal oxide diamondoid nanocomposites and catalytic systems including the nanocomposites |
WO2018213007A1 (en) | 2017-05-19 | 2018-11-22 | Saudi Arabian Oil Company | Synthesis of transition-metal adamantane salts and oxide nanocomposites |
CN111790396B (zh) * | 2020-06-15 | 2023-03-21 | 北京化工大学 | 一种热解镍锰水滑石拓扑转化制备p-n型原位共生异质结材料的方法及应用 |
CN113278986B (zh) * | 2021-04-08 | 2022-04-01 | 深圳大学 | 一种c轴取向NiFe-LDH薄膜电催化剂及其制备方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4151884B2 (ja) * | 2001-08-08 | 2008-09-17 | 独立行政法人理化学研究所 | 固体表面に複合金属酸化物のナノ材料が形成された材料の製造方法 |
US20070287221A1 (en) * | 2006-06-12 | 2007-12-13 | Xerox Corporation | Fabrication process for crystalline zinc oxide semiconductor layer |
-
2006
- 2006-11-07 CN CNA2006101143402A patent/CN1944264A/zh active Pending
-
2007
- 2007-09-11 US US11/853,773 patent/US20080108498A1/en not_active Abandoned
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101255556B (zh) * | 2008-03-28 | 2010-06-16 | 北京化工大学 | 一种制备多孔氧化锌颗粒镶嵌复合薄膜的方法 |
CN101818346A (zh) * | 2010-04-15 | 2010-09-01 | 北京化工大学 | 一种取向ZnO纳米棒薄膜及其制备方法 |
CN104903240A (zh) * | 2013-12-27 | 2015-09-09 | 日本碍子株式会社 | 层状双氢氧化物取向膜及其制造方法 |
CN104903240B (zh) * | 2013-12-27 | 2016-12-07 | 日本碍子株式会社 | 层状双氢氧化物取向膜及其制造方法 |
CN106835237A (zh) * | 2017-01-06 | 2017-06-13 | 西北大学 | 一种花瓣状薄膜型Zn‑Al类气敏材料的制备方法 |
Also Published As
Publication number | Publication date |
---|---|
US20080108498A1 (en) | 2008-05-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1944264A (zh) | 一种均匀致密的取向性多元金属氧化物纳米薄膜的制备方法 | |
Chandrappa et al. | A hybrid electrochemical–thermal method for the preparation of large ZnO nanoparticles | |
Thakur et al. | Effect of (Ag, Zn) co-doping on structural, optical and bactericidal properties of CuO nanoparticles synthesized by a microwave-assisted method | |
Mote et al. | Structural and morphological studies on Mn substituted ZnO nanometer‐sized crystals | |
JP5069881B2 (ja) | R型二酸化マンガンナノニードル多孔体とそれを構成するr型二酸化マンガンナノニードル、水素化した酸化マンガン、赤外線吸収材料、赤外線フィルター、およびそれらの製造方法 | |
Thangamani et al. | Structural and size dependence magnetic properties of Mn-doped NiO nanoparticles prepared by wet chemical method | |
Guo et al. | Preparation of layered double hydroxide films with different orientations on the opposite sides of a glass substrate by in situ hydrothermal crystallization | |
Méndez-Lozano et al. | Morphological study of TiO₂ thin films doped with cobalt by Metal Organic Chemical Vapor Deposition | |
Alnajar et al. | Comparative investigation on the Di-/ferro-electric and optical properties of Ce/Nd dual doped ZnO nanostructures prepared in different reaction mechanisms | |
Altaf et al. | Characterization of manganese/cobalt oxide composites synthesized by chemical co-precipitation method | |
Evsevskaya et al. | Effect of the deposition conditions on the anion resin exchange precipitation of indium (III) hydroxide | |
Oveisi et al. | Synthesis of continuous mesoporous Ga-doped titania films with anatase crystallized framework | |
Brunckova et al. | Structural properties and phase transformation of sol–gel prepared lanthanum tantalates | |
Parajuli et al. | Structural, morphological, and textural properties of coprecipitated CaTiO3 for anion exchange in the electrolyzer | |
Wang et al. | Influence of titanium doping on the structure and morphology of MgO prepared by coprecipitation method | |
Soltani et al. | Effect of growth condition on structure and optical properties of hybrid Ag-CuO nanomaterials | |
CN1206163C (zh) | 二氧化钛纳米晶的超声化学制备方法 | |
CN1800028A (zh) | 一种高取向透明双羟基复合金属氧化物薄膜的制备方法 | |
EP4209459A1 (en) | Inorganic-nanosheet multilayer structure, inorganic-nanosheet liquid-crystal composition, method for producing inorganic-nanosheet multilayer structure, and method for producing inorganic-nanosheet liquid-crystal composition | |
Yamaguchi et al. | Solid/liquid-interface-dependent synthesis and immobilization of copper-based particles nucleated by X-ray-radiolysis-induced photochemical reaction | |
Vuong et al. | Controllable synthesis of uniform MgAl‐hydrotalcite nanoplates and their size‐dependent on anti‐corrosion properties of carbon steel | |
CN101041585A (zh) | 取向性多孔尖晶石薄膜及其制备方法 | |
Balaji et al. | Preparation and characterization of CuSn, CuZr, SnZr and CuSnZr thin films deposited by SILAR method | |
Pookmanee et al. | Synthesis of copper oxide nanopowder by microwave method | |
Farahmandjou | Liquid Phase Synthesis of indium tin oxide (ITO) nanoparticles using In (III) and Sn (IV) salts |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C12 | Rejection of a patent application after its publication | ||
RJ01 | Rejection of invention patent application after publication |