CN1938441A - High-strength-toughness magnesium alloy and its preparing method - Google Patents

High-strength-toughness magnesium alloy and its preparing method Download PDF

Info

Publication number
CN1938441A
CN1938441A CNA2005800098757A CN200580009875A CN1938441A CN 1938441 A CN1938441 A CN 1938441A CN A2005800098757 A CNA2005800098757 A CN A2005800098757A CN 200580009875 A CN200580009875 A CN 200580009875A CN 1938441 A CN1938441 A CN 1938441A
Authority
CN
China
Prior art keywords
alloy
casting
magnesium
crucible
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2005800098757A
Other languages
Chinese (zh)
Other versions
CN100408709C (en
Inventor
马跃群
陈荣石
韩恩厚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Metal Research of CAS
Original Assignee
Institute of Metal Research of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Metal Research of CAS filed Critical Institute of Metal Research of CAS
Publication of CN1938441A publication Critical patent/CN1938441A/en
Application granted granted Critical
Publication of CN100408709C publication Critical patent/CN100408709C/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/02Alloys based on magnesium with aluminium as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • B22D21/002Castings of light metals
    • B22D21/007Castings of light metals with low melting point, e.g. Al 659 degrees C, Mg 650 degrees C
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/04Alloys based on magnesium with zinc or cadmium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/06Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of magnesium or alloys based thereon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

本发明涉及一种高强度高韧性铸造镁合金及其制备方法。按重量百分比计,本发明合金中的铝含量为3~9wt%;锌含量为3.5~9wt%;锰含量为0.15~1.0wt%;锑含量为0.01~2wt%;镁含量为平衡余量;合金中还可以进一步含有0~2wt%的富铈混合稀土、钙、硅三者之一的某种元素。本发明的典型合金在T6(固溶+时效)热处理后,其室温力学性能可以达到:抗拉强度σb≥270MPa,屈服强度σ0.2≥140MPa,延伸率δ5≥6%,布氏硬度≥70,冲击功αk≥12J。本发明的某些合金不仅能够具有优异的室温力学性能,还能同时具有出色的高温力学性能。本发明的合金其制备成本较低,适于大规模生产。本发明的合金适用于金属型铸造、砂型铸造、压力铸造、挤压铸造等铸造工艺。The invention relates to a high-strength and high-toughness casting magnesium alloy and a preparation method thereof. In terms of weight percentage, the aluminum content in the alloy of the present invention is 3-9wt%, the zinc content is 3.5-9wt%, the manganese content is 0.15-1.0wt%, the antimony content is 0.01-2wt%, and the magnesium content is the balance balance; The alloy may further contain 0-2wt% of a certain element of one of cerium-rich mixed rare earth, calcium and silicon. After T6 (solution + aging) heat treatment of the typical alloy of the present invention, its mechanical properties at room temperature can reach: tensile strength σ b ≥ 270MPa, yield strength σ 0.2 ≥ 140MPa, elongation δ 5 ≥ 6%, Brinell hardness ≥ 70, impact energy α k ≥ 12J. Certain alloys of the present invention can not only have excellent room temperature mechanical properties, but also have excellent high temperature mechanical properties at the same time. The alloy of the invention has low preparation cost and is suitable for large-scale production. The alloy of the invention is suitable for casting processes such as metal mold casting, sand casting, pressure casting, squeeze casting and the like.

Description

一种髙强高韧镁合金及其制备方法 技术领域 A kind of high-strength high-toughness magnesium alloy and preparation method thereof Technical field

本发明涉及一种铸造^^金及其制备技术。 本发明的目的是通过采用合金化和热处理 等手段制备一种低成本、高强度高韧性铸造镁合金。本发明不仅适用于金属型永久模铸造, 離适用于砂型铸造、 压力铸造、 挤压铸造等工艺。 背景技术 The invention relates to a cast gold and its preparation technology. The purpose of the invention is to prepare a low-cost, high-strength and high-toughness casting magnesium alloy by means of alloying and heat treatment. The present invention is not only suitable for metal permanent mold casting, but also suitable for sand casting, pressure casting, squeeze casting and other processes. Background technique

作为一种轻金属材料, 镁合金具有许多优点, 比如高比强度, 极好的机加工及铸造性 能、 良好的阻尼特性、 尺寸稳定性以及电磁屏蔽能力等。 由于具有以上特性, 镁合金部件 已被广泛地应用于许多工业部门,包括汽车制 ¾, 3C产品(计算机、通信、消费类电子) 制造业, 军工部门等。近年来, 由于日益紧迫的汽车减重需求, 镁合金的低密度使得它在 交 ¾¾输领域再次产生了极强的吸引力。 镜合金的需求出现了一个快速增长期。 As a light metal material, magnesium alloy has many advantages, such as high specific strength, excellent machining and casting properties, good damping characteristics, dimensional stability, and electromagnetic shielding ability. Due to the above characteristics, magnesium alloy parts have been widely used in many industrial sectors, including automobile manufacturing, 3C product (computer, communication, consumer electronics) manufacturing, military industry, etc. In recent years, due to the increasingly urgent demand for weight reduction of automobiles, the low density of magnesium alloys has made it extremely attractive again in the field of transportation. The demand for mirror alloys has experienced a period of rapid growth.

然而, 相对铝合金来说, 较弱的强度和 /或塑性严重限制了镁合金的应用 (例如, 轻 型汽车轮毂等方面的应用等, 同时需要高强度、高韧性)。表 1给出了一些典型商用铸造镁 合金的拉伸力学性能。 典型铸造镁合金的拉伸力学性能 成分(重量百分比) However, relative to aluminum alloys, weaker strength and/or plasticity severely limit the application of magnesium alloys (for example, applications such as light-duty automobile hubs, etc., require high strength and high toughness at the same time). Table 1 shows the tensile mechanical properties of some typical commercial cast magnesium alloys. Tensile mechanical properties of typical cast magnesium alloys Composition (weight percent)

^ 拉伸性能 ^ Tensile properties

A1 Zn Mn Zr 其它 σ b(MPa)

Figure IMGF000002_0001
δ 5(%)A1 Zn Mn Zr Other σ b (MPa)
Figure IMGF000002_0001
δ 5 (%)

C压铸) C die casting)

AM60 6.0 - 0.3 - - 220 115 8 AM60 6.0 - 0.3 - - 220 115 8

AZ91 9.0 0.7 0.3 - - 230 150 3 AZ91 9.0 0.7 0.3 - - 230 150 3

(铸造:) (casting:)

ZE63 - 5.8 - 0.7 2.6RE 300 190 10 从表 1中可以看出, 目前应用量最大的压力铸^ AZ91合金, 具有较高的强度, 但是相 X寸较低的塑性限制了它的应用。 此外, 虽然 ΑΜ60合金具有较高的塑性, 但是不太高的强 度也限制了它们的大量应用。 尽管有少量的镁一稀土合金同时具有高强度和高韧性, 例如 ΖΕ63,但是过高的成本以及复杂的热处理工艺使得这些合金难以大面积应用。 由于提高缓 合金的强度和塑性是进一步扩大镁合金应用范围的关键所在, 因此, 研制一种低成本、 高 强高韧镁合金是非常迫切的任务。 ZE63 - 5.8 - 0.7 2.6RE 300 190 10 It can be seen from Table 1 that the most widely used die casting ^ AZ91 alloy has high strength, but its low plasticity limits its application. In addition, although AM60 alloys have high plasticity, their low strength also limits their mass application. Although there are a small amount of magnesium-rare earth alloys with high strength and high toughness at the same time, such as ZE63, the high cost and complicated heat treatment process make it difficult for these alloys to be applied in large areas. Due to increased slow The strength and plasticity of alloys are the key to further expand the application range of magnesium alloys. Therefore, it is a very urgent task to develop a low-cost, high-strength and high-toughness magnesium alloy.

尽管已有许多提高镜合金拉伸力学性能的尝试, 但是其中的大部分工作集中在提高镁 合金的高温拉伸力学性能方面, 而这些合金常温力学性能的提高是有限的。例如, 欧洲专 利 0879898A1公幵了一种具有优异高温性能和压力铸造性能的镁合金, 但是该发明所公开 的合金却具有较低的室温强度(抗拉强度 < 230 MPa)和塑性(延伸率 < 5%) 。 美国专 利 20030084968A1公开了一种髙强抗蠕变镁合金, 但是该发明所公开的合金也是具有较低 的室温塑性(延伸率 < 5%) 。美国专利 6139651公开了一种高温应用的续合金, 但是该发 明所公开的合金的室温强度和塑性均不理想。尽管有少数专利得到了一些有前景的高强高 韧镁合金, 比如美国专利 20010055539A1 , 更加理想的室温高强高韧镁合金的研制还需要 进一步展开。 Although there have been many attempts to improve the tensile mechanical properties of magnesium alloys, most of them have focused on improving the high temperature tensile mechanical properties of magnesium alloys, and the improvement of the normal temperature mechanical properties of these alloys is limited. For example, European patent 0879898A1 discloses a magnesium alloy with excellent high temperature performance and pressure casting performance, but the alloy disclosed in this invention has low room temperature strength (tensile strength<230 MPa) and plasticity (elongation<230 MPa) 5%). US Patent 20030084968A1 discloses a high-strength creep-resistant magnesium alloy, but the alloy disclosed in this invention also has low room temperature plasticity (elongation < 5%). US Patent 6139651 discloses a continuous alloy for high temperature applications, but the room temperature strength and plasticity of the alloy disclosed in this invention are not ideal. Although a few patents have obtained some promising high-strength and high-toughness magnesium alloys, such as US patent 20010055539A1, the development of more ideal room-temperature high-strength and high-toughness magnesium alloys still needs to be further developed.

近年来, 尽管微量元素(稀土元素、 铍、 铋、 锶、 锑元素等)在^^金中的作用进行 了较多的研究, 但是大部分工作集中在商业^^金的改性以及提高合金的抗蠕变性能上。 例如, 中国专利 CN1401804公开了一种抗热镁合金, 该合 ^^有 2-10 wt% (重量百分比, 下同) 的铝, 0.2-2 wt%的锌, 0.1-0.6 wt%的锰, 0.1-2 wt%的铋, 0.1-1.5 wt%的锑, 其它为 镁。欧洲专利 1241276公开了一种抗蠕变 合金,该合 有 1.5- 4.0 wt%的铝, 0.5-1.8 wt %的硅, 0.05 -0.6 wt %的稀土, 0.005-1.5 wty。的锶或锑, 镁为平衡余量。 中国专利 CN1341767公开了一种多组元车用抗热镁合金及其铸造工艺, 该合金含有 5-7 wt%的铝, 0.5-1.0 wt%的锌, 0.6-1.5 wt%的硅, 0.4-0.7 wt%锑, 0.1-0.3 wt%的稀土, 0.002 wt%的铍, 镁为平衡余量。 In recent years, although the role of trace elements (rare earth elements, beryllium, bismuth, strontium, antimony, etc.) on the creep resistance performance. For example, Chinese patent CN1401804 discloses a heat-resistant magnesium alloy, which contains 2-10 wt% (weight percentage, the same below) of aluminum, 0.2-2 wt% of zinc, 0.1-0.6 wt% of manganese, 0.1-2 wt% bismuth, 0.1-1.5 wt% antimony, others magnesium. European Patent No. 1241276 discloses a creep resistant alloy containing 1.5-4.0 wt% aluminum, 0.5-1.8 wt% silicon, 0.05-0.6 wt% rare earth, 0.005-1.5 wtty. Strontium or antimony, magnesium is the balance balance. Chinese patent CN1341767 discloses a multi-component automotive heat-resistant magnesium alloy and its casting process. The alloy contains 5-7 wt% aluminum, 0.5-1.0 wt% zinc, 0.6-1.5 wt% silicon, 0.4- 0.7 wt% antimony, 0.1-0.3 wt% rare earth, 0.002 wt% beryllium, magnesium is the balance balance.

在大量文献分析的基础上, 我们注意到在中等铝含量、 中等锌含量的镁一铝一锌三元 可压力铸造区, 如果采用适当的微量元素该性, 再加以合适的热处理, 可能存在开发出低 成本、 高强高韧镁合金的潜力。 结果, 我们发现了一些具有这些特性的镁合金, 下面将详 细讨论。 发明内容 Based on the analysis of a large number of literatures, we noticed that in the magnesium-aluminum-zinc ternary die-casting area with medium aluminum content and medium zinc content, if appropriate trace elements are used and appropriate heat treatment is used, there may be development The potential of developing low-cost, high-strength and high-toughness magnesium alloys. As a result, we found some magnesium alloys with these properties, which are discussed in detail below. Contents of the invention

本发明的主要目的在于通过合理选择合金化元素以及采用合适的热处理手段, 提供一 种兼具高强度和高韧性的铸造镁合金。 The main purpose of the present invention is to provide a cast magnesium alloy with both high strength and high toughness by rationally selecting alloying elements and adopting appropriate heat treatment means.

本发明的第二目的在于该法制备的齢金不仅适用于永久模铸造, 而且适用于砂型铸 造、 压力铸造、 挤压铸造等工艺。 本发明的第三目的在于该法制备的镁合金不仅具有优异的室温力学性能, 某些合金还 会具有出色的高温力学性能。 The second purpose of the present invention is that the gold alloy prepared by this method is not only suitable for permanent mold casting, but also suitable for sand casting, pressure casting, squeeze casting and other processes. The third purpose of the present invention is that the magnesium alloy prepared by this method not only has excellent room temperature mechanical properties, but some alloys also have excellent high temperature mechanical properties.

本发明的第四目的在于该法制备的镁合金除了具有上述特点外, 合金的生产成本较 低。 The fourth object of the present invention is that the magnesium alloy prepared by this method has the above-mentioned characteristics, and the production cost of the alloy is relatively low.

本发明最重要的发现在于: 中等铝含量以及中等锌含量构成了高强高韧镁合金基础体 系; 微量元素的加入以及合适的热处理工艺进一步使合金达到了最佳力学性能。 The most important discovery of the present invention is that: medium aluminum content and medium zinc content constitute the basic system of high-strength and high-toughness magnesium alloy; the addition of trace elements and appropriate heat treatment process further make the alloy achieve the best mechanical properties.

按重量百分比计, 本发明合金中的铝含量为 3~9 wt%; 锌含量为 3.5~9 wt%; 锰含量为 0.15-1.0 wt%; 锑含量为 0.01~2 wt%; 镁含量为平衡余量; 合金中还可以进一步含有 0〜2 wt%的富铈混合稀土、 钙、硅三者之一的某种元素。 In terms of weight percentage, the aluminum content in the alloy of the present invention is 3-9 wt%; the zinc content is 3.5-9 wt%; the manganese content is 0.15-1.0 wt% ; the antimony content is 0.01-2 wt% ; The balance; the alloy may further contain 0 to 2 wt% of a certain element of one of cerium-rich mixed rare earths, calcium and silicon.

本发明的增强增韧机理如下: 1 )、元素的固溶强化机制。 2)、二次折出相强化机制: 随着锌含量的增加, Mg17Al12相逐渐减少, 同时 Mg-Al-ΖηΞ元相以及镁锌二元相逐渐增加; 此外, 加入 Mn、 Sb等微量元素后, 根据会产生新的颗粒增强相或颗粒如 Al-Mn, M^Sba 等。 3 )、某些元素的加入(例如锑)还会细化晶粒以及分布在晶界上的连续脆性二次析出 相, 从而起到提高合金的强度、塑性以及铸造性能的作用。 4)、 的热处理工艺会通过 调整二次析出相的数量和形状从而进一步提升合金的力学性能。 The strengthening and toughening mechanism of the present invention is as follows: 1) The solid solution strengthening mechanism of elements. 2), Secondary extruded phase strengthening mechanism: With the increase of zinc content, the Mg 17 Al 12 phase gradually decreases, while the Mg-Al-Ζη ternary phase and the magnesium-zinc binary phase gradually increase; in addition, adding Mn, Sb, etc. After adding trace elements, new particle reinforcement phases or particles such as Al-Mn, M^Sba, etc. will be produced. 3), the addition of certain elements (such as antimony) will also refine the grains and the continuous brittle secondary precipitates distributed on the grain boundaries, thereby improving the strength, plasticity and casting performance of the alloy. 4), the advanced heat treatment process will further improve the mechanical properties of the alloy by adjusting the number and shape of the secondary precipitates.

铝(A1) : 3〜9 wt% Aluminum (A1): 3~9 wt%

铝元素不仅对于提高 金的室温强度和硬度来说是非常有效的, 而且通过加宽合金 的凝固区间使得^^金更易于铸造。 为了取得明显的强化效果, 合金中的铝含量应该至少 3wt%; 但是,过高的铝含量会对合金的塑性产生不利影响。 因此, 本发明中合金的铝含量 的最高上限定为 9 t%。 Aluminum element is not only very effective for increasing the room temperature strength and hardness of gold, but also makes ^^ gold easier to cast by widening the solidification range of the alloy. In order to obtain a significant strengthening effect, the aluminum content in the alloy should be at least 3wt% ; however, too high aluminum content will adversely affect the plasticity of the alloy. Therefore, the upper limit of the aluminum content of the alloy in the present invention is 9 t%.

锌(Zn) : 3.5〜9 wt% Zinc (Zn): 3.5~9 wt%

在镁合金中, 锌元素是除铝之外的另一种重要合金元素。 在本发明中锌和铝共同用来 提高合金的室温强度和铸造性能。然而, 众所周知, 在镁铝锌合金体系中, 若锌和铝的匹 配不合适, 将会增大合金的热裂倾向性, 恶化铸造成型性能。 本发明根据镁一铝一锌三元 合金体系的压铸性能与铝锌含量的关系(参见附图 1 ),通过选择合适的铝、锌含量,并且 在某些微量元素(例如锑) 的作用下, 从而在保证合金压铸性能的基础上得到了较低热裂 倾向的镁合金。因此,本发明合金中的锌含量最少应为 3.5 wt%。此外, 由于过高的锌含量 会降低合金的塑性, 最高的锌含量不应超过 9 wt%。 In magnesium alloys, zinc is another important alloying element besides aluminum. Zinc and aluminum are used together in the present invention to enhance the room temperature strength and castability of the alloy. However, it is well known that in the magnesium-aluminum-zinc alloy system, if the matching of zinc and aluminum is not suitable, the hot cracking tendency of the alloy will be increased and the casting performance will be deteriorated. The present invention is based on the relationship between the die-casting performance of the magnesium-aluminum-zinc ternary alloy system and the content of aluminum and zinc (see accompanying drawing 1), by selecting the appropriate content of aluminum and zinc, and under the action of certain trace elements (such as antimony) , so as to obtain a magnesium alloy with a lower hot cracking tendency on the basis of ensuring the die-casting performance of the alloy. Therefore, the zinc content in the alloy of the present invention should be a minimum of 3.5 wt%. In addition, the highest zinc content should not exceed 9 wt%, since excessive zinc content will reduce the plasticity of the alloy.

锰 (Mn) : 0.15-1 wt% 本发明合金中锰元素以铝一锰中间合金的形式加入。 尽管锰在提高合金抗拉强度方面 的作用不明显, 它还是能通过存在于初晶晶粒中的铝一锰颗粒相起到一些提高屈服强度的 作用。 锰在本发明中的主要作用是提高合金的耐腐蚀性能。 锰在合金熔炼过程中能与合金 中的杂质元素(如铁、镍等)形成化合物, 沉淀到坩埚底部, 去除杂质, 消除这些元素对 合金耐腐蚀性能的有害作用。 锰的加入量受到其低固溶度的限制, 本发明中锰的加入量为 0.15-1 wt%。 Manganese (Mn): 0.15-1 wt% The manganese element in the alloy of the present invention is added in the form of an aluminum-manganese master alloy. Although the effect of Mn on improving the tensile strength of the alloy is not obvious, it can play some role in increasing the yield strength through the Al-Mn particle phase present in the primary grains. The main function of manganese in the present invention is to improve the corrosion resistance of the alloy. During the alloy smelting process, manganese can form compounds with impurity elements in the alloy (such as iron, nickel, etc.), precipitate to the bottom of the crucible, remove impurities, and eliminate the harmful effects of these elements on the corrosion resistance of the alloy. The addition of manganese is limited by its low solid solubility, and the addition of manganese in the present invention is 0.15-1 wt%.

锑(Sb) ; 0.01-2 wt% Antimony (Sb); 0.01-2 wt%

本发明中的锑元素或者是以铝箔纸包裹的粉状形式加入, 或者是以块状形式加入。 少 量的锑元素会细化初晶晶粒以及二次析出相, 从而起到提高合金力学性能以及减轻热裂倾 向的作用。但是, 当锑含量超 ¾2 wt%时, 粗化的 Mg3Sb2颗粒反而会降低力学性能。 因此, 本发明中锑含量应控制在 0.01%~2wt%。 The antimony element in the present invention is either added in the form of powder wrapped in aluminum foil, or added in the form of block. A small amount of antimony will refine the primary crystal grains and secondary precipitates, thereby improving the mechanical properties of the alloy and reducing the tendency of hot cracking. However, when the antimony content exceeds ¾2 wt%, the coarsened Mg3Sb2 particles will reduce the mechanical properties instead. Therefore, the antimony content in the present invention should be controlled at 0.01%~2wt%.

其它元素: 0-2 wt% Other elements: 0-2 wt%

本发明中的合金中还可以进一步含有 0~2 wt%的富铈混合稀土、 钙、 硅三者之一的某 种元素。 The alloy in the present invention may further contain 0-2 wt% of a certain element of one of cerium-rich misch, calcium and silicon.

本发明中的富铈混合稀土为市售产品, 其生产厂家为包头华美稀土高科有限公司。 富 铈混合稀土中 50%左右的是铈, 其它主要成分是镧和钕。 少量的稀土加入可以提高镁合金 的硬度以及高温力学性能, 但是过量的稀土一方面会增加成本, 另一方面会产生粗化的颗 粒析出相并导致力学性能及铸造性能的下降。 稀土含量应控制在 0 ~2 wt%, 更理想的是限 制在 0 ~1 wt%。 The cerium-rich mixed rare earth in the present invention is a commercially available product, and its manufacturer is Baotou Huamei Rare Earth Hi-Tech Co., Ltd. About 50% of the cerium-rich mixed rare earth is cerium, and the other main components are lanthanum and neodymium. The addition of a small amount of rare earth can improve the hardness and high-temperature mechanical properties of magnesium alloys, but excessive rare earth will increase the cost on the one hand, and on the other hand will produce coarse grain precipitates and lead to the decline of mechanical properties and casting properties. Rare earth content should be controlled at 0-2 wt%, more ideally limited at 0-1 wt%.

钙元素的添加不仅会起到阻燃的作用, 而且会提高合金的高温力学性能及蠕变抗力。 然而, 钙的加入会降低铸造性能并加剧合金的热裂倾向。 The addition of calcium element will not only play the role of flame retardancy, but also improve the high temperature mechanical properties and creep resistance of the alloy. However, the addition of calcium reduces the castability and aggravates the hot cracking tendency of the alloy.

硅元素的添加也会提高合金的髙温力学性能及蠕变抗力, 但是过多的硅元素会产生粗 大的 M S願粒产生并导致力学性能的下降。 The addition of silicon will also improve the high-temperature mechanical properties and creep resistance of the alloy, but too much silicon will produce coarse MS grains and lead to a decrease in mechanical properties.

本发明中合金的冶炼和铸造工艺可以分为以下几步: The smelting and casting process of alloy among the present invention can be divided into following several steps:

1 )先设定坩埚目标温度为 700~75(TC, 开始加热; 然后将各种配料放在烘箱中预热至 1) First set the target temperature of the crucible to 700~75 (TC, start heating; then put the various ingredients in the oven to preheat to

140~200°C,同时将占目的合金总重量 0.6 ^%的覆盖剂(可以釆用镁合金常用的覆盖剂) 放入供箱中烘烤; 此外, 将饶铸用模具在另夕卜的箱式炉中预热至 20040(TC。 140 ~ 200 ° C, and at the same time, put a covering agent (commonly used covering agent for magnesium alloys) that accounts for 0.6% of the total weight of the alloy into the oven for baking; Preheat to 20040 (TC in the box-type furnace.

2)当坩埚升温至 280~320°C时, 通入 C02气体至坩埚内进行气体置换, 然后在坩埚底 部加 Λ30%~50%的已烘烤的覆盖剂, 再后将预热好的纯镁配料放入坩埚内。 3 )纯镁配料熔化并且等坩埚温度稳定在 700〜750°C后, 根据熔点由高到低依次加入预 热的各种配料, 然后熔体进行搅拌约 8~10 中; 此过程中, 酌情加入剩余的已烘烤的覆盖 剂, 以表面不燃为准。 2) When the temperature of the crucible rises to 280~320°C, inject CO2 gas into the crucible for gas replacement, then add Λ30%~50% of the baked covering agent to the bottom of the crucible, and then put the preheated The pure magnesium ingredients are put into the crucible. 3) After the pure magnesium ingredients are melted and the temperature of the crucible is stabilized at 700-750° C., various preheated ingredients are added sequentially according to the melting point from high to low, and then the melt is stirred for about 8-10 minutes; during this process, as appropriate, Add the remaining baked-on covering, whichever is non-combustible.

4)坩埚温度稳定在 700〜750°C后, 熔体静置 4~6分钟, 按体积百分比, 在 99~99.5%空 气(或 C02) + 0.5~1% SF6混合气体保护下掏出表面浮渣; 4) After the temperature of the crucible is stabilized at 700~750°C, the melt is left to stand for 4~6 minutes, and the melt is taken out under the protection of 99~99.5% air (or C0 2 ) + 0.5~1% SF 6 mixed gas according to volume percentage surface scum;

5)掏渣完毕后,维持坩埚温度在 700~750。C,按体积百分比,在 99~99.5%空气(或 C02) + 0.5-1% SF6混合气体保护下浇铸成型。 5) After slag removal, keep the crucible temperature at 700~750. C, by volume percentage, cast under the protection of 99~99.5% air (or C0 2 ) + 0.5-1% SF 6 mixed gas.

本发明的热处理在很大程度上影响了合金的力学性能。 本发明的合金热处理方式可分 为 T4 (固溶处理)、 T5 (时效处理)、 T6 (固溶处理之后再加时效处理)三种, 下面分别 介绍。, . The heat treatment of the present invention affects the mechanical properties of the alloy to a great extent. The alloy heat treatment methods of the present invention can be divided into three types: T4 (solution treatment), T5 (aging treatment), and T6 (aging treatment after solution treatment), which will be introduced respectively below. , .

T4固溶处理最好在保护气氛(如氩气、 99~99.5%空气(或 C02) + 0.5-1% SF6混合气 体等) 中进行, 其温度范围为 340 0(TC并与锌含量密切相关。 一般说来, 镁合金的固溶 温度应该比合金的固相线温度低 10~20°C。 镁一铝一锌三元合金体系的固相线温度可参考 附图 2。此外,某些元素(如锑)的加入会对固相线温度产生轻微影响, 因此, 更精确的固 相线温度可以通过合金的差热分析数据确定。至于 T4固溶处理的时间可取为 8~24小时。 T4 solid solution treatment is best carried out in a protective atmosphere (such as argon, 99~99.5% air (or C0 2 ) + 0.5-1% SF 6 mixed gas, etc.), the temperature range is 340 0 (TC and the zinc content Closely related. Generally speaking, the solid solution temperature of magnesium alloy should be 10~20°C lower than the solidus temperature of the alloy. The solidus temperature of the magnesium-aluminum-zinc ternary alloy system can refer to Figure 2. In addition, The addition of some elements (such as antimony) will have a slight effect on the solidus temperature, therefore, a more accurate solidus temperature can be determined by the differential thermal analysis data of the alloy. As for the time of T4 solid solution treatment, it can be taken as 8~24 Hour.

T5时效处理的温度取为 70~200°C, 时效处理的时间可取为 8~24小时。 至于 T6热处理, 可以理解为 T4和 T5热处理的一种组合。具体地说,是先进行 T4热处理,然后再进行 T5热处 理。 The temperature of T5 aging treatment is taken as 70-200°C, and the time of aging treatment is taken as 8-24 hours. As for T6 heat treatment, it can be understood as a combination of T4 and T5 heat treatment. Specifically, T4 heat treatment is carried out first, and then T5 heat treatment is carried out.

由于热处理改变了颗粒增强相的分布方式和数量, 因此显著影响了力学性能。 一般说 来, T4固溶处理的试样由于中间相重新溶入基体内, 故而会提高塑性及抗冲击性能, 但是 屈服强度会有所降低。 T5时效处理可以消除残余应力并在一定程度上提高力学性能。 T6处 理由于能重新分布二次析出相的数量和形状, 故而能显著提升合金的强度和硬度, 但是合 金的塑性会有所下降。 Since the heat treatment changes the distribution and quantity of the particle-reinforced phase, it significantly affects the mechanical properties. Generally speaking, the plasticity and impact resistance of T4 solid solution treated samples will be improved due to the re-dissolution of the mesophase into the matrix, but the yield strength will be reduced. T5 aging treatment can eliminate residual stress and improve mechanical properties to a certain extent. Because T6 treatment can redistribute the quantity and shape of secondary precipitates, it can significantly improve the strength and hardness of the alloy, but the plasticity of the alloy will decrease.

本发明的典型合金在 T6 (固溶 +时效)热处理后, 其室温力学性能可以达到: 抗拉强 度 cjb 270MPa, 屈服强度。^ ^。^^, 延伸 5 6%, 布氏硬度 70, 冲击功 otk 12J。 After T6 (solid solution + aging) heat treatment of the typical alloy of the present invention, its mechanical properties at room temperature can reach: tensile strength cj b 270MPa, yield strength. ^ ^. ^^, extension 5 6%, Brinell hardness 70, impact energy ot k 12J.

本发明具有如下优点: The present invention has the following advantages:

1 )本发明制备的镁合金, 兼具高强度高韧性的特性, 特别适合于轻质、 髙强、 高韧 的用材需求, 如汽车轮毂等。 1) The magnesium alloy prepared by the present invention has the characteristics of high strength and high toughness, and is especially suitable for the material requirements of light weight, high strength and high toughness, such as automobile hubs and the like.

2)本发明制备的镁合金, 不仅具有优异的室温力学性能, 某些合金还具有较好的高 温力学性能。 3)本发明性价比高。 所用原材料易得, 成本低, 适于大规模生产。 2) The magnesium alloys prepared by the present invention not only have excellent room temperature mechanical properties, but some alloys also have better high temperature mechanical properties. 3) The present invention has high cost performance. The raw materials used are easy to obtain, low in cost, and suitable for large-scale production.

4)本发明冶炼及铸造工艺简单稳定。 本发明采用的合金化元素, 不与铁质坩埚壁或 者覆盖剂发生明显副反应, 工艺稳定。 4) The smelting and casting process of the present invention is simple and stable. The alloying elements used in the present invention do not have obvious side reactions with the iron crucible wall or covering agent, and the process is stable.

5)本发明适用工艺范围广。 本发明不仅适用于金属型铸造, 同样适用于砂型铸造、 压力铸造、 挤压铸造等工艺。 附图说明 5) The present invention has a wide range of applicable processes. The present invention is not only suitable for metal mold casting, but also suitable for sand casting, pressure casting, squeeze casting and other processes. Description of drawings

图 l¾Vlg-Al-Zn≡元合金的压力铸造性能以及实施例合金所在位置示意图。 Fig. 1 ¾ Vlg-Al-Zn ≡ elemental alloy die-casting performance and embodiment alloy location schematic diagram.

图 2是 Mg-Al-ZnH元合金相图 (固相表面) 以及实施例合金所在位置示意图。 Figure 2 is a schematic diagram of the phase diagram (solid phase surface) of the Mg-Al-ZnH elemental alloy and the location of the alloy of the embodiment.

图 3是本发明实施例 1合金的 DTA曲线。 , 图 4是本发明实施例 1合金的铸态»组织。 Fig. 3 is the DTA curve of the alloy of Example 1 of the present invention. , Figure 4 is the as-cast structure of the alloy of Example 1 of the present invention.

图 5是 Mg3Sb2在 T4热处理后的实施例 1合金中的分布示意图,图中箭头标记处为 Mg3Sb2 颗粒在实施例 1合金中的分布。 5 is a schematic diagram of the distribution of Mg3Sb 2 in the alloy of Example 1 after T4 heat treatment, and the arrow marks in the figure indicate the distribution of Mg3Sb 2 particles in the alloy of Example 1.

图 6是实施例 1合金在 T4热处理后的 ί«组织。 Fig. 6 is the structure of the alloy of Example 1 after T4 heat treatment.

图 7是实施例 1合金在 Τ6热处理后的 ί»组织。 Fig. 7 is the structure of the alloy of Example 1 after T6 heat treatment.

图 8是三种合金 (ΑΜ60, ΑΖ9 实施例 1 )铸态的室温力学性能对比情况。 Figure 8 is a comparison of the mechanical properties at room temperature of three alloys (AM60, AZ9 Example 1) as cast.

图 9是三种合金(ΑΜ60、 ΑΖ91、 实施例 1 ) Τ6热处理态的室温力学性能对比情况。 图 10是四种合金(实施例 1、 实施例 2、 实施例 3、 AZ91 ) Τ6热处理态的室温力学性能 对比情况。 Fig. 9 is a comparison of the mechanical properties at room temperature of the T6 heat treatment state of three alloys (AM60, AZ91, Example 1). Figure 10 is a comparison of the mechanical properties at room temperature of the T6 heat-treated state of four alloys (Example 1, Example 2, Example 3, and AZ91).

图 11是四种合金(实施例 1、实施例 2、实施例 3、 AZ91 ) Τ6热处理态的 150 高温力学 性能对比情况。 Figure 11 is a comparison of the 150 high temperature mechanical properties of the four alloys (Example 1, Example 2, Example 3, AZ91) in the T6 heat treatment state.

图 12是三种合金(实施例 4、 实施例 5、 AZ91 ) Τ6热处理态的 150Ό高温力学性能对比 情况。 具体实施方式 Figure 12 is a comparison of the mechanical properties at 150°C in the T6 heat treatment state of three alloys (Example 4, Example 5, AZ91). Detailed ways

下面结合实施例详述本发明的高强高韧镁合金: Describe the high-strength and high-toughness magnesium alloy of the present invention in detail below in conjunction with embodiment:

实施例 1 Example 1

I ) 、 合金组成 三种镁合金采用商用高纯原材料在低碳钢坩埚中制备而成。 三种合金中, 商用牌号 I ), alloy composition Three magnesium alloys were prepared in mild steel crucibles from commercially available high-purity raw materials. Among the three alloys, the commercial grade

AZ91和试验合^ AM60均为比较例合金。三种镁合金的化学成分采用感应耦合等离子体一 原子发射光谱 (ICP-AES)技术进行分析。三种^ ^金的化学成分见 ¾2。 AZ91 and test alloy ^ AM60 are comparative example alloys. The chemical composition of the three magnesium alloys was analyzed by inductively coupled plasma-atomic emission spectroscopy (ICP-AES). See ¾2 for the chemical composition of three types of gold.

¾2.三种合金的化学成^ ¾ (重量百分比 wt %) 口 ^ 铝 锌 锰 w 镁 ¾ 2. The chemical compositions of the three alloys ^ ¾ (weight percent wt %) ^ aluminum zinc manganese w magnesium

AZ91 9.00 1.03 0.29 - 平衡余量 AZ91 9.00 1.03 0.29 - balance margin

AM60 5.92 - 0.28 - 平衡 AM60 5.92 - 0.28 - balanced

实施例 1 5.88 3.89 0.30 0.51 平衡余量 Example 1 5.88 3.89 0.30 0.51 Balance margin

II ) 、 合金冶炼及铸造 II ), alloy smelting and casting

合金的冶炼在一个 15公斤容量的坩埚和电阻炉中'进行。 坩埚和铸造用模具采用低碳钢 材质。下面以实施例 1为例, 详细阐述合金的冶炼和铸造工艺。 Alloy smelting was carried out in a 15 kg capacity crucible and resistance furnace. Crucibles and casting molds are made of mild steel. Taking Example 1 as an example, the smelting and casting process of the alloy will be described in detail below.

1 )设定坩埚目标温度为 720°C,开始加热; 然后将纯镁、纯铝、铝锰中间合金、纯锑、 纯锌等各种配料放在烘箱中预热至 160°C, 同时将占目的合金总重量 2wt %½RJ-2覆盖剂 (RJ-2覆盖剂生产厂家为四川兰德高科产业有限公司,其商品牌号为 ZS-MF1 )放入烘箱中 烘烤; 将浇铸用模具在另外的箱式炉中预热至 30CTC。 1) Set the target temperature of the crucible to 720°C, and start heating; then preheat various ingredients such as pure magnesium, pure aluminum, aluminum-manganese master alloy, pure antimony, pure zinc, etc. in an oven to 160°C, and simultaneously Occupy the purpose alloy total weight 2wt% ½ RJ-2 covering agent (the manufacturer of RJ-2 covering agent is Sichuan Lande Hi-Tech Industry Co., Ltd., and its brand name is ZS-MF1) is put into baking oven; Preheat to 30CTC in a box-type furnace.

2)当坩埚升温至 300°C时, 通入 C02气体至坩埚内进行气体置换, 然后在坩埚底部加 入 1/2左右的已烘烤的覆盖剂, 再后将预热好的纯镁配料放入坩埚内。 2) When the temperature of the crucible rises to 300°C, inject CO2 gas into the crucible for gas replacement, then add about 1/2 of the baked covering agent to the bottom of the crucible, and then mix the preheated pure magnesium Put it in the crucible.

3)纯镁配料熔化并且等坩埚温度稳定在 720°C后, 根据熔点由高到低依次加入预热的 各种配料(纯铝、 铝锰中间合金、纯锑、纯锌等) , 然后熔体进行搅拌约 8~10分钟; 此过 程中, 酌情加入剩余的已烘烤的覆盖剂, 以表面不燃为准。 3) After the pure magnesium ingredients are melted and the temperature of the crucible is stabilized at 720°C, add various preheated ingredients (pure aluminum, aluminum-manganese intermediate alloy, pure antimony, pure zinc, etc.) in order according to the melting point from high to low, and then melt Stir the body for about 8 to 10 minutes; during this process, add the remaining baked covering agent as appropriate, subject to the fact that the surface is non-combustible.

4)坩埚温度稳定在 72CTC后,熔体静置 4^分钟,按体积百分比,在 99~99.5%空气(或 C02) + 0.5~1% SF6混合气体保护下掏渣; 4) After the temperature of the crucible is stabilized at 72CTC, the melt is left to stand for 4 minutes, and the slag is removed under the protection of 99~99.5% air (or C0 2 )+0.5~1% SF 6 mixed gas according to the volume percentage;

5)掏渣完毕后,维持坩埚温度稳定在 720°C,按体积百分比,在 99~99.5%空气(或 C02) + 0.5-1% SF6混合气体保护下浇铸成型。 5) After the slagging is completed, keep the temperature of the crucible at 720°C, and cast it under the protection of 99~99.5% air (or C0 2 ) + 0.5-1% SF 6 mixed gas according to the volume percentage.

AZ91以及 AM60合金的冶炼和铸造工艺与 AZY641类似, 只是各种合金元素的加入量 不同而已。 The smelting and casting processes of AZ91 and AM60 alloys are similar to those of AZY641, except that the addition of various alloying elements is different.

ΠΙ) 、合金的热处理: ΠΙ), alloy heat treatment:

三种合金的热处理均可分为 T4 (固溶)、 T5 (时效)、 T6 (固溶 +时效)三种: a) T4热处理: T4热处理温度可以从合金的差热分析 (DTA)数据中推演得出。 例如 (参考图 3) , 实施例 1合金的 DTA曲线表明在接近固相线的地方存在两个拐点(377°C, The heat treatment of the three alloys can be divided into three types: T4 (solution), T5 (aging), and T6 (solution + aging): a) T4 heat treatment: The T4 heat treatment temperature can be deduced from the differential thermal analysis (DTA) data of the alloy. For example (refer to FIG. 3), the DTA curve of the alloy of Example 1 shows that there are two inflection points near the solidus (377 ° C,

354°C)。根据实验, 实施例 1合金的 T4热处理 不能超 il370°C。实施例 1合金的 T4热处 理温度为 370°C, 时间为 12小时。 AZ91以及 AM60合金的 T4热处理温度为 410°C, 热处理时 间控制在 16~24小时。 T4热处理完毕的试样均采用空冷至室温。 354°C). According to experiments, the T4 heat treatment of the alloy in Example 1 cannot exceed 1370°C. The T4 heat treatment temperature of the alloy of Example 1 was 370°C, and the time was 12 hours. The T4 heat treatment temperature of AZ91 and AM60 alloys is 410°C, and the heat treatment time is controlled at 16-24 hours. The samples after T4 heat treatment were all air-cooled to room temperature.

b) T5热处理:三种合金可以采用相同的 T5热处理。 T5热处理的温度控制在 180°C, T5 热处理的温度为 16小时, 热处理完毕的试样均采用空冷至室温。 b) T5 heat treatment: The three alloys can adopt the same T5 heat treatment. The temperature of T5 heat treatment was controlled at 180°C, and the temperature of T5 heat treatment was 16 hours, and the samples after heat treatment were all cooled to room temperature in air.

c) T6热处理: T6热处理可以看成是 T4和 T5热处理的组合。每种合金均先后通 述 的各自合适的 T4和 T5热处理即可。 c) T6 heat treatment: T6 heat treatment can be regarded as a combination of T4 and T5 heat treatment. Each alloy has its respective appropriate T4 and T5 heat treatments described successively.

IV) 、 聽组织表征 , IV), auditory tissue representation,

«组织观察的样品其制备过程如下: 采用 1000号碳化硅水磨砂纸磨平表面; 然后采 用油基金刚石研磨膏机漏光; 抛光后的样品表面采用 2%浓度的硝酸酒精溶液进行腐刻。 麵组织观察在配有能谱装置的电子扫描显微镜 Philips XL30 ESEM-FEG/EDAX上进行。 «The sample preparation process for tissue observation is as follows: Use No. 1000 silicon carbide water abrasive paper to smooth the surface; then use an oil-based diamond grinding paste machine to leak light; the polished sample surface is etched with 2% concentration of nitric acid alcohol solution. Surface structure observation was carried out on a Philips XL30 ESEM-FEG/EDAX equipped with a scanning electron microscope equipped with an energy spectrum device.

相比于未加锑元素的合金, 实施例 1合金的铸态组织其初晶晶粒及二次析出相均得到 了一定程度的细化(参考图 4) 。 此过程的机制可以这样理解: 少量的锑元素会与镁生成 熔点达 1228°C的 M S 颗粒;这些 ?^ 81¾颗粒会在熔体冷却过程中优先生成,其中的某些 颗粒就会成为初生相的异质形核中心起到细化初生相的作用;其它的 Mg3Sb2颗粒会出现在 不断生长的液相前沿从而跟二次相的析出发生交互作用导致更加弥散的二次析出相分布。 在扫描电镜及能谱观察中, Mg3Sb2颗粒不仅出现在初晶晶粒内部,而且也出现在晶界上 (参 考图 5) 。 Compared with the alloy without adding antimony elements, the as-cast structure of the alloy of Example 1 has a certain degree of refinement of primary crystal grains and secondary precipitated phases (refer to FIG. 4 ). The mechanism of this process can be understood as follows: A small amount of antimony element will form MS particles with a melting point of 1228°C with magnesium; these ?^ 81¾ particles will be preferentially formed during the cooling process of the melt, and some of the particles will become primary phases The heterogeneous nucleation centers of the sintered phase refine the primary phase; other Mg3Sb2 particles will appear in the growing liquid phase front to interact with the precipitation of the secondary phase, resulting in a more diffuse distribution of the secondary precipitated phase. In scanning electron microscopy and energy spectrum observation, Mg3Sb 2 particles not only appear inside the primary crystal grains, but also appear on the grain boundaries (refer to Figure 5).

图 6和图 7给出了不同的热处理方式导致的实施例 1合金的微观组织演变。 从图 6中可以 看出, T4热处理导致大部分的二次析出相重新溶入了初生相中, 图中残留的颗粒均是具有 高熔点的颗粒(如 MfeSbz以及 Al-Mn^粒等) 。 T6热处理使得溶质元素从初生晶粒中重新 析出, 并以更弥散的形式分布在晶界和晶粒内部(参考图 7) 。 Figure 6 and Figure 7 show the microstructure evolution of the alloy of Example 1 caused by different heat treatment methods. It can be seen from Figure 6 that most of the secondary precipitated phases were re-dissolved into the primary phase after the T4 heat treatment, and the remaining particles in the figure are all particles with high melting points (such as MfeSbz and Al-Mn^ particles, etc.). T6 heat treatment causes the solute elements to re-precipitate from the primary grains and distribute in the grain boundaries and inside the grains in a more dispersed form (refer to Figure 7).

V ) 、 力学性能测试 V ), mechanical performance test

合金的室温力学拉伸性能样品参考中国国标 GB 6397-86制备。 样品的平行距尺寸为 30 X 6 X 3 (mm)。 样品的表面采用 1000号碳化硅砂纸磨光。 拉伸试验的应变速率为 1.11 X 1θΎ。 The room temperature mechanical tensile properties of the alloy samples were prepared according to the Chinese national standard GB 6397-86. The parallel distance dimension of the sample is 30 X 6 X 3 (mm). The surface of the samples was polished with 1000-grit silicon carbide sandpaper. The strain rate for the tensile test was 1.11 X 1θΎ.

• 合金的高温 (150°C )力学拉伸性能样品的平行距尺寸为 27X 5 X3 (mm)。 样品的表面 采用 1000号碳化硅砂纸磨光。 拉伸试验的应变速率为 5.55X 104S4。 合金的布氏硬度样品制备及实验方法参考 GB231-84, 试样尺寸为 15x15x5 (mm)0 合金的冲击性能样品参考中国国标 GB T 229-1994制备。样品的平行距尺寸为 10x10x55• High temperature (150°C) mechanical tensile properties of the alloy. The parallel distance of the sample is 27X 5 X3 (mm). The surface of the sample was polished with 1000 grit silicon carbide sandpaper. The strain rate of the tensile test is 5.55X 10 4 S 4 . The Brinell hardness sample preparation and experimental method of the alloy refer to GB231-84, and the sample size is 15x15x5 (mm) 0. The impact performance sample of the alloy is prepared according to the Chinese national standard GB T 229-1994. The parallel distance dimension of the sample is 10x10x55

(mm), 样品为无缺口试样。 (mm), the sample is an unnotched sample.

图 8给出了铸态合金 (AZ91-F, AM60-F, 实施例 1-F)的室温力学性能对比。 图 9给出 了 T6热处理态合金 (AZ91-T6, AM60-T6. 实施例 1-T6) 的室温力学性能对比。 实施例 1合金的室温力学性創 屈服强度 抗拉强度 延伸率 冲击功 热处理态 布氏硬度 Figure 8 shows the comparison of mechanical properties at room temperature of as-cast alloys (AZ91-F, AM60-F, Example 1-F). Figure 9 shows the comparison of mechanical properties at room temperature of T6 heat-treated alloys (AZ91-T6, AM60-T6. Example 1-T6). Example 1. Room temperature mechanical properties of the alloy: Yield strength, tensile strength, elongation, impact energy, heat treatment state, Brinell hardness

(MPa) (MPa) (%) (J) 铸态 216 106 . 10 60 19 (MPa) (MPa) (%) (J) as-cast 216 106 . 10 60 19

T4热处理 250 101 12 59 30T4 heat treatment 250 101 12 59 30

T5热处理 230 128 7 65 12T5 heat treatment 230 128 7 65 12

T6热处理 285 137 8.5 68 18 从表 3中可以看出, T4热处理提高了实施例 1合金的塑性; T5热处理也在一定程度上提 高了力学性能。 T6热处理得到了最高的屈服强度和抗拉强度,但是与 T4热处理比牺牲了一 些塑性。 T6 heat treatment 285 137 8.5 68 18 It can be seen from Table 3 that T4 heat treatment improves the plasticity of the alloy in Example 1; T5 heat treatment also improves the mechanical properties to a certain extent. T6 heat treatment gives the highest yield strength and tensile strength, but sacrifices some plasticity compared with T4 heat treatment.

实施例 1与 AZ91合金室温力学性能对比情况见图 10, 实施例 1与 AZ91合金的高温力学 性能的对比情况见图 11。 可以看出, 虽然实施例 1的室温综合力学性能优于 AZ91, 但是高 温力学性能却稍麵色于 AZ91。 The comparison of the mechanical properties of Example 1 and AZ91 alloy at room temperature is shown in Figure 10, and the comparison of the high temperature mechanical properties of Example 1 and AZ91 alloy is shown in Figure 11. It can be seen that although the comprehensive mechanical properties at room temperature of Example 1 are better than those of AZ91, the mechanical properties at high temperatures are slightly inferior to those of AZ91.

实施例 2 Example 2

I ) 、 合金组成 I ), alloy composition

实施例 2合金的化学成分见表 4。 表 4.实施例 2合金的化学成分表 (重量百分比 wt %) 口 ^Ε. 铝 锌 锰 镁 The chemical composition of the alloy in Example 2 is shown in Table 4. Table 4. The chemical composition table of the alloy of embodiment 2 (weight percentage wt %)

实施例 2 6.16 5.08 0.31 0.48 平衡余量 Example 2 6.16 5.08 0.31 0.48 Balance margin

II )、合金冶炼及铸造 II ), alloy smelting and casting

参考实施例 1的冶炼及铸造。 不同之处在于: 两者的锌含量不同。 Referring to the smelting and casting of Example 1. Here's the difference: Both have different levels of zinc.

ΠΙ)、合金的热处理: 参考实施例 1的热处理。不同之处在于: 根据实施例 2合金的 DTA数据, 其固溶热处理 的温度为 360°C, 时间为 12小时; 时效处理的温度为 180°C, 时间为 16小时。 ΠΙ), alloy heat treatment: Refer to the heat treatment of Example 1. The difference is that: according to the DTA data of the alloy of Example 2, the temperature of the solution heat treatment is 360°C, and the time is 12 hours; the temperature of the aging treatment is 180°C, and the time is 16 hours.

IV), 力学性能测试 IV), mechanical property test

参考实施例 1的力学性能测试。 表 5.实施例 2合金的室温力学性能 屈服强度 抗拉强度 延伸率 冲击功 热处理态 布氏硬度 Refer to the mechanical property test of Example 1. Table 5. Mechanical properties of the alloy in Example 2 at room temperature Yield strength Tensile strength Elongation Impact energy Heat treatment state Brinell hardness

(MPa) (MPa) (%) (J) 铸态 110 210 8 63 15 (MPa) (MPa) (%) (J) As cast 110 210 8 63 15

T6热处理 145 250 6 .74 12 实施例 2与 AZ91合金的高温力学性能的对比情况见图 11。可以看出,实施例 2不仅室温 综合力学性能优于 AZ91, 而且高温力学性能也优于 AZ91。 T6 heat treatment 145 250 6.74 12 The comparison of the high temperature mechanical properties of Example 2 and AZ91 alloy is shown in Figure 11. It can be seen that Example 2 not only has better comprehensive mechanical properties at room temperature than AZ91, but also has better high temperature mechanical properties than AZ91.

实施例 3 Example 3

I )、 合金组成 I), alloy composition

实施例 3合金的化学成分见表 6。 表 6.实施例 3合金的化学成餘 (重量百分比 wt %) 合金 铝 锌 锰 镁 实施例 3 5.89 6.74 0.35 0.53 平衡余量 The chemical composition of the alloy in Example 3 is shown in Table 6. Table 6. Chemical balance of the alloy in Example 3 (wt %) Alloy Aluminum Zinc Manganese Magnesium Example 3 5.89 6.74 0.35 0.53 Balance balance

II )、 合金冶炼及铸造 II ), alloy smelting and casting

参考实施例 1的冶炼及铸造。 不同之处在于: 两者的锌含量不同。 Referring to the smelting and casting of Example 1. Here's the difference: Both have different levels of zinc.

III)、 合金的热处理: III), alloy heat treatment:

参考实施例 1的热处理。不同之处在于: 根据实施例 3合金的 DTA数据, 其固溶热处理 的温度为 350°C, 时间为 12小时; 时效处理的温度为 180°C, 时间为 16小时。 Refer to the heat treatment of Example 1. The difference is: according to the DTA data of the alloy of Example 3, the temperature of the solution heat treatment is 350°C, and the time is 12 hours; the temperature of the aging treatment is 180°C, and the time is 16 hours.

IV) , 力学性能测试 IV) , mechanical property test

参考实施例 1的力学性能测试。 表 7.实施例 3合金的室温力学性能 热处理态 屈服强度 抗拉强度 延伸率 布氏硬度 冲击功 (MPa) (MPa) (%) (J) 铸态 115 202 6.5 67 13 Refer to the mechanical property test of Example 1. Table 7. Mechanical properties of the alloy in Example 3 at room temperature Heat treatment state Yield strength Tensile strength Elongation Brinell hardness Impact energy (MPa) (MPa) (%) (J) As cast 115 202 6.5 67 13

T6热处理 153 260 5 77 9 实施例 3与 AZ91合金的高温力学性能的对比情况见图 11。可以看出,实施例 3不仅室温 综合力学性能高于 AZ91, 而且高温力学性能的强度属性也优于 AZ91。 T6 heat treatment 153 260 5 77 9 The comparison of the high temperature mechanical properties of Example 3 and AZ91 alloy is shown in Figure 11. It can be seen that not only the comprehensive mechanical properties at room temperature of Example 3 are higher than those of AZ91, but also the strength properties of high temperature mechanical properties are better than those of AZ91.

实施例 4 Example 4

I ) 、 合金组成 I ), alloy composition

实施例 4合金的化学成分见表 8。 The chemical composition of the alloy in Example 4 is shown in Table 8.

¾8.实施例 4合金的化学成條 (重量百分比 wt %) 28. The chemical stripping of embodiment 4 alloy (percentage by weight wt %)

富铈混合 Ce-rich mix

铝 锌 锰 Aluminum Zinc Manganese

稀土 rare earth

实施例 4 6.00 3.79 0.54 0.50 0.90 平衡余量 Example 4 6.00 3.79 0.54 0.50 0.90 Balance margin

II ) 、 合金冶炼及铸造 II ), alloy smelting and casting

参考实施例 1的冶炼及铸造。 不同之处在于: 实施例 4合金在实施例 1合金的基础上 加入了少量富铈混合稀土。 Referring to the smelting and casting of Example 1. The difference is that: the alloy of embodiment 4 adds a small amount of cerium-rich mixed rare earth on the basis of the alloy of embodiment 1.

由于混合稀土的熔点较高, 因此加入配料时, 要先加入富铈混合稀土, 而且最好在坩 埚中的熔体温度为 750〜800°C时加入混合稀土。 Since the melting point of the misch metal is relatively high, when adding the ingredients, the cerium-rich misch metal should be added first, and it is best to add the misch metal when the melt temperature in the crucible is 750-800°C.

ΠΙ)、 合金的热处理: III), the heat treatment of alloy:

参考实施例 1的热处理。不同之处在于: 根据实施例 4合金的 DTA数据, 合金的热处理 固溶处理温度为 370°C, 时间为 12小时; 时效处理的温度为 180°C, 时间为 16小时。 Refer to the heat treatment of Example 1. The difference is that: according to the DTA data of the alloy in Example 4, the solution treatment temperature of the alloy is 370°C, and the time is 12 hours; the temperature of the aging treatment is 180°C, and the time is 16 hours.

IV) 、 力学性能测试 IV) 、 Mechanical performance test

参考实施例 1的力学性能测试。 实施例 4合金的室温力学性能 屈服强度 抗拉强度 延伸率 冲击功 热处理态 布氏硬度 Refer to the mechanical property test of Example 1. Example 4 The room temperature mechanical properties of the alloy Yield strength Tensile strength Elongation Impact energy Heat treatment state Brinell hardness

(MPa) (MPa) (%) (J) 祷态 111 230 10 64 19 (MPa) (MPa) (%) (J) Prayer 111 230 10 64 19

T6热处理 146 272 8.7 77 13 实施例 4与 AZ91合金的高温力学性能的对比情况见图 12。可以看出,虽然实施例 1的室 温综合力学性能优于 AZ91, 但是高温力学性能却稍襲色于 AZ91。 T6 heat treatment 146 272 8.7 77 13 The comparison of the high temperature mechanical properties of Example 4 and AZ91 alloy is shown in Figure 12. It can be seen that although the comprehensive mechanical properties at room temperature of Example 1 are better than those of AZ91, the high temperature mechanical properties are slightly inferior to those of AZ91.

实施例 5 Example 5

I ) 、 合金组成 I ), alloy composition

实施例 5合金的化学成分见表 10。 表 10.实施例 5合金的化学成^ ¾ (重量百分比 wt %) The chemical composition of the alloy in Example 5 is shown in Table 10. Table 10. Chemical composition of the alloy of Example 5 (weight percent wt %)

富铈混合 Ce-rich mix

合金 铝 锌 锰 Alloy Aluminum Zinc Manganese

稀土 rare earth

实施例 5 4.77 5.59 0.42 0.45 0.49 平衡余量 Example 5 4.77 5.59 0.42 0.45 0.49 Balance margin

II )、 合金冶炼及铸造 II ), alloy smelting and casting

参考实施例 1的冶炼及铸造。 不同之处在于: 参考实施例 1的冶炼及铸造。 不同之处 在于: 除了铝、 锌含量有所不同外, 实施例 5合金中还加入了少量富铈混合稀土。 Referring to the smelting and casting of Example 1. The difference is: refer to the smelting and casting of Example 1. The difference is that, in addition to the different contents of aluminum and zinc, a small amount of cerium-rich mixed rare earth is added to the alloy of Example 5.

由于混合稀土的熔点较高, 因此加入配料时, 要先加入富铈混合稀土, 而且最好在坩 埚中的熔体温度为 750〜800°C时加入混合稀土。 Since the melting point of the misch metal is relatively high, when adding the ingredients, the cerium-rich misch metal should be added first, and it is best to add the misch metal when the melt temperature in the crucible is 750-800°C.

III) 、合金的热处理: III), alloy heat treatment:

参考实施例 1的热处理。不同之处在于: 根据实施例 5合金的 DTA数据, 合金的热处理 固溶处理温度为 350°C, 时间为 12小时; 时效处理的温度为 180°C, 时间为 16小时。 Refer to the heat treatment of Example 1. The difference is that: according to the DTA data of the alloy in Example 5, the solution treatment temperature of the alloy is 350°C, and the time is 12 hours; the temperature of the aging treatment is 180°C, and the time is 16 hours.

W 力学性能测试 W Mechanical property test

参考实施例 1的力学性能测试。 表 11 实施例 5合金的室温力学性能 屈服强度 抗拉强度 延伸率 冲击功 热处理态 布氏硬度 Refer to the mechanical property test of Example 1. Table 11 Room temperature mechanical properties of Example 5 alloy Yield strength Tensile strength Elongation Impact energy Heat treatment state Brinell hardness

(MPa) (MPa) (%) (J) 铸态 115 210 7.4 68 15 (MPa) (MPa) (%) (J) As cast 115 210 7.4 68 15

T6热处理 156 282 7.0 79 12 实施例 5与 AZ91合金的高温力学性能的对比情况见图 12。 可以看出, 实施例 5不仅室 温综合力学性能优于 AZ91, 而且高温力学性能的强度属性也优于 AZ91。 T6 heat treatment 156 282 7.0 79 12 The comparison of the high temperature mechanical properties of Example 5 and AZ91 alloy is shown in Figure 12. It can be seen that Example 5 is not only better than AZ91 in comprehensive mechanical properties at room temperature, but also better than AZ91 in strength properties of high temperature mechanical properties.

Claims (1)

  1. Claim
    1st, a kind of high-intensity high-tenacity cast magnesium alloy, it is characterised in that:By weight percentage, the essential element composition for alloying is as follows:Aluminium content is 3 ~ 9%;Zn content is 3.5 ~ 9%;Manganese content is 0.15 ~ 1.0%;Antimony content is 0.01-2%;Content of magnesium is balance.
    2nd, ^^ gold is cast according to the high just property of the high intensity described in claim 1, it is characterised in that:Households M antimony powders can be technical pure antimony, and its purity is 99.7%.
    3rd, ^^ gold is cast according to the high Wei Ren of high intensity described in claim 1, it is characterised in that:0 ~ 2 wt% cerium-rich mischmetal, calcium, certain element of silicon thrin can also further be contained in alloy.
    4th, the preparation method of ^ ^ gold is cast according to the high-intensity high-tenacity described in claim 1, it is characterised in that its melting and as follows around note process: . .
    1) crucible target temperature is first set as 700 ~ 750 °C, is begun to warm up;Then various dispensings are put and is preheated to 140 ~ 200 °C in an oven, and the coverture for accounting for purpose alloy gross weight 0.64% is put into baking in baking oven;In addition, casting is preheated into 20 (00 °C with mould in other batch-type furnace;
    2) when crucible is warming up to 280 ~ 320 °C, it is passed through C02Gas displacement is carried out in gas to crucible, the Λ 30% 50% above-mentioned coverture toasted is then added in crucible bottom, then afterwards by preheated pure magnesium dispensing side crucible;
    3) pure magnesium dispensing melts and waits crucible temperature stable after 700 ~ 750 °C, sequentially adds the various dispensings of preheating from high to low according to fusing point, then melt is stirred 8 ~ 10 minutes;During this, the remaining coverture toasted is added, is defined so that surface is non-ignitable;
    4) crucible temperature is stable after 700 ~ 750 °C, and melt stands 4 ~ 6 minutes, by percent by volume, in 99 99.5% air or C02+ 0.5-1% SF6Surface scum is drawn out under mixed body protection;
    5) draw after slag finishes, crucible temperature is maintained at 700 ~ 750 °C, by percent by volume, in 99 ~ 99.5% air or C02+ 0.5-1% SF6Mixed gas protected lower cast molding.
    5th, ^ Preparation Methods are closed according to the high-intensity high-tenacity casting magnesium described in claim 4, it is characterised in that:The heat treatment that alloy is used is segmented into three kinds:Solution treatment, artificial aging and solution treatment+artificial aging.
    6th, according to the preparation method of the high-intensity high-tenacity cast magnesium alloy described in claim 5, it is characterised in that:The temperature range of the solution treatment is that 34 (K400 °C, time of solution treatment is 8 ~ 24 hours.
    7th, according to the preparation method of the high Firmware cast magnesium alloys of high intensity described in claim 5, it is characterised in that:The temperature range of the artificial aging is 70 ~ 200 °C, and the time of processing is 8 ~ 24 hours.
    8th, according to the preparation method of the high-intensity high-tenacity cast magnesium alloy described in claim 5, it is characterised in that:The cast molding is prayed using metal mold makes, or using sand casting, compression casting or Extrution casting technique.
CNB2005800098757A 2004-05-19 2005-04-11 A kind of high-strength high-toughness magnesium alloy and preparation method thereof Expired - Fee Related CN100408709C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN200410020567.1 2004-05-19
CNB2004100205671A CN100338250C (en) 2004-05-19 2004-05-19 High strength and high toughness cast magnesium alloy and preparing process thereof
PCT/CN2005/000479 WO2005111251A1 (en) 2004-05-19 2005-04-11 A high-strength, high-toughness cast magnesium alloy and the method thereof

Publications (2)

Publication Number Publication Date
CN1938441A true CN1938441A (en) 2007-03-28
CN100408709C CN100408709C (en) 2008-08-06

Family

ID=35394170

Family Applications (2)

Application Number Title Priority Date Filing Date
CNB2004100205671A Expired - Fee Related CN100338250C (en) 2004-05-19 2004-05-19 High strength and high toughness cast magnesium alloy and preparing process thereof
CNB2005800098757A Expired - Fee Related CN100408709C (en) 2004-05-19 2005-04-11 A kind of high-strength high-toughness magnesium alloy and preparation method thereof

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CNB2004100205671A Expired - Fee Related CN100338250C (en) 2004-05-19 2004-05-19 High strength and high toughness cast magnesium alloy and preparing process thereof

Country Status (3)

Country Link
US (1) US20090068053A1 (en)
CN (2) CN100338250C (en)
WO (1) WO2005111251A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102242299A (en) * 2011-07-26 2011-11-16 中国科学院金属研究所 Bi and Nd composite reinforced high-strength cast magnesium alloy and preparation method thereof
CN108085549A (en) * 2017-12-27 2018-05-29 哈尔滨理工大学 A kind of method that ultrasonic wave auxiliary mechanical agitation prepares new magnesium-based composite material
CN110157929A (en) * 2019-04-30 2019-08-23 西安交通大学 A method for improving the structure and morphology of Mg2Si strengthened phase in magnesium alloys
CN114836663A (en) * 2022-05-31 2022-08-02 重庆大学 High-strength cast magnesium alloy and preparation method thereof

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100406159C (en) * 2006-01-20 2008-07-30 中国科学院金属研究所 Method for casting Mg-Al-Zn based magnesium alloy with high strength and high tenacity
AT503854B1 (en) * 2006-05-19 2008-01-15 Arc Leichtmetallkompetenzzentrum Ranshofen Gmbh MAGNESIUM-BASED ALLOY
CN100432258C (en) * 2006-11-01 2008-11-12 中国科学院金属研究所 Quasi crystal phase fortified magnesium lithium alloy and its preparation method
DE102008037200B4 (en) * 2008-08-11 2015-07-09 Aap Implantate Ag Use of a die-casting method for producing a magnesium implant and magnesium alloy
CN102108464B (en) * 2009-12-23 2013-01-30 中国科学院金属研究所 A kind of corrosion-resistant magnesium alloy
CN101880845A (en) * 2010-06-11 2010-11-10 燕山大学 A method for grain refinement of AM60B cast magnesium alloy
CN102764876A (en) * 2011-05-03 2012-11-07 远轻铝业(中国)有限公司 Gravity casting process of back cover board of turbosupercharger
CN102321859A (en) * 2011-08-31 2012-01-18 燕山大学 A kind of method of AZ91D cast magnesium alloy grains
CN102994847B (en) * 2011-09-09 2015-01-07 江汉大学 Heatproof magnesium alloy
CN102994835B (en) * 2011-09-09 2015-01-07 江汉大学 Heatproof magnesium alloy
CN102517489B (en) * 2011-12-20 2013-06-19 内蒙古五二特种材料工程技术研究中心 Method for preparing Mg2Si/Mg composites by recovered silicon powder
CN102632822A (en) * 2012-03-31 2012-08-15 北京华盛荣镁业科技有限公司 Passenger car seat frame, manufacturing method thereof and passenger car seat
CN102626779A (en) * 2012-04-25 2012-08-08 辽宁工业大学 Method for preparing magnesium alloy ingot and solidification system
CN103305735B (en) * 2013-06-24 2015-03-11 山东富通电气有限公司 Reinforced magnesium alloy and preparation method thereof
CN103388095B (en) * 2013-07-18 2016-10-26 上海交通大学 Mg-Gd-Y-Zr series magnesium alloy and the heat treatment method of large-scaled complex castings thereof
CN103643064B (en) * 2013-12-25 2015-09-16 昆明理工大学 The method of the magnesium alloy gradient material that a kind of LPSO of preparation phase strengthens
CN103695745B (en) * 2014-01-16 2015-07-29 徐茂航 A kind of boron nitride strengthens magnesium alloy and preparation method thereof
CN104032196B (en) * 2014-06-25 2015-12-02 河北镁轮镁合金科技有限公司 high-strength magnesium alloy material and preparation method thereof
CN104328317B (en) * 2014-11-26 2016-08-24 衢州市联橙环保科技有限公司 A kind of magnesium-rare earth and manufacture craft thereof
CN104561709B (en) * 2014-12-04 2017-05-17 沈阳工业大学 High-creep-performance casting magnesium alloy and preparation method thereof
CN104630584A (en) * 2015-02-03 2015-05-20 闻喜县瑞格镁业有限公司 Magnesium alloy for high-fluidity high-strength ultrathin-wall component and preparation method of magnesium alloy
DE102015109775B3 (en) 2015-06-18 2016-09-22 RobArt GmbH Optical triangulation sensor for distance measurement
CN105039816B (en) * 2015-07-20 2017-05-31 河南科技大学 A kind of high strength and low cost heat resistance magnesium alloy and preparation method thereof
CN105522866A (en) * 2015-12-15 2016-04-27 苏州爱盟机械有限公司 Vehicle hub
CN106591612A (en) * 2016-11-08 2017-04-26 中航装甲科技有限公司 Preparation method of composite armour material and stirring device for preparing armour material
CN106513630A (en) * 2016-11-10 2017-03-22 无锡市明盛强力风机有限公司 Extrusion casting technology for magnesium alloy hub
CN107099685B (en) * 2017-04-29 2018-11-09 太原科技大学 A kind of preparation method of high-strength and high-ductility fast degradation magnesium alloy
CN107760948A (en) * 2017-10-24 2018-03-06 西科创新(深圳)科技有限公司 A kind of magnesium alloy material luggage case and its manufacturing process
CN107964603B (en) * 2017-11-24 2019-06-25 湖北工业大学 A kind of synthetic method of Mg (Zn)-MgSb intermetallic compound structure material
CN108004423A (en) * 2017-11-30 2018-05-08 于海松 The synthesis technique of high-performance magnesium base alloy
CN108103334A (en) * 2017-12-28 2018-06-01 重庆仟和镁业科技有限公司 The production technology of whole magnesium alloy battery case
CN108642357B (en) * 2018-07-11 2019-12-06 上海交通大学 A kind of Nd-containing casting ultra-light high-strength magnesium-lithium alloy and its preparation method
CN108977711B (en) * 2018-07-23 2020-11-17 上海交通大学 Die-casting magnesium alloy material and preparation method thereof
CN108977710B (en) * 2018-07-23 2020-11-17 上海交通大学 Extrusion casting magnesium alloy material and preparation method thereof
CN109084008A (en) * 2018-08-27 2018-12-25 重庆元和利泰镁合金制造有限公司 Magnesium alloy gear box casing and preparation method thereof
CN109022979A (en) * 2018-09-10 2018-12-18 江苏理工学院 A kind of high-strength temperature-resistant Mg-Zn-Al-Y-Sb magnesium alloy and preparation method thereof
CN109182857B (en) * 2018-11-08 2024-01-30 中信戴卡股份有限公司 High-strength and high-toughness deformed magnesium alloy and preparation method thereof
CN109943757B (en) * 2019-03-29 2021-07-20 上海交通大学 High strength, toughness and heat resistance Mg-Y-Er alloy suitable for low pressure casting and preparation method thereof
CN110029257A (en) * 2019-04-23 2019-07-19 安徽双巨电器有限公司 A kind of aluminium shell of capacitor material and preparation method thereof
GB2583482A (en) 2019-04-29 2020-11-04 Univ Brunel A casting magnesium alloy for providing improved thermal conductivity
CN110373559A (en) * 2019-08-26 2019-10-25 上海交通大学 A kind of method of suitable magnesium and magnesium alloy smelting and casting
CN110438373B (en) * 2019-08-29 2020-07-10 东北大学 A kind of preparation method of magnesium matrix composite material
CN114540687B (en) * 2021-12-16 2022-11-25 中信戴卡股份有限公司 Magnesium alloy, preparation method thereof and process for preparing wheel by using magnesium alloy
CN114540681B (en) * 2021-12-29 2022-10-25 北京理工大学 A high-strength, high-modulus, corrosion-resistant dual-phase magnesium-lithium alloy structural member and preparation method thereof
CN115029594A (en) * 2022-06-20 2022-09-09 重庆大学 A kind of wrought magnesium alloy and preparation method thereof
CN115874098B (en) * 2022-12-05 2024-11-12 中国科学院长春应用化学研究所 A Mg-Al-RE-Zn-Ca-Mn rare earth magnesium alloy and preparation method thereof
CN115976384B (en) * 2022-12-30 2024-02-23 重庆大学 AlN/AE44 composite material with excellent high-temperature mechanical property and preparation method thereof

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2314852A (en) * 1940-09-09 1943-03-23 Anglo California Nat Bank Of S Heat treatment of magnesium base alloys
US3119725A (en) * 1961-11-27 1964-01-28 Dow Chemical Co Die-expressed article of magnesium-base alloy and method of making
US4675157A (en) * 1984-06-07 1987-06-23 Allied Corporation High strength rapidly solidified magnesium base metal alloys
CN1127306A (en) * 1994-07-12 1996-07-24 宇部兴产株式会社 Creep-resisting, corrosion-resisting magnesium alloy
US5855697A (en) * 1997-05-21 1999-01-05 Imra America, Inc. Magnesium alloy having superior elevated-temperature properties and die castability
JP3898302B2 (en) * 1997-10-03 2007-03-28 日本パーカライジング株式会社 Surface treatment agent composition for metal material and treatment method
IL125681A (en) * 1998-08-06 2001-06-14 Dead Sea Magnesium Ltd Magnesium alloy for high temperature applications
JP3603706B2 (en) * 1999-12-03 2004-12-22 株式会社日立製作所 High-strength Mg-based alloys and Mg-based cast alloys and articles
KR20020078936A (en) * 2001-04-11 2002-10-19 학교법인연세대학교 Quasicrystalline phase hardened Mg-based metallic alloy exhibiting warm and hot formability
CN1168840C (en) * 2001-08-14 2004-09-29 上海交通大学 Multi-element Heat-resistant Magnesium Alloy for Automobile and Its Melting and Casting Process
CN1169988C (en) * 2001-08-22 2004-10-06 东南大学 Low cost heat resistant magnesium alloy
CN1203202C (en) * 2002-10-17 2005-05-25 山西至诚科技有限公司 Preparation method of magnesium alloy
JP2004263280A (en) * 2003-03-04 2004-09-24 Toyota Central Res & Dev Lab Inc Corrosion-resistant magnesium alloy member, corrosion-resistant treatment method for magnesium alloy member, and corrosion-resistant method for magnesium alloy member
CN1488773A (en) * 2003-09-05 2004-04-14 郑州大学 A rare earth-containing high-zinc-magnesium alloy and its preparation method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102242299A (en) * 2011-07-26 2011-11-16 中国科学院金属研究所 Bi and Nd composite reinforced high-strength cast magnesium alloy and preparation method thereof
CN108085549A (en) * 2017-12-27 2018-05-29 哈尔滨理工大学 A kind of method that ultrasonic wave auxiliary mechanical agitation prepares new magnesium-based composite material
CN110157929A (en) * 2019-04-30 2019-08-23 西安交通大学 A method for improving the structure and morphology of Mg2Si strengthened phase in magnesium alloys
CN114836663A (en) * 2022-05-31 2022-08-02 重庆大学 High-strength cast magnesium alloy and preparation method thereof

Also Published As

Publication number Publication date
CN1699612A (en) 2005-11-23
CN100408709C (en) 2008-08-06
WO2005111251A1 (en) 2005-11-24
US20090068053A1 (en) 2009-03-12
CN100338250C (en) 2007-09-19
WO2005111251A8 (en) 2006-03-02

Similar Documents

Publication Publication Date Title
CN100408709C (en) A kind of high-strength high-toughness magnesium alloy and preparation method thereof
KR101367892B1 (en) Magnesium alloy for high temperature and manufacturing method thereof
CA2794962C (en) Magnesium-based alloy with superior fluidity and hot-tearing resistance and manufacturing method thereof
CN105483465B (en) A kind of die casting Al-Si-Mg cast aluminium alloy golds and preparation method thereof
EP2481822B1 (en) Magnesium-aluminum based alloy with grain refiner
KR101264219B1 (en) Mg alloy and the manufacturing method of the same
JP4500916B2 (en) Magnesium alloy and manufacturing method thereof
CN104046868B (en) Rare-earth-free low-cost high-strength heat-conducting magnesium alloy and preparation method thereof
CN105177382B (en) A kind of high-strength and toughness casting magnesium alloy and preparation method thereof
CN102618757B (en) Heat-resistant magnesium alloy
CN100424210C (en) Die-cast heat-resistant magnesium alloy
CN101285144A (en) A kind of magnesium alloy for semi-solid forming and its semi-solid blank preparation method
CN101003083A (en) Method for casting Mg-Al-Zn based magnesium alloy with high strength and high tenacity
JP5595891B2 (en) Method for producing heat-resistant magnesium alloy, heat-resistant magnesium alloy casting and method for producing the same
CN102230116A (en) High-hardness cast magnesium alloy
WO2017068332A1 (en) A casting magnesium alloy for providing improved thermal conductivity
CN114214534A (en) Modified aluminum alloy and preparation method thereof
CN109930044B (en) High strength, toughness and heat resistance Mg-Gd-Y alloy suitable for gravity casting and preparation method thereof
CN105154733B (en) A kind of non-rare earth cast magnesium alloy and preparation method thereof
CN108118226A (en) A kind of high heat conduction, anti-corrosion, heat-proof compression casting magnesium alloy and its manufacturing method
CN101235454A (en) A kind of quasicrystal reinforced Mg-Zn-Er heat-resistant magnesium alloy and its preparation method
CN110029255B (en) A kind of high strength, toughness and high modulus sand mold gravity casting magnesium alloy and preparation method thereof
CN109852856B (en) High-strength, high-toughness and high-modulus metal mold gravity casting magnesium alloy and preparation method thereof
Zuo et al. Al-Si-P master alloy and its modification and refinement performance on Al-Si alloys
JP6900199B2 (en) Manufacturing method of aluminum alloy for casting, aluminum alloy casting products and aluminum alloy casting products

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20080806

Termination date: 20160411