CN1940289B - 基于逆风风速控制风力涡轮的系统和方法 - Google Patents

基于逆风风速控制风力涡轮的系统和方法 Download PDF

Info

Publication number
CN1940289B
CN1940289B CN2006101100356A CN200610110035A CN1940289B CN 1940289 B CN1940289 B CN 1940289B CN 2006101100356 A CN2006101100356 A CN 2006101100356A CN 200610110035 A CN200610110035 A CN 200610110035A CN 1940289 B CN1940289 B CN 1940289B
Authority
CN
China
Prior art keywords
wind
blade
generator
wind turbine
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2006101100356A
Other languages
English (en)
Other versions
CN1940289A (zh
Inventor
A·阿瓦利亚诺
J·P·F·莱昂斯
C·巴布
S·苏尔亚纳拉亚南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Renovables Espana SL
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of CN1940289A publication Critical patent/CN1940289A/zh
Application granted granted Critical
Publication of CN1940289B publication Critical patent/CN1940289B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/022Adjusting aerodynamic properties of the blades
    • F03D7/0224Adjusting blade pitch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/028Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor controlling wind motor output power
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • F03D7/042Automatic control; Regulation by means of an electrical or electronic controller
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • F03D9/255Wind motors characterised by the driven apparatus the apparatus being an electrical generator connected to electrical distribution networks; Arrangements therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/95Lidar systems specially adapted for specific applications for meteorological use
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/82Forecasts
    • F05B2260/821Parameter estimation or prediction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/10Purpose of the control system
    • F05B2270/103Purpose of the control system to affect the output of the engine
    • F05B2270/1033Power (if explicitly mentioned)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/309Rate of change of parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/32Wind speeds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/80Devices generating input signals, e.g. transducers, sensors, cameras or strain gauges
    • F05B2270/804Optical devices
    • F05B2270/8042Lidar systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Sustainable Development (AREA)
  • General Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Power Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Wind Motors (AREA)

Abstract

提供了一种用于根据预期的风速变化而控制风力涡轮发电机的电力输出的方法。该方法包括在一离风力涡轮发电机一个所要的距离处沿风向感知风速。该方法还包括根据感知的瞬时风速而在风力涡轮发电机处的风速变化之前来控制风力涡轮发电机的叶片的螺距。

Description

基于逆风风速控制风力涡轮的系统和方法
有关联邦赞助的研究与发展的说明
本发明是根据美国能源部签订的DE-AC 36-83CH10093号合同在政府支持下做出的。美国政府在该发明中有一定的权益。
发明领域
本发明总的涉及风力涡轮机,特别涉及一种用于在阵风期间根据逆风信息而控制风力涡轮发电机的电力输出同时减小塔的前后和侧向的力矩的系统和方法。
风力涡轮机被看做是一种环境友好而相对廉价的替代能源。风力涡轮发电机通常包括一个有多个叶片的转子,叶片将风能转换为驱动轴的转动,后者又被用来驱动发电机的转子,从而产生电力。在现代的风能产生系统中,从组成“风力场”的多个风力涡轮发电机来的电力输出通常组合在一起而输入电网。
风力涡轮发电机的电力输出通常随风速而增加,直到达到一额定的电力输出。其后,即使风速再增大,该电力输出也通常恒定地保持在该额定值。这通常是通过根据风速的增大而调节叶片的螺距效应来达到的。随着风速增大到超过该额定电力输出,通常向着顺桨改变这些叶片螺距(也即扭转得与风向更精密地对准),由此控制转子的角速度。结果,随着风速的增大,发电机速度因而发电机输出可以保持得相当稳定。
在突发的阵风情况下,风速可在相当小的时间间隔内剧烈提高。在这种突发阵风期间保持风力涡轮发电机的输出恒定要求叶片的螺距角相当快速地变化。但是,由于螺距控制驱动器的动力学和机械部件的惯性,阵风的产生和叶片的实际螺距变化之间通常有一时间滞后。结果,发电机速度和因而电力在阵风期间可能显著增大而可能超过规定的最高电力输出水平(也称为过速极限),导致发电机跳闸,而在某些情况下,导致风力涡轮机关闭。该过速极限通常对特定的风力涡轮发电机起保护作用,它是以机械部件如塔、驱动系等的疲劳考虑为基础的。而且,由于风力剪切作用效果的增大,突发阵风也可能显著地增大塔的前后和侧向的弯曲力矩。
因此,需要一种改进的机构来控制强烈阵风期间风力涡轮机叶片的螺距改变而保持发电机电力输出的恒定,同时减小塔的前后和侧向力矩。
发明简述
简明地说,按照本发明的一个方面,本发明提供一种根据风速的预期变化来控制风力涡轮发电机的电力输出的方法。该方法包括在一离风力涡轮发电机一个所要距离处沿风向感知风速。该方法还包括根据感知的瞬时风速而在风力涡轮发电机处的风速变化之前控制风力涡轮发电机叶片的螺距。
在另一方面,本发明提供一种有多个安装在一驱动地联接于发电机的转子上的叶片的风力涡轮发电机。该风力涡轮发电机包括逆风风速测量传感器,后者适合于在一离风力涡轮发电机一个所要的距离处沿风向感知风速。该风力涡轮发电机还包括一个螺距控制系统,其构型做成根据感知的瞬时风速在风力涡轮发电机处的风速变化之前来控制风力涡轮发电机叶片的螺距。
在又一方面,本发明提供计算机程序和辅助程序,它们包括适合于实施上述功能的编码。
附图简述
当参照附图阅读下列详细描述时将更好地理解本发明的上述和其它特点、方面和优点。所有各图中相同的标号表示相同的部件,附图中:
图1例示按照本发明的一些方面的一种风力涡轮发电机;
图2例示按照本发明的一些方面的风力涡轮发电机的功能部件;
图3是例示按照本发明的一些方面来实施集中的叶片螺距控制的控制战略的示意图;
图4是在阵风出现期间轮毂高度处风速变化的图线表示;
图5是按照本发明的一些方面的在阵风出现期间发电机速度随时间变化的图线表示;
图6是按照本发明的一些方面的在阵风出现期间发电机电力输出随时间变化的图线表示;
图7是按照本发明的一些方面的在阵风出现期间塔的侧向力距随时间变化的图线表示;以及
图8是例示按照本发明的一些方面来控制集中的叶片螺距的一种示范方法的流程图。
详细描述
下列描述提供一种新技术,用于在风速突然变化期间如阵风期间通过在这种阵风期间将发电机速度保持在过速极限(或保护阈值)内而控制风力涡轮发电机的电力输出,从而防止在阵风期间风力涡轮发电机的跳闸或关闭。本发明的实施例提供一种控制取向的传感方法,利用逆风测量传感器来获得风速信息,同时利用一组处理该逆风速度信息的控制算法来产生一个集中的叶片螺距改变指令,从而当阵风出现时提前改变风力涡轮机叶片的螺距,由此捕集更多的风能和减小风力涡轮机结构上的动力负荷。下面总的参照图1~7详细地描述本发明的实施例。
现在转向附图,图1按照本发明的一些方面来例示一种风力涡轮发电机10。风力涡轮发电机10包括一个有多个安装在轮毂10上的风力涡轮叶片14、16、18的转子12。风力涡轮发电机10也包括一个安装在塔24顶上的舱室22。转子12经过安装在舱室22内的驱动系(未示出)驱动地联接在一发电机上。塔24向风(用箭头26表示方向)暴露叶片14、16、18,使叶片14、16、18围绕轴线28转动。叶片14、16、18将风的动能转换为转矩,该转矩又经一发电机转换为电能。
图2是风力涡轮发电机10按照本发明的一些方面的功能元素的框图。如图所示,风力涡轮发电机10的叶片驱动发电机32。风力涡轮发电机10还包括一个控制器30,其构型做成根据感知的风速来控制发电机32的电力输出。发电机32的电力输出可以通过用叶片螺矩调节电动机34控制叶片的螺距改变来控制。通过一个或多个电力转换器36来控制发电机32的空气间隙转矩,也可以同时控制发电机的电力输出。
对于低的风速,风速的提高导致叶片14、16、18的转动速度的提高,并因而增大发电机32的电力输出。在某些实施例中,允许电力输出随风速而增大,直到达到一个额定的电力输出水平。随着风速的进一步提高,发电机32的电力输出基本上保持恒定。这是通过向着顺桨改变叶片14、16、18中的一个或多个的螺距而获得的。本该讨论中,改变螺距指扭转风力涡轮机的叶片而改变风对叶片的迎角。向着顺桨改变螺距指这样扭转叶片,使得叶片表面沿风速的方面26对准(即减小迎角)。向着顺桨改变叶片螺距导致减小叶片捕集的风能。因此,随着风速的提高,叶片逐渐向着顺桨改变螺距,从而保持基本上恒定的发电机速度,因而也保持稳定的发电机电力输出。
如上所述,在突发阵风的情况下,风速可能在相当小的时间间隔内提高。按照本发明的一些方面,为了补偿叶片螺距调节电动机34的时间滞后并在此种突发阵风期间保持风力涡轮发电机10的恒定的电力输出,即至少一种较平稳或受控的输出变化,在阵风击中涡轮机之前优先地改变叶片螺矩,由此防止发电机32在阵风出现时达到其过速极限。为了实现该优先的叶片螺矩改变,通过逆风风速测量传感器38而在叶片14、16、18的逆风方向感知风速。在例示的实施例中,传感器38包括一个光探测和测距装置,也称为激光雷达。回来参照图1,激光雷达38是一种测量雷达,其构型做成扫描风力涡轮发电机10周围的环形区域,并根据由激光雷达发送的光从气溶胶的反射和/或散射而测量风速。可以合适地选择激光雷达38的锥角(θ)和距离(R)来提供所要的测量精度及可以接受的灵敏度。在例示的实施例中,激光雷达38安置在其上安装了叶片14、16、18的轮毂20上。在某些替代的实施例中,激光雷达38也可以安置在风力涡轮机塔24的塔基周围。
按照本发明的一些方面,激光雷达38的构型做成在至少一个特定部分之前测量风速,该特定部分通常为按照叶片上各区段对空气动力转矩的贡献而定的叶片14、16、18的最重要的区段。这些区段例如可以包括靠近叶片尖端的区段。在叶片14、16、18前面的由激光雷达38测量风速的那些点用平面40代表。
如图2中所示,由激光雷达38感知的逆风风速被控制器30用来确定一个集中的螺距改变指令(CP),该指令由叶片螺距调节电动机34实现为叶片螺距的实际改变。下面更详细地描述控制器30所实施的控制机构。
图3是例示按照本发明的一些方面来实施集中的叶片螺距控制的示范的控制机构42的示意图。控制机构42包括一个反馈控制系统44和一个向前馈送控制系统46。反馈控制系统44的构型做成确定在累加点47处参考的(希望的)发电机速度(ωREF)和实际的发电机速度(ω)之间的误差(e)。误差(e)然后在方框50处受到一个增益C而产生一个输出值48,该输出值48指示为了减小ω和ωREF之间的误差(e)而所需的叶片螺距角的变化。在方框52处,分离改变叶片螺距对塔24和发电机32的动力学影响来分别通过增益Gω和Gt而确定实际的发电机速度(ω)60和塔负荷(TL)62。增益Gω以发电机32的动力学为基础,而增益Gt指示塔24的传递功能。可以理解,反馈控制系统44的输出48做成当发电机速度(ω)超过参考速度(ωREF)时减小叶片螺距角,并当发电机速度(ω)小于参考速度(ωREF)时增大叶片螺距角。因此,在风力涡轮发电机10的正常操作下,输出48作用在叶片螺距调节电动机34上,使得发电机速度保持在一个恒定的参考水平,而误差(e)接近零。
向前馈送系统46利用从激光雷达38来的逆风风速信息(VW)并产生一个输出54,输出54能使叶片在风速突然变化之前改变螺距。向前馈送系统46在方框56处包括一个在风速数据(VW)上的增益F,以产生输出54。该向前馈送控制系统的输出54在结合部58处与反馈控制系统44的输出48叠加而产生集中的叶片螺距改变指令(CP)。在一个实施例中,该增益F直接正比于项GdGt -1,其中Gd以风速对塔动力学的影响为基础。这样,在阵风期间,风速的突然变化被叶片的顶风感知,导致向前馈送系统46的输出的增大,因而集中螺距改变指令(CP)的增强。这转而在阵风真正到达风力涡轮发电机10之前使叶片螺距调节电动机34调节叶片螺距。本发明因此保证发电机的电力输出逐渐减小而发电机速度不超过将使其跳闸的过速极限。在某些实施例中,增益F可能继续正比于感知的风速,使得阵风越强,向前馈送系统46的响应就越快,从而增强集中的叶片螺距改变指令(CP)。
图4例示阵风期间风速(用Y轴表示)随时间(用X轴表示)的示范性变化的图形。如图所示,在时间T1处风速剧烈增大,直到它在时间T2处达到最高值,其后风速迅速降低。图5表示在这样一种阵风期间发电机速度的示范性变化。轨迹64表示没有叶片的优先螺距改变时发电机速度的变化,而轨迹66表示利用目前的逆风风速测量技术带有叶片的优先螺距改变时相应的变化。如可以见到的,没有优先螺距改变时,发电机速度在出现阵风时开始提高,在约时间T2处当风速达到最高值时超过其过速极限(Smax),使其跳闸。其后,发电机轴由于惯性而继续转动,而发电机速度迅速降低到零。但是,有了优先螺距改变,这样一种状况就避免了。如图所示,在阵风实际到达风力涡轮发电机之前改变叶片螺距,使得速度在阵风期间逐渐提高,并在阵风已过去后在额定值时保持恒定。
图6例示阵风期间电力输出的示范性变化。这里轨迹70表示传统的螺距改变机构情况下的变化,而轨迹72表示由本发明的应用方面形成的变化。如图所示,在传统的螺距改变情况下,只要发电机速度超过过速极限,发电机输出就降到零。但是,利用本发明,发电机电力输出跨越通过阵风,其后就恢复到一个恒定的额定值。
风速的变化由于增大的风力剪切影响而还导致增大的塔的前后和侧向振动。这是因为,在任何给定的情况下,不同的叶片处于不同的高度,因此受到变化的风速(因为风速随高度而变),导致沿前后方向(图1中用箭头1表示)以及侧向方向(图2中用箭头2表示)的塔的周期性振动。本发明通过在迫近的阵风之前向顺桨改变叶片螺距而减小了塔的前后和侧向振动,从而导致减小叶片14、16、18上的因而塔24上的弯曲力矩。塔上由于风速的提高而产生的负荷可以在方框68处根据风速对塔的动力学而再一次由Gd确定,它被叠加而得到塔的总负荷(TL)。图7例示在出现阵风期间塔的负荷的示范性变化,其中轨迹74表示没有优先螺距改变时塔的负荷的变化,而轨迹76表示采用本发明的螺距改变技术利用逆风风速信息的变化。
图8是例示按照本发明的一些方面的用于控制风力涡轮发电机的电力输出的示范方法78的流程图。方法78由感知逆风风速开始(方框80)。如前所述,方框80可以合并使激光雷达来按照空气动力学转矩感知在叶片最重要区段之前的风速,以确定风速的突然变化。在方框82处,根据实际的发动机速度和参考的发动机速度的差别而产生一个叶片螺距改变指令。方框82可包括一个如上面图3中所示的反馈控制系统。在方框84处,根据塔的动力学和逆风风速的变化而产生一个向前馈送信号。该叶片螺距改变信号和向前馈送信号相加而确定一个集中的叶片螺距改变指令(方框86)。其次,在方框88处,根据该集中的叶片螺距改变指令而驱动叶片螺距调节电动机,从而在风速突然变化之前实现叶片的螺距改变。
这样,上述技术有利于在风速突然变化期间最佳地利用逆风风速信息来控制风力涡轮发电机的电力输出的波动,同时减小塔结构上的动力学负荷。也可理解,上述技术可以采用计算机或控制器实施的过程和设备的形式来实现这些过程。本发明的各方面也可以含有在有形媒介中实现的指令的计算机程序编码的形式实施,这些媒介如软磁盘、CD-ROM(小型光盘一只读存储器)、硬驱或任何其它的计算机可读存储媒介,其中,当计算机程序编码被加载到计算机或控制器中和用它们执行时,该计算机成为实施本发明的设备。上述技术还可以以计算机程序编码或信号的形式实施,例如,不管这些信号是储存在一种存储媒介中、加载在计算机或控制器中和/或由它们执行,或者是在某些传输媒介上传送,如在电线或电缆上、通过光纤或通过电磁辐射,其中,当计算机程序编码被加载到计算机中并由计算机执行时,该计算机成为实施本发明的设备。当在一通用微处理器上实施时,该计算机程序编码片断做成使该微处理器能产生特定的逻辑电路。
虽然这里仅例示和描述了本发明的某些特点,但该技术的专业人员可进行许多修改和变化。因此,可以理解,附属的权利要求书预期包括所有这些落入本发明真实精神之内的修改和变化。
                         部件清单
10          风力涡轮发电机
12          转子
14、16、18  叶片
20          轮毂
22          舱室
24          塔
26          风向
28          转动轴线
30          控制器
32          发电机
34          叶片螺距调节电动机
36          电力转换器
38          激光雷达
40          风速测量平面
42          控制机构
44          反馈控制系统
46          向前馈送控制系统
47          累加结合部
48          反馈系统的输出
50          反馈系统的增益方框
52          增益方框
54          向前馈送系统的输出
56          向前馈送系统的增益方框
58          累加结合部
60          W
62          TL
64          阵风期间传统的发电机速度随时间的变化
66          阵风期间本系统的发电机速度随时间的变化
68          增益方框
70          阵风期间传统的发电机电力随时间的变化
72          阵风期间本系统的发电机电力随时间的变化
74          阵风期间传统的塔负荷随时间的变化
76          阵风期间本系统的塔负荷随时间的变化
78          控制风力涡轮发电机的电力输出的方法
80~88      方法78的步骤

Claims (17)

1.一种响应于预期的风速变化来控制风力涡轮发电机的电力输出的方法,包括:
在沿风向离该风力涡轮发电机所要求的距离处感测风速;
根据发电机参考速度和发电机实际速度之间的差来确定一个叶片螺距改变指令信号;
响应于感测的风速的变化,根据风力涡轮塔的动力学确定一个前馈信号,并将该前馈信号耦合到该叶片螺距改变指令信号从而获得一个集中的叶片螺距改变指令信号;以及
根据感测的瞬时风速在该风力涡轮发电机处的风速变化之前控制该风力涡轮发电机叶片的螺距。
2.根据权利要求1所述的方法,其特征在于,感测风速包括通过一个光探测和测距装置来感测逆风风速。
3.根据权利要求1所述的方法,其特征在于,感测风速包括根据该叶片的至少一个特定部分对该叶片上空气动力学转矩的贡献来感测该至少一个特定部分前方的逆风风速。
4.根据权利要求1所述的方法,其特征在于,包括通过对叶片螺距的控制来控制发电机速度。
5.根据权利要求1所述的方法,其特征在于,通过基于塔的动力学和发电机的动力学的增益来确定该前馈信号。
6.根据权利要求5所述的方法,其特征在于,该前馈信号还以该感测的风速为基础。
7.一种根据预期的风速变化来控制风力涡轮发电机电力输出的方法,包括:
在沿风向离该风力涡轮发电机所要求的距离处感测逆风风速;
响应于该感测的逆风风速的变化,根据风力涡轮机塔的动力学来确定一个前馈信号;以及
将该前馈信号耦合到叶片螺距改变指令信号从而获得一个集中的叶片螺距改变指令信号,所述集中的叶片螺距改变指令信号构造成在该风力涡轮发电机处的逆风风速变化之前控制该风力涡轮叶片的螺距。
8.根据权利要求7所述的方法,其特征在于,其中,感测逆风风速包括通过一个光探测和测距装置感测逆风风速。
9.根据权利要求7所述的方法,其特征在于,其中,感测逆风风速包括根据该叶片的至少一个特定部分对该叶片上空气动力学转矩的贡献来感测该至少一个特定部分前方的逆风风速。
10.根据权利要求7所述的方法,其特征在于,包括通过对叶片螺距的控制来控制发电机速度。
11.根据权利要求7所述的方法,其特征在于,其中,通过基于塔的动力学和发电机的动力学的增益来确定该前馈信号。
12.根据权利要求7所述的方法,其特征在于,其中,该前馈信号还以该感测的风速为基础。
13.一种风力涡轮发电机,包括:
多个安装在一个驱动地联接于一发电机的转子上的叶片;
一个逆风风速传感器,所述逆风风速传感器构造成在沿风向离该风力涡轮发电机所要求的距离处感测风速;
一个前馈控制系统,所述前馈控制系统构造成响应于感测的逆风风速的变化根据风力涡轮塔的动力学来确定一个前馈信号,并将该前馈信号耦合到该叶片螺距改变指令信号从而获得一个集中的叶片螺距改变指令信号;以及
一个螺距控制系统,用来根据感测的瞬时风速在该风力涡轮发电机处风速变化之前控制该风力涡轮发电机叶片的螺距,其中,该螺距控制系统构造成根据发电机参考速度和发电机实际速度之间的差来控制叶片螺距。
14.根据权利要求13所述的风力涡轮,其特征在于,其中,逆风风速传感器包括一个光探测和测距装置。
15.根据权利要求13所述的风力涡轮,其特征在于,还包括一个反馈控制系统,其构造成根据发电机参考速度和发电机实际速度之间的差来确定叶片螺距改变指令信号。
16.根据权利要求13所述的风力涡轮,其特征在于,其中,通过基于塔的动力学和发电机的动力学的增益来确定该前馈信号。
17.根据权利要求13所述的风力涡轮,其特征在于,其中,该前馈信号还以该感测的风速为基础。
CN2006101100356A 2005-09-30 2006-07-31 基于逆风风速控制风力涡轮的系统和方法 Active CN1940289B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/239792 2005-09-30
US11/239,792 US7342323B2 (en) 2005-09-30 2005-09-30 System and method for upwind speed based control of a wind turbine

Publications (2)

Publication Number Publication Date
CN1940289A CN1940289A (zh) 2007-04-04
CN1940289B true CN1940289B (zh) 2012-01-25

Family

ID=36928409

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2006101100356A Active CN1940289B (zh) 2005-09-30 2006-07-31 基于逆风风速控制风力涡轮的系统和方法

Country Status (8)

Country Link
US (1) US7342323B2 (zh)
EP (1) EP1770278B1 (zh)
CN (1) CN1940289B (zh)
AU (1) AU2006203289B8 (zh)
BR (1) BRPI0603291B1 (zh)
CA (1) CA2552670C (zh)
DK (1) DK1770278T3 (zh)
ES (1) ES2544563T3 (zh)

Families Citing this family (129)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2443171T3 (es) * 2001-12-28 2014-02-18 Mitsubishi Heavy Industries, Ltd. Aerogenerador de tipo contra el viento y método de funcionamiento del mismo
DE10318695B4 (de) * 2003-04-24 2009-09-03 Wobben, Aloys, Dipl.-Ing. Verfahren zum Betrieb einer Windenergieanlage
EP1719910B1 (en) 2004-02-27 2019-06-26 Mitsubishi Heavy Industries, Ltd. Wind turbine generator, active vibration damping method for the same, and wind turbine tower
US7317260B2 (en) * 2004-05-11 2008-01-08 Clipper Windpower Technology, Inc. Wind flow estimation and tracking using tower dynamics
JP3918837B2 (ja) 2004-08-06 2007-05-23 株式会社日立製作所 風力発電装置
US7476985B2 (en) * 2005-07-22 2009-01-13 Gamesa Innovation & Technology, S.L. Method of operating a wind turbine
JP4814644B2 (ja) * 2006-02-01 2011-11-16 富士重工業株式会社 風力発電装置
AU2006339899B2 (en) * 2006-03-16 2010-04-01 Vestas Wind Systems A/S A method and control system for reducing the fatigue loads in the components of a wind turbine subjected to asymmetrical loading of the rotor plane
US7505833B2 (en) * 2006-03-29 2009-03-17 General Electric Company System, method, and article of manufacture for controlling operation of an electrical power generation system
US20080296906A1 (en) * 2006-06-12 2008-12-04 Daw Shien Scientific Research And Development, Inc. Power generation system using wind turbines
US20090249779A1 (en) * 2006-06-12 2009-10-08 Daw Shien Scientific Research & Development, Inc. Efficient vapor (steam) engine/pump in a closed system used at low temperatures as a better stirling heat engine/refrigerator
US20090044535A1 (en) * 2006-06-12 2009-02-19 Daw Shien Scientific Research And Development, Inc. Efficient vapor (steam) engine/pump in a closed system used at low temperatures as a better stirling heat engine/refrigerator
US20090211223A1 (en) * 2008-02-22 2009-08-27 James Shihfu Shiao High efficient heat engine process using either water or liquefied gases for its working fluid at lower temperatures
DE102006040970B4 (de) * 2006-08-19 2009-01-22 Nordex Energy Gmbh Verfahren zum Betrieb einer Windenergieanlage
WO2008119351A2 (en) * 2007-03-30 2008-10-09 Vestas Wind Systems A/S Wind turbine with pitch control arranged to reduce life shortening loads on components thereof
EP2153063B1 (en) * 2007-04-30 2019-02-27 Vestas Wind Systems A/S A method of operating a wind turbine with pitch control
ES2354135T3 (es) 2007-04-30 2011-03-10 Vestas Wind Systems A/S Método para hacer funcionar una turbina eólica con control de paso.
EP1988284B1 (en) * 2007-05-03 2018-09-12 Siemens Aktiengesellschaft Method of operating a wind turbine and wind turbine
JP4501958B2 (ja) * 2007-05-09 2010-07-14 株式会社日立製作所 風力発電システムおよびその制御方法
US20080284171A1 (en) * 2007-05-16 2008-11-20 V3 Technologies, L.L.C. Augmented wind power generation system using an antecedent atmospheric sensor and method of operation
JP5022102B2 (ja) * 2007-05-25 2012-09-12 三菱重工業株式会社 風力発電装置、風力発電システムおよび風力発電装置の発電制御方法
US8235662B2 (en) 2007-10-09 2012-08-07 General Electric Company Wind turbine metrology system
CN104765041B (zh) * 2007-10-09 2019-07-26 文达光电股份有限公司 基于半导体激光器和放大器的相干激光雷达系统
CN102046966A (zh) * 2008-03-24 2011-05-04 诺蒂克风电有限公司 从流体流动中产生能量的涡轮机和系统及其方法
CN101983325B (zh) 2008-03-31 2013-04-24 维斯塔斯风力系统集团公司 用于风力涡轮机的光透射应变传感器
CA2651290C (en) * 2008-06-12 2013-11-05 Ophir Corporation Optical air data systems and methods
GB2461532A (en) 2008-07-01 2010-01-06 Vestas Wind Sys As Sensor system and method for detecting deformation in a wind turbine component
GB2461566A (en) 2008-07-03 2010-01-06 Vestas Wind Sys As Embedded fibre optic sensor for mounting on wind turbine components and method of producing the same.
US20100045037A1 (en) * 2008-08-21 2010-02-25 Daw Shien Scientific Research And Development, Inc. Power generation system using wind turbines
GB2463696A (en) 2008-09-22 2010-03-24 Vestas Wind Sys As Edge-wise bending insensitive strain sensor system
US8057174B2 (en) * 2008-10-09 2011-11-15 General Electric Company Method for controlling a wind turbine using a wind flow model
US20100092292A1 (en) * 2008-10-10 2010-04-15 Jacob Johannes Nies Apparatus and method for continuous pitching of a wind turbine
CA2643587A1 (en) * 2008-11-10 2010-05-10 Organoworld Inc. Turbine annular axial rotor
GB2466433B (en) 2008-12-16 2011-05-25 Vestas Wind Sys As Turbulence sensor and blade condition sensor system
WO2010086688A1 (en) * 2009-01-28 2010-08-05 Clipper Windpower, Inc. Load peak mitigation method and control system for a wind turbine
US20100195089A1 (en) * 2009-01-30 2010-08-05 General Electric Company Wind velocity measurement system and method
EP2213875A1 (en) * 2009-01-30 2010-08-04 Siemens Aktiengesellschaft Method and arrangement to forecast an output-power of at least one wind-turbine
NL2002476C2 (en) * 2009-02-02 2010-08-03 Univ Delft Tech WIND TURBINE.
US8178986B2 (en) * 2009-03-18 2012-05-15 General Electric Company Wind turbine operation system and method
DE102009015679A1 (de) 2009-03-31 2010-10-07 Robert Bosch Gmbh Stationäre Energiegewinnungsanlage mit Steuereinrichtung und Verfahren zur Steuerung der Energiegewinnungsanalge
US8222757B2 (en) * 2009-06-05 2012-07-17 General Electric Company Load identification system and method of assembling the same
DE102009030886A1 (de) * 2009-06-29 2010-12-30 Robert Bosch Gmbh Windenergieanlage mit einer Vielzahl von Windenergievorrichtungen und Verfahren zur Steuerung der Windenergieanlage
EP2460034B1 (en) * 2009-07-29 2015-09-09 Michigan Aerospace Corporation Atmospheric measurement system
GB2472437A (en) 2009-08-06 2011-02-09 Vestas Wind Sys As Wind turbine rotor blade control based on detecting turbulence
AU2009351338A1 (en) * 2009-08-21 2012-03-08 Bluescout Technologies, Inc. Wind and power forecasting using LIDAR distance wind sensor
AU2010299566A1 (en) * 2009-09-28 2012-05-03 Pentalum Technologies Ltd. Methods, devices and systems for remote wind sensing
US8025476B2 (en) * 2009-09-30 2011-09-27 General Electric Company System and methods for controlling a wind turbine
US8390791B2 (en) * 2009-11-30 2013-03-05 General Electric Company Light detection and ranging system
EP2327876A1 (en) 2009-11-30 2011-06-01 Lm Glasfiber A/S Wind turbine blade provided with optical wind velocity measurement system
GB2476316B (en) 2009-12-21 2014-07-16 Vestas Wind Sys As A wind turbine having a control method and controller for predictive control of a wind turbine generator
GB2476506A (en) * 2009-12-23 2011-06-29 Vestas Wind Sys As Method And Apparatus Protecting Wind Turbines From Low Cycle Fatigue Damage
GB2476507A (en) * 2009-12-23 2011-06-29 Vestas Wind Sys As Method And Apparatus For Protecting Wind Turbines From Gust Damage
US10137542B2 (en) 2010-01-14 2018-11-27 Senvion Gmbh Wind turbine rotor blade components and machine for making same
KR101713882B1 (ko) 2010-01-14 2017-03-09 센비온 게엠베하 윈드 터빈 로터 블레이드 컴포넌트 및 그것을 만드는 방법
GB2477529A (en) 2010-02-04 2011-08-10 Vestas Wind Sys As A wind turbine optical wind sensor for determining wind speed and direction
CA2788799A1 (en) * 2010-02-05 2011-08-11 Catch the Wind, Inc. High-density wind velocity data collection for wind turbine
US20110204638A1 (en) * 2010-02-25 2011-08-25 Stuart Lahtinen Wind turbine with integrated rotor and generator assembly
ES2381094B1 (es) * 2010-04-13 2013-04-23 Gamesa Innovation & Technology, S.L. Metodos de monitorizacion de aerogeneradores
GB2480701A (en) * 2010-05-29 2011-11-30 Vestas Wind Sys As Method and apparatus for optically measuring wind velocity
US8115333B2 (en) * 2010-06-23 2012-02-14 Harris Corporation Wind turbine providing reduced radio frequency interaction and related methods
GB2481789A (en) * 2010-06-30 2012-01-11 Vestas Wind Sys As Reducing yaw error in wind turbines
ES2771073T3 (es) * 2010-08-02 2020-07-06 Ge Renewable Tech Wind Bv Regulación de potencia reactiva de un parque eólico
US8202049B2 (en) * 2010-08-31 2012-06-19 Catch the Wind, Inc. Independent blade pitch control
ES2401857B1 (es) 2011-01-31 2014-03-10 Gamesa Innovation & Technology S.L. Métodos y sistemas de control de aerogeneradores mejorados.
CN203685475U (zh) 2011-01-31 2014-07-02 通用电气公司 风力涡轮机控制系统及风力涡轮机系统
IN2014DN00151A (zh) * 2011-06-30 2015-05-22 Vestas Wind Sys As
EP2729700A1 (en) * 2011-07-08 2014-05-14 Vestas Wind Systems A/S Improving power production of wind turbines
US9234506B2 (en) * 2011-10-14 2016-01-12 Vestas Wind Systems A/S Estimation of wind properties using a light detection and ranging device
US9217415B2 (en) * 2011-10-14 2015-12-22 Vestas Wind Systems A/S Estimation of wind properties using a light detection and ranging device
US8622698B2 (en) 2011-12-22 2014-01-07 Vestas Wind Systems A/S Rotor-sector based control of wind turbines
DE102012000716B3 (de) 2012-01-14 2012-12-27 Ssb Wind Systems Gmbh & Co. Kg Windturbine mit Fernwindmesser
US20130202434A1 (en) * 2012-02-06 2013-08-08 General Electric Company Methods and Apparatuses for Non-Model Based Control for Counter-Rotating Open-Rotor Gas Turbine Engine
DE102012210150A1 (de) * 2012-06-15 2013-12-19 Wobben Properties Gmbh Windenergieanlage und Verfahren zum Steuern einer Windenergieanlage oder eines Windparks
CN102797629B (zh) * 2012-08-03 2014-05-14 国电联合动力技术有限公司 一种风电机组的控制方法、控制器及其控制系统
WO2014053136A1 (en) * 2012-10-02 2014-04-10 Vestas Wind Systems A/S Wind turbine control
CN102865192B (zh) * 2012-10-24 2016-02-03 南车株洲电力机车研究所有限公司 一种削减风电机组尖峰载荷的变桨控制方法
US8987929B2 (en) 2012-11-01 2015-03-24 General Electric Company System and method for operating wind farm
US9759196B2 (en) * 2012-11-19 2017-09-12 Elwha Llc Mitigating wind turbine blade noise generation in response to an atmospheric variation
US9435320B2 (en) 2012-11-19 2016-09-06 Elwha Llc Mitigating wind turbine blade noise generation in view of a minimum power generation requirement
CN103061980A (zh) * 2012-12-28 2013-04-24 东方电气集团东方汽轮机有限公司 基于激光测风雷达的风力发电机组的前馈控制系统及其控制方法
DE102013100515A1 (de) 2013-01-18 2014-07-24 Christoph Lucks Verfahren zum Steuern einer Windenergieanlage oder eines Windparks
US9341159B2 (en) 2013-04-05 2016-05-17 General Electric Company Methods for controlling wind turbine loading
US20140312620A1 (en) * 2013-04-17 2014-10-23 General Electric Company Method and apparatus for improving grid stability in a wind farm
EP2994772B1 (en) * 2013-05-06 2020-06-24 Danmarks Tekniske Universitet Coaxial direct-detection lidar-system
US8803352B1 (en) 2013-05-14 2014-08-12 General Electric Compay Wind turbines and methods for controlling wind turbine loading
US9605558B2 (en) * 2013-08-20 2017-03-28 General Electric Company System and method for preventing excessive loading on a wind turbine
US9624905B2 (en) 2013-09-20 2017-04-18 General Electric Company System and method for preventing excessive loading on a wind turbine
US9606234B2 (en) 2013-10-18 2017-03-28 Tramontane Technologies, Inc. Amplified optical circuit
FR3013777B1 (fr) * 2013-11-25 2015-11-13 IFP Energies Nouvelles Procede de controle et de surveillance d'une eolienne au moyen d'une estimation de la vitesse du vent au moyen d'un capteur lidar
WO2015078478A1 (en) * 2013-11-29 2015-06-04 Vestas Wind Systems A/S Power-ramping pitch feed-forward
CA2931690C (en) 2013-12-09 2020-08-04 General Electric Company System and method for reducing oscillation loads of wind turbine
US9631606B2 (en) 2014-04-14 2017-04-25 General Electric Company System and method for thrust-speed control of a wind turbine
US10519930B2 (en) * 2014-06-26 2019-12-31 Vestas Wind Systems A/S Wind turbine controller with pitch feedback control loop in partial load
US9587629B2 (en) 2014-06-30 2017-03-07 General Electric Company Methods and systems to operate a wind turbine system using a non-linear damping model
US11035340B2 (en) * 2014-08-05 2021-06-15 Biomerenewables Inc. Fluidic turbine structure
CN104653410A (zh) * 2014-09-10 2015-05-27 国家电网公司 基于激光雷达测风仪的风电机组运行功率特性测试系统及方法
US10036692B2 (en) 2014-11-13 2018-07-31 General Electric Company System and method for estimating rotor blade loads of a wind turbine
EP3250820B1 (en) * 2015-01-29 2018-10-17 Vestas Wind Systems A/S Partial and full load controllers of a wind turbine
US9863402B2 (en) 2015-02-13 2018-01-09 General Electric Company System and method for operating a wind turbine based on rotor blade margin
JP6276223B2 (ja) * 2015-07-16 2018-02-07 株式会社日本製鋼所 風力発電装置、風力発電制御装置および風力発電制御プログラム
ES2807500T3 (es) * 2015-11-18 2021-02-23 Vestas Wind Sys As Método y sistema de control para turbina eólica que tiene múltiples rotores
CN105508146B (zh) * 2015-12-22 2018-07-31 北京金风科创风电设备有限公司 风力发电机组的偏航测试系统
CN105530044B (zh) * 2015-12-25 2018-03-02 武汉大学 一种星地链路激光湍流传输模拟与通信性能检测装置
CN105569923B (zh) * 2016-01-13 2019-01-15 湖南世优电气股份有限公司 一种大型风电机组的雷达辅助载荷优化控制方法
ES2870074T3 (es) * 2016-03-30 2021-10-26 Vestas Wind Sys As Control de una turbina eólica usando cálculo de ganancia en tiempo real
DE102016212362A1 (de) * 2016-07-06 2018-01-11 Universität Stuttgart Lidar-basierte multivariable Feedforwardregelung von Windturbinen
US10539116B2 (en) 2016-07-13 2020-01-21 General Electric Company Systems and methods to correct induction for LIDAR-assisted wind turbine control
US9926912B2 (en) 2016-08-30 2018-03-27 General Electric Company System and method for estimating wind coherence and controlling wind turbine based on same
EP3339640A1 (en) * 2016-12-21 2018-06-27 Vestas Wind Systems A/S Control system for a wind turbine
US10451036B2 (en) 2017-05-05 2019-10-22 General Electric Company Adjustment factor for aerodynamic performance map
US10634121B2 (en) 2017-06-15 2020-04-28 General Electric Company Variable rated speed control in partial load operation of a wind turbine
US11428209B2 (en) * 2017-07-14 2022-08-30 General Electric Company System and method for operating a wind farm for fast connection after farm shutdown
US10451045B2 (en) 2017-07-27 2019-10-22 General Electric Company Wind turbine including sensor assembly and method of operating such
WO2019114897A1 (en) * 2017-12-14 2019-06-20 Vestas Wind Systems A/S Tower damping in wind turbine power production
US10808681B2 (en) 2018-01-23 2020-10-20 General Electric Company Twist correction factor for aerodynamic performance map used in wind turbine control
DE102018001172A1 (de) * 2018-02-15 2019-08-22 Universität Stuttgart Regelungssystem zur Regelung einer Turbine, Verfahren zur Regelung einer Turbine und Windturbine
US10778112B2 (en) 2018-04-04 2020-09-15 General Electric Company DFIG converter with active filter
US10774811B2 (en) * 2018-05-01 2020-09-15 General Electric Company Induction controlled wind turbine
US11319926B2 (en) 2018-10-22 2022-05-03 General Electric Company System and method for protecting wind turbines from extreme and fatigue loads
DE102018129622A1 (de) * 2018-11-23 2020-05-28 Wobben Properties Gmbh Reglerstruktur und Regelverfahren für eine Windenergieanlage
JP7164624B2 (ja) * 2019-04-08 2022-11-01 三菱電機株式会社 風計測ライダ装置
CN112012882B (zh) * 2019-05-30 2022-08-02 北京金风科创风电设备有限公司 风电机组的前馈控制方法、装置以及控制系统
US11736056B2 (en) 2019-05-30 2023-08-22 General Electric Company System and method for controlling harmonics in a renewable energy power system
DE102019116753A1 (de) * 2019-06-20 2020-12-24 Wobben Properties Gmbh Verfahren zum Durchführen einer Energieertragsprognose und Windpark
CN111997833B (zh) * 2020-08-14 2021-11-19 山西大学 基于激光测风前馈的风电机组复合智能变桨控制方法
FR3115115B1 (fr) * 2020-10-14 2022-10-14 Ifp Energies Now Procédé de détermination d’un facteur d’induction entre un plan de mesure et le plan du rotor d’une éolienne
US11408396B2 (en) * 2021-01-08 2022-08-09 General Electric Renovables Espana, S.L. Thrust control for wind turbines using active sensing of wind turbulence
CN112881857B (zh) * 2021-01-11 2023-05-05 华翔翔能科技股份有限公司 一种实时感知的电网故障预防系统及方法
CN113309663B (zh) * 2021-03-08 2022-11-15 新疆金风科技股份有限公司 用于风力发电机组的控制方法及控制装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4189648A (en) * 1978-06-15 1980-02-19 United Technologies Corporation Wind turbine generator acceleration control
US4420692A (en) * 1982-04-02 1983-12-13 United Technologies Corporation Motion responsive wind turbine tower damping
US5155375A (en) * 1991-09-19 1992-10-13 U.S. Windpower, Inc. Speed control system for a variable speed wind turbine
US6420795B1 (en) * 1998-08-08 2002-07-16 Zond Energy Systems, Inc. Variable speed wind turbine generator

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4193005A (en) * 1978-08-17 1980-03-11 United Technologies Corporation Multi-mode control system for wind turbines
US4435647A (en) * 1982-04-02 1984-03-06 United Technologies Corporation Predicted motion wind turbine tower damping
US4695736A (en) * 1985-11-18 1987-09-22 United Technologies Corporation Variable speed wind turbine
US4792281A (en) * 1986-11-03 1988-12-20 Northern Power Systems, Inc. Wind turbine pitch control hub
DE69814840D1 (de) * 1997-03-26 2003-06-26 Forskningsct Riso Roskilde Windturbine mit vorrichtung zur messung der windgeschwindigkeit
US6137187A (en) * 1997-08-08 2000-10-24 Zond Energy Systems, Inc. Variable speed wind turbine generator
US7246991B2 (en) * 2002-09-23 2007-07-24 John Vanden Bosche Wind turbine blade deflection control system
GB2398841A (en) * 2003-02-28 2004-09-01 Qinetiq Ltd Wind turbine control having a Lidar wind speed measurement apparatus
JP4102278B2 (ja) * 2003-03-19 2008-06-18 三菱電機株式会社 風力発電システム
US7086834B2 (en) * 2004-06-10 2006-08-08 General Electric Company Methods and apparatus for rotor blade ice detection
US7309930B2 (en) * 2004-09-30 2007-12-18 General Electric Company Vibration damping system and method for variable speed wind turbines

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4189648A (en) * 1978-06-15 1980-02-19 United Technologies Corporation Wind turbine generator acceleration control
US4420692A (en) * 1982-04-02 1983-12-13 United Technologies Corporation Motion responsive wind turbine tower damping
US5155375A (en) * 1991-09-19 1992-10-13 U.S. Windpower, Inc. Speed control system for a variable speed wind turbine
US6420795B1 (en) * 1998-08-08 2002-07-16 Zond Energy Systems, Inc. Variable speed wind turbine generator

Also Published As

Publication number Publication date
EP1770278A3 (en) 2012-07-04
CA2552670C (en) 2014-07-08
AU2006203289A1 (en) 2007-04-19
ES2544563T3 (es) 2015-09-01
DK1770278T3 (en) 2015-07-27
BRPI0603291A (pt) 2007-08-14
EP1770278B1 (en) 2015-06-24
EP1770278A2 (en) 2007-04-04
CA2552670A1 (en) 2007-03-30
CN1940289A (zh) 2007-04-04
US7342323B2 (en) 2008-03-11
US20070075546A1 (en) 2007-04-05
BRPI0603291B1 (pt) 2018-06-19
AU2006203289B8 (en) 2012-01-19
AU2006203289B2 (en) 2011-12-01

Similar Documents

Publication Publication Date Title
CN1940289B (zh) 基于逆风风速控制风力涡轮的系统和方法
CN101368541B (zh) 利用逆风信息降低水平轴风力涡轮机中负荷的系统和方法
US6726439B2 (en) Retractable rotor blades for power generating wind and ocean current turbines and means for operating below set rotor torque limits
US8215906B2 (en) Variable tip speed ratio tracking control for wind turbines
US8128362B2 (en) Method of operating a wind turbine, a wind turbine and a cluster of wind turbines
US6465902B1 (en) Controllable camber windmill blades
CN101730796B (zh) 运行具有桨距控制的风力涡轮机的方法、风力涡轮机以及风力涡轮机的集群
EP2481921B1 (en) Improved wind turbine control methods and systems
CN102933841B (zh) 风力涡轮机
EP2927484A1 (en) Yaw and pitch angles
JPH0762470B2 (ja) 可変速度風力タ−ビン発電機の制御方法及び装置
CN102852720A (zh) 风力涡轮机和相应的偏航控制方法
US4443155A (en) Wind rotor thrust-actuated brake
EP2686547B1 (en) Downwind turbine with free yaw system
WO2019187553A1 (ja) 風力発電システム
Hohenemser et al. Wind turbine speed control by automatic yawing
Lyons et al. USC 154 (b) by 63 days.
JPS6314196B2 (zh)
Hohenemser et al. Rotor speed control by automatic yawing of two-bladed wind turbines with passive cyclic pitch variation
Cheney et al. Comparison of blade loads of fixed and free yawing wind turbine
Beauchamp et al. Controllable camber windmill blades

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20240102

Address after: Barcelona, Spain

Patentee after: Ge renewable energy Spain Ltd.

Address before: New York, United States

Patentee before: General Electric Co.