CN1934779A - 风力设备 - Google Patents

风力设备 Download PDF

Info

Publication number
CN1934779A
CN1934779A CNA2005800085013A CN200580008501A CN1934779A CN 1934779 A CN1934779 A CN 1934779A CN A2005800085013 A CNA2005800085013 A CN A2005800085013A CN 200580008501 A CN200580008501 A CN 200580008501A CN 1934779 A CN1934779 A CN 1934779A
Authority
CN
China
Prior art keywords
regulon
wka
line voltage
adjusting
network
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2005800085013A
Other languages
English (en)
Inventor
乔格·弗洛特梅奇
赫尔曼·霍尔菲尔德
斯蒂芬·沙勒
迈克尔·温霍尔德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=34961664&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN1934779(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Siemens AG filed Critical Siemens AG
Publication of CN1934779A publication Critical patent/CN1934779A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/007Control circuits for doubly fed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/50Controlling the sharing of the out-of-phase component
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2101/00Special adaptation of control arrangements for generators
    • H02P2101/15Special adaptation of control arrangements for generators for wind-driven turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects

Abstract

本发明涉及一个与三相电网连接的风力设备,包括带有一个转子的发电机,给其分配一个调节装置,其中,调节装置具有第一和第二调节单元,其中电网电压分析器与调节装置和三相电网连接,通过它可确定电网故障,该电网故障定义为电网电压空间矢量与预定的额定区间的偏离,其中,在识别为电网故障的情况下由第二调节单元接管第一调节单元的调节,而第一调节单元用于在未受干扰的三相电网的情况下的调节。

Description

风力设备
本发明涉及对风力设备、特别是双供给异步电机的调节。
迄今为止,这些风力发电机如在S.Müller、M.Deicke、Rik W.deDoncker:“Doubly fed induction generator system for wind turbines-a viablealternative to adjust speed over a wide range at minimal cost”,IEEE industryapplication magazine,may/june 2002中表示那样的构造和调节。目前,逆变器优选地用一个具有两个自执行的直流电压中间电路整流器的“背靠背”电路实现。给每一逆变器分配一个调节单元。各调节单元确定要实现的所属整流器的开关状态,并将该开关状态通知整流器的控制电路。控制电路通常集成在整流器中。
逆变器的转子绕组侧的整流器利用它的开关状态决定在转子绕组中流动的电流。电网侧的整流器必须把直流电压调节到一个恒定值。电网侧的整流器也可以为多个风车调节直流电压。在这种情况下,在多个风车之间张开了一个直流电网。但是在每一种情况下转子绕组侧的整流器总是分配给恰好一个风车。
所描述的发明特别涉及转子绕组侧整流器的调节。该整流器用作在转子绕组中产生电流系统的调节装置。该电流系统确定在电机的定子绕组和三相电网之间交换的有功功率和无功功率。
与已知的方法相反,本发明的调节优选地包括一个电网电压分析器、一个转换开关和两个单独的调节单元。
根据三相电网的状态(受干扰或未受干扰),所分配的调节单元连接到调节装置(=转子绕组侧整流器)上。三相电网的状态可以在电网电压分析器中例如通过分析在风力设备或者风力公园(Windpark)与上级三相电网的连接点处的电网电压求得:如果电网电压(或者电网电压的空间矢量的数值)与期望值偏离过大,则认为三相电网有故障。然后,可以通过转换开关进行调节单元亦即转子绕组侧整流器之间的相应的转换,现在从另一个调节单元获得它的开关状态信号。
反之,如果在连接点测量的电网电压被重新解释为“未受干扰”,即电网电压从其期望值的偏离重新回到允许范围内,则进行返回到“用于未受干扰的三相电网”的调节单元的转换。
因此调节单元具有下述不同的任务。
*用于未受干扰的叠加的三相电网的调节单元:
风力发电机利用恒定的功率系数(确切说:基波振荡相移系数cos1)运行。这种调节的详细执行从文献中已知。
由在连接点处的电网运行器可能要求的功率系数,可能与固定调节的cos1偏离。一个单独的补偿设备负责匹配。
*用于受干扰的叠加的三相电网的调节单元:
该调节单元试图在风力设备(WKA)的调节范围的框架内把在连接点处的电网电压针对振幅调节到其标称值(=额定值)。通过该运行方式,一方面有助于WKA对于在叠加的三相电网的电网故障的说明,同时实现对电网电压的支持。两者都是从电网运行器的观点出发WKA在电网故障时的一种优选的运行方式。
一种在调节单元中实现的调节的实施方案如下:
把在风力设备和电网或者风力公园和电网之间的连接点处测量的电网电压与额定值比较。在电网电压调节器中评估其差。该调节器可以包含一个静力学装置以防止电网运行设备之间的振荡。电网电压调节器的输出信号是用于由整流器在转子绕组中供给的电流的额定值。
通过一个置于下面的调节单元比较转子绕组电流实际值与该额定值。转子绕组侧整流器的开关状态通过分析该调节偏离确定。
优选的是,在计算时使用转子的角位置和转速的信息。两者都可以通过相应的附属装置确定(例如:测速发电机和转动角编码器)。

Claims (8)

1.一个与三相电网连接的风力设备,包括带有一个转子的发电机,给其分配一个调节装置,其特征在于,所述调节装置具有第一和第二调节单元,其中,电网电压分析器与调节装置和三相电网连接,通过它可确定电网故障,该电网故障定义为电网电压空间矢量与预定的额定区间的偏离,其中,在识别为电网故障的情况下由第二调节单元接管第一调节单元的调节,而第一调节单元用于在未受干扰的三相电网的情况下的调节。
2.根据权利要求1所述的WKA,其中,补偿装置与三相电网连接,通过它执行在未受干扰的三相电网中在通过基波振荡相移系数确定的、希望的无功功率部分上的无功功率调节。
3.根据权利要求2所述的WKA,其中,无功功率调节仅由补偿装置执行,并且对于在正常运行期间未改变的基波振荡相移系数上的调节而调整所述第一调节单元。
4.根据上述权利要求之一所述的WKA,其中,所述发电机构造为双供给异步发电机。
5.根据上述权利要求之一所述的WKA,其中,提供一个转换开关,它与电网电压分析器、第一和第二调节单元连接,并且通过它根据所述电网电压分析器的预先规定可以主动接通第一或者第二调节单元。
6.根据上述权利要求之一所述的WKA,其中,可以给所述电网电压分析器输入关于发电机中转子电流的参数。
7.根据上述权利要求之一所述的WKA,其中,可以给所述电网电压分析器输入关于发电机中转子的角位置和转速的参数。
8.根据权利要求1至4之一所述的WKA,其中,所述第一和第二调节单元通过同一物理单元实现,并且,通过该物理单元利用不同的调节程序的运行,分别要么构造为第一调节单元要么构造为第二调节单元。
CNA2005800085013A 2004-03-17 2005-03-07 风力设备 Pending CN1934779A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004013131A DE102004013131A1 (de) 2004-03-17 2004-03-17 Windkraftanlage
DE102004013131.7 2004-03-17

Publications (1)

Publication Number Publication Date
CN1934779A true CN1934779A (zh) 2007-03-21

Family

ID=34961664

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2005800085013A Pending CN1934779A (zh) 2004-03-17 2005-03-07 风力设备

Country Status (9)

Country Link
US (1) US7531910B2 (zh)
EP (1) EP1726088B1 (zh)
CN (1) CN1934779A (zh)
BR (1) BRPI0508815A (zh)
CA (1) CA2560073A1 (zh)
DE (2) DE102004013131A1 (zh)
MX (1) MXPA06010504A (zh)
NO (1) NO20064692L (zh)
WO (1) WO2005091490A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101971451A (zh) * 2008-02-20 2011-02-09 再生动力系统股份公司 具有双馈异步发电机和变频器调节的风能设备
CN101316091B (zh) * 2007-05-30 2011-06-01 株式会社日立制作所 风力发电系统和电力转换器的控制方法

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2348143T3 (es) 2006-03-15 2010-11-30 Siemens Aktiengesellschaft Turbina eólica y método para determinar al menos un parámetro de rotación de un rotor de turbina eólica.
WO2007140466A2 (en) * 2006-05-31 2007-12-06 Wisconsin Alumni Research Foundation Power conditioning architecture for a wind turbine
US7531911B2 (en) * 2006-12-22 2009-05-12 Ingeteam Energy, S.A. Reactive power control for operating a wind farm
EP2140137B1 (en) * 2007-04-30 2013-04-10 Vestas Wind Systems A/S Variable speed wind turbine with doubly-fed induction generator compensated for varying rotor speed
DE102007032179A1 (de) * 2007-07-10 2009-01-22 Repower Systems Ag Windenergieanlage mit erweitertem Drehzahlbereich
KR101713618B1 (ko) 2008-04-23 2017-03-08 프린시플 파워, 인코포레이티드 해안 풍력 터빈의 지지를 위한 워터-엔트랩먼트 플레이트 및 비대칭 무링 시스템을 가진 칼럼-안정화된 해안 플랫폼
AU2008331349B2 (en) * 2008-08-14 2011-04-21 Mitsubishi Heavy Industries, Ltd. Wind turbine generator system
DE102008037566A1 (de) * 2008-11-19 2010-05-27 Woodward Seg Gmbh & Co. Kg Vorrichtung zur Regelung einer doppelt gespeisten Asynchronmaschine
US7888915B2 (en) * 2009-09-11 2011-02-15 General Electric Company System for detecting generator winding faults
US8294289B2 (en) * 2010-06-30 2012-10-23 General Electric Company Method for operating a wind turbine, method for determining the temperature of a permanent magnet and controller for a wind turbine
TWI470151B (zh) * 2011-12-28 2015-01-21 Ind Tech Res Inst 風力發電系統
EP2672624B1 (en) * 2012-06-05 2014-10-29 Siemens Aktiengesellschaft Current controller and generator system
DE102012213830A1 (de) * 2012-08-03 2014-02-06 Repower Systems Se Verbesserte Spannungsregelung für Windenergieanlagen
US8669669B1 (en) * 2012-09-13 2014-03-11 General Electric Company Voltage control in a doubly-fed induction generator wind turbine system
WO2014189978A2 (en) 2013-05-20 2014-11-27 Principle Power, Inc. System and method for controlling offshore floating wind turbine platforms
PL3212496T3 (pl) 2014-10-27 2020-03-31 Principle Power, Inc. System połączeń dla przewodów sieciowych odłączalnych morskich urządzeń energetycznych
CN104410098B (zh) * 2015-01-07 2017-04-05 上海电机学院 双馈异步发电机组低电压穿越控制系统及其控制方法
KR101921279B1 (ko) 2015-06-19 2018-11-22 프린시플 파워, 인코포레이티드 파력 및 풍력 부하를 최적으로 전달하는 부유식 풍력 터빈 플랫폼 구조물
US10491038B2 (en) * 2017-06-15 2019-11-26 General Electric Company Electrical power subsystems and methods for controlling same
US11665830B2 (en) 2017-06-28 2023-05-30 Honda Motor Co., Ltd. Method of making smart functional leather
US10953793B2 (en) 2017-06-28 2021-03-23 Honda Motor Co., Ltd. Haptic function leather component and method of making the same
US10682952B2 (en) 2017-06-28 2020-06-16 Honda Motor Co., Ltd. Embossed smart functional premium natural leather
US10742061B2 (en) * 2017-06-28 2020-08-11 Honda Motor Co., Ltd. Smart functional leather for recharging a portable electronic device
US11225191B2 (en) 2017-06-28 2022-01-18 Honda Motor Co., Ltd. Smart leather with wireless power
US10272836B2 (en) 2017-06-28 2019-04-30 Honda Motor Co., Ltd. Smart functional leather for steering wheel and dash board
US11751337B2 (en) 2019-04-26 2023-09-05 Honda Motor Co., Ltd. Wireless power of in-mold electronics and the application within a vehicle
US11225945B2 (en) 2019-05-30 2022-01-18 Principle Power, Inc. Floating wind turbine platform controlled to optimize power production and reduce loading
CN110912186B (zh) * 2019-11-27 2021-04-06 国网冀北电力有限公司电力科学研究院 双馈型风力发电虚拟同步发电机建模方法

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4177507A (en) * 1978-03-22 1979-12-04 General Electric Company Method and control for maintaining optimum performance of HVDC power transmission systems at rectifier end during A. C. system fault
US4400659A (en) * 1980-05-30 1983-08-23 Benjamin Barron Methods and apparatus for maximizing and stabilizing electric power derived from wind driven source
DE3431979A1 (de) * 1984-08-30 1986-03-06 Siemens AG, 1000 Berlin und 8000 München Verfahren und vorrichtung zum unterdruecken von resonanzerscheinungen im wechselrichterseitigen wechselspannungsnetz einer hochspannungsgleichstromuebertragungsanlage
EP0197352B1 (de) * 1985-03-27 1989-06-28 Siemens Aktiengesellschaft Verfahren und Vorrichtung zum Betrieb einer HGÜ-Kurzkupplung bei Netzfehlern
EP0315871A1 (de) * 1987-11-12 1989-05-17 Siemens Aktiengesellschaft Verfahren und Vorrichtung zur Steuerung eines Stromrichters am unsymmetrischen Netz
US4982147A (en) * 1989-01-30 1991-01-01 State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of Oregon State University Power factor motor control system
US4994684A (en) * 1989-01-30 1991-02-19 The State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of Oregon State University Doubly fed generator variable speed generation control system
US5239251A (en) * 1989-06-30 1993-08-24 The State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of Oregon State University Brushless doubly-fed motor control system
US5083039B1 (en) * 1991-02-01 1999-11-16 Zond Energy Systems Inc Variable speed wind turbine
US5798631A (en) * 1995-10-02 1998-08-25 The State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of Oregon State University Performance optimization controller and control method for doubly-fed machines
GB9610265D0 (en) * 1996-05-16 1996-07-24 Univ Manchester Generator transfer function regulator
US6600240B2 (en) * 1997-08-08 2003-07-29 General Electric Company Variable speed wind turbine generator
US6137187A (en) * 1997-08-08 2000-10-24 Zond Energy Systems, Inc. Variable speed wind turbine generator
US6420795B1 (en) * 1998-08-08 2002-07-16 Zond Energy Systems, Inc. Variable speed wind turbine generator
DE10136974A1 (de) 2001-04-24 2002-11-21 Aloys Wobben Verfahren zum Betreiben einer Windenergieanlage
US6703718B2 (en) * 2001-10-12 2004-03-09 David Gregory Calley Wind turbine controller
US7015595B2 (en) * 2002-02-11 2006-03-21 Vestas Wind Systems A/S Variable speed wind turbine having a passive grid side rectifier with scalar power control and dependent pitch control
DE10232423A1 (de) * 2002-07-17 2004-01-29 Ge Wind Energy Gmbh Verfahren zum Betreiben einer Windenergieanlage und Windenergieanlage zum Ausführen derartiger Verfahren
EP1540811B1 (de) * 2002-09-10 2010-12-01 DeWind Co. Betriebsverfahren für windenergieanlage mit übersynchroner kaskade
CN1784823B (zh) * 2003-05-02 2010-05-05 克桑特雷克斯技术有限公司 双馈感应发电机及其控制器和控制方法
JP4007268B2 (ja) * 2003-07-22 2007-11-14 株式会社日立製作所 風力発電装置
JP4269941B2 (ja) * 2004-01-08 2009-05-27 株式会社日立製作所 風力発電装置およびその制御方法
US7239036B2 (en) * 2005-07-29 2007-07-03 General Electric Company System and method for power control in wind turbines
NO325856B1 (no) * 2005-11-01 2008-08-04 Hywind As Fremgangsmåte for demping av ustabile frie stivlegeme egensvingninger ved en flytende vindturbininstallasjon
KR100668118B1 (ko) * 2005-12-30 2007-01-16 한국전기연구원 권선형 유도 발전기 제어용 전력변환장치 및 전력변환방법
US7425771B2 (en) * 2006-03-17 2008-09-16 Ingeteam S.A. Variable speed wind turbine having an exciter machine and a power converter not connected to the grid
WO2007140466A2 (en) * 2006-05-31 2007-12-06 Wisconsin Alumni Research Foundation Power conditioning architecture for a wind turbine
JP2008011607A (ja) * 2006-06-28 2008-01-17 Hitachi Ltd 可変速風力発電システム
US7391126B2 (en) * 2006-06-30 2008-06-24 General Electric Company Systems and methods for an integrated electrical sub-system powered by wind energy
US7642666B2 (en) * 2006-11-02 2010-01-05 Hitachi, Ltd. Wind power generation apparatus, wind power generation system and power system control apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101316091B (zh) * 2007-05-30 2011-06-01 株式会社日立制作所 风力发电系统和电力转换器的控制方法
CN101971451A (zh) * 2008-02-20 2011-02-09 再生动力系统股份公司 具有双馈异步发电机和变频器调节的风能设备
CN101971451B (zh) * 2008-02-20 2013-12-25 再生动力系统欧洲公司 具有双馈异步发电机和变频器调节的风能设备

Also Published As

Publication number Publication date
DE102004013131A1 (de) 2005-10-06
NO20064692L (no) 2006-10-17
MXPA06010504A (es) 2006-12-19
US20080157533A1 (en) 2008-07-03
US7531910B2 (en) 2009-05-12
CA2560073A1 (en) 2005-09-29
BRPI0508815A (pt) 2007-08-07
EP1726088B1 (de) 2008-05-07
WO2005091490A1 (de) 2005-09-29
DE502005003989D1 (de) 2008-06-19
EP1726088A1 (de) 2006-11-29

Similar Documents

Publication Publication Date Title
CN1934779A (zh) 风力设备
CN101278453B (zh) 具有甩负荷和功率变换器的风车功率流控制设备和方法
Chen et al. A review of the state of the art of power electronics for wind turbines
Singh et al. Voltage and frequency controller for a three-phase four-wire autonomous wind energy conversion system
Cardenas et al. Overview of control systems for the operation of DFIGs in wind energy applications
EP3075054B1 (en) Reconfiguration of the reactive power loop of a wind power plant
Qiao et al. Real-time implementation of a STATCOM on a wind farm equipped with doubly fed induction generators
Pena et al. A doubly fed induction generator using back-to-back PWM converters supplying an isolated load from a variable speed wind turbine
ES2865053T3 (es) Procedimiento y aparato para controlar una turbina eólica
US7095597B1 (en) Distributed static var compensation (DSVC) system for wind and water turbine applications
Qiao et al. Effects of FACTS devices on a power system which includes a large wind farm
CN109995093A (zh) 风电场的动态有功和无功功率容量
Feltes et al. Variable frequency operation of DFIG based wind farms connected to the grid through VSC-HVDC link
CN111316521B (zh) 用于控制连接到电力网的电功率系统的系统和方法
Rodrigues et al. Contribution of PMSG based small wind generation systems to provide voltage control in low voltage networks
US11682990B2 (en) System and method for dynamically estimating active power capability of an inverter-based resource
US11967824B2 (en) Adaptive gain control for a reactive power regulator of an inverter-based resource
US20230175486A1 (en) A method for operating a wind turbine and a wind turbine
US11671039B2 (en) System and method for operating an asynchronous inverter-based resource as a virtual synchronous machine to provide grid-forming control thereof
Salles et al. Dynamic analysis of wind turbines considering new grid code requirements
US11456645B2 (en) System and method for operating an asynchronous inverter-based resource as a virtual synchronous machine with storage
Sharma et al. Single-phase power generation employing VFC for stand-alone three-phase doubly wound asynchronous generator
Anaya-Lara Energy Conversion Systems for offshore wind turbines
US20220181883A1 (en) Method for controlling negative-sequence current for grid-forming controls of inverter-based resources
Sovannarith et al. Stability of the micro-grid with wind power generation

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication