CN1929846A - 包括采用血清和糖皮质激素诱导的激酶的调节物来调节谷氨酸受体以治疗神经精神障碍的方法 - Google Patents

包括采用血清和糖皮质激素诱导的激酶的调节物来调节谷氨酸受体以治疗神经精神障碍的方法 Download PDF

Info

Publication number
CN1929846A
CN1929846A CNA2005800077939A CN200580007793A CN1929846A CN 1929846 A CN1929846 A CN 1929846A CN A2005800077939 A CNA2005800077939 A CN A2005800077939A CN 200580007793 A CN200580007793 A CN 200580007793A CN 1929846 A CN1929846 A CN 1929846A
Authority
CN
China
Prior art keywords
phenyl
sgk1
disease
glur6
glur1
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2005800077939A
Other languages
English (en)
Inventor
F·朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Merck Patent GmbH
Original Assignee
Merck Patent GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Merck Patent GmbH filed Critical Merck Patent GmbH
Publication of CN1929846A publication Critical patent/CN1929846A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/519Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/16Amides, e.g. hydroxamic acids
    • A61K31/165Amides, e.g. hydroxamic acids having aromatic rings, e.g. colchicine, atenolol, progabide
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/08Antiepileptics; Anticonvulsants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/18Antipsychotics, i.e. neuroleptics; Drugs for mania or schizophrenia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/22Anxiolytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/24Antidepressants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/30Drugs for disorders of the nervous system for treating abuse or dependence
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/30Drugs for disorders of the nervous system for treating abuse or dependence
    • A61P25/32Alcohol-abuse
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P39/00General protective or antinoxious agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis

Landscapes

  • Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Neurosurgery (AREA)
  • Neurology (AREA)
  • Epidemiology (AREA)
  • Psychiatry (AREA)
  • Addiction (AREA)
  • Pain & Pain Management (AREA)
  • Hospice & Palliative Care (AREA)
  • Toxicology (AREA)
  • Vascular Medicine (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Diabetes (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Pyridine Compounds (AREA)

Abstract

(本发明公开了)调节血清和糖皮质激素诱导的激酶的活性来恢复谷氨酸受体的活性(的方法)。也公开了用于检测和治疗神经精神障碍的方法和化合物。

Description

包括采用血清和糖皮质激素诱导的激酶的调节物来调节谷氨酸受体 以治疗神经精神障碍的方法
发明领域
(本发明公开了)一种改变谷氨酸受体活性的方法,包括将表达血清和糖皮质激素诱导的激酶SGK1、SGK2或SGK3的细胞与调节糖皮质激素诱导的激酶的物质接触。本发明还涉及与谷氨酸受体上调或下调相关的疾病的诊断和治疗。
发明背景
神经元持续调节神经递质受体的相对表达、功能和亚细胞定位以维持和精密调节神经传递。AMPA家族成员的离子型谷氨酸受体(GluR),包括GluR1至GluR4亚基,属于该类被修饰的兴奋受体系统。AMPA受体与诸如癫痫、阿尔茨海默病、帕金森病和拉斯穆森脑炎的等多种疾病有关。拉斯穆森脑炎是一种进行性功能障碍,其特征在于严重的癫痫、半身不遂、痴呆和脑部感染。有证据表明,若患者产生了抗GluR3的抗体,则其患有拉斯穆森脑炎。已确定GluR3抗体能够激活皮层神经元中的AMPA受体,且GluR3与其自身抗体相互作用的区域位于激动剂结合位点之内(Twyman等人,1995)。由受体激活诱导的神经元的兴奋可能因此促进此疾病特征性的癫痫突发。然而,要理解神经精神疾病的驱动机制,许多问题仍有待解决。
谷氨酸受体是中枢神经系统兴奋信号传导的最重要的介体(M Sheng,T.Nakagawa,Nature,417,601,2002)。它们激活突触后神经元的多条生化通路,最终产生突触后神经元的可塑性。改变突触后AMPA受体的活性和/或丰度能够改变突触强度。长时程的增强激活了海马磷脂酰肌醇-3-激酶(P13-K),并使其与突触的AMPA受体形成复合物(P.P.Sanna等人,J.Neurosci,22,3359,2002;M.Passafaro,V.Piech和M.Sheng,Nat.Neurosci,4,917,2001;H.Y.Man等人,Neuron 39,611,2003)。然而,从PI3-K到细胞膜上AMPA受体丰度的信号传递通路仍不清楚。在PI3-K的下游信号分子中,3-磷酸肌醇依赖的激酶(PDK)能够磷酸化并因而激活蛋白质激酶B以及血清和糖皮质激素诱导的激酶家族的全部三个成员:SGK1、SGK2和SGK3(F.Lang,P.Cohen,Sci.STKE.108,RE17,2001)。业已表明SGK1、SGK2和SGK3三者都能够通过增加质膜上通道蛋白质的丰度调控肾脏上皮Na+通道ENaC(F.Lang等人,Cell.Physiol.Biochem.13,41,2003;D.Pearce,Cell.Physiol.Biochem.13,13-20,2003;F.Verrey,J.Loffing,M.Zecevic,D.Heitzmann,O.Staub,Cell.Physiol.Biochem.13,21,2003)。由于全部三种激酶都在脑中丰富地表达(T.Kobayashi,P.Cohen,Biochem J.339,319,1999;S.Waldegger,P.Barth,J.N.Jr.Forrest,R.Greger,F.Lang,Proc.Natl.Acad.Sci.U.S.A 94,440,1997),我们推测它们可能参与AMPA受体的调控。
业已表明,SGK1通过胰岛素样生长因子IGF1、胰岛素以及[经由涉及磷酸肌醇-3-激酶(PI3激酶)和磷酸肌醇依赖的激酶PDK1的信号级联的]氧化应激而受到调控(Kobayashi和Cohen 1999,Park等人,1999,Kobayashi等人,1999)。经由PDK1激活SGK1包括丝氨酸422位的磷酸化。此外还已表明,422位由丝氨酸突变为天冬氨酸(S422DSGK1)会产生持续激活的激酶(Kobayashi等人,1999)。
许多种分析系统可被用于测量糖皮质激素诱导的激酶SGK1的活性。在亲近闪烁检测(scintillation proximity assay)(Sorg等人,J.ofBiomolecular Screening,2002,7,11-19)和闪烁盘检测(flashplate assay)中,与γATP同为反应底物的蛋白质或肽的放射性磷酸化将得到检测。存在抑制性化合物时,将检测不到信号或检测到下降的放射性信号。此外,均相时间分辨荧光共振能量传递(HTR-FRET)和荧光偏振(FP)技术也是有效的检测方法(Sills等人,J.of Biomolecular Screening,2002,191-214)。其它基于非放射性ELISA的检测方法使用特异的磷酸抗体(AB)。磷酸抗体仅结合被磷酸化的底物。这种结合能够由过氧化物酶缀合的抗绵羊二抗通过化学发光检测到(Ross等人2002,Biochem.J.,直接发表,原稿BJ20020786)。
早期研究表明,SGK1是肾脏上皮Na+通道的强有力的刺激因子(De laRosa等人1999,Boehmer等人2000,Shigaev等人2000,Wagner等人,2001)。
另一关于SGK1的发现是,该基因第8外显子中核苷酸组合为(CC/CT)的单核苷酸多态现象(SNP)和一个附加的第6内含子的多态现象(CC)与血压升高相关联(Busjahn等人,2002),并由此推断SGK1可能对血压的调控和高血压非常重要。
由于升高的SGK1活性与肾脏上皮Na+通道的活性相关,其通过增加肾脏对钠的重吸收而导致高血压(Lifton 1996;Staessen等人,2003;Warnock 2001),因而得出结论,取决于SGK1等位基因变体的组合,有可能发生肾脏对Na+重吸收的增加,这将进而增高血压(Busjahn等人,2002)。
发明概述
本发明出人意料地证明一些血清和糖皮质激素诱导的同工型(isoforms)激酶是谷氨酸受体强有力的调控因子。
关于谷氨酸受体的调控所知甚少,本发明提供了意想不到的结果,即血清和糖皮质激素诱导的激酶家族中的全部三个成员SGK1、SGK2和SGK3都参与谷氨酸受体的调控。因为谷氨酸受体是神经系统兴奋信号传导的最重要的介体,它们的上调或下调已在相当多的神经-精神疾病中被讨论过。因此,本发明提供了通过测量组织样品和标本中SGK1、SGK2或SGK3上调的表达水平,结合谷氨酸受体的活性状态,来判断神经精神疾病的进展、消退或发作的方法。
这是第一次表明SGK以PI3-K依赖的方式参与调控已知赋予运输、突触可塑性和记忆巩固功能的AMPA受体。
虽然SGK3是有力的GluR1的调控因子,SKG1则参与GluR6的激活。SGK3提高质膜上GluR1的丰度并增加GluR1介导的谷氨酸诱导的电流。GluR6不经由SGK1识别位点RXRXXS/T与SGK1相互作用,因此可能涉及影响未知氨基酸序列的新机制。
本发明的又一发现是GluR6是红藻氨酸(Kainate)受体的一个必要亚基,经由SGK1对GluR6的调控涉及对红藻氨酸受体运输、突触可塑性和神经元兴奋能力的调控。
因此通过调节SGK1来影响谷氨酸受体GluR6亚基的活性可能成为寻靶KARs的一种方法,KARs在涉及学习和记忆的脑区域(如海马)以及在涉及行为的运动和动机方面的脑区域(如基底神经节和小脑)中丰富地表达。
进一步研究表明,在较少程度上,SGK2而非SGK1通过提高表达大鼠GluR1的爪蟾(Xenopus)卵母细胞膜中AMPA GluR1蛋白亚基的丰度增加谷氨酸诱导的电流。
对SGK1的调节尤其适用于被定义为SGK1基因单核苷酸多态性的临床相关的表型或基因型。因此,分析取自需要治疗的个体样本的SGK1单核苷酸多态性变体可能是本发明的另一应用。本发明还提供了通过检测SGK1的表达来确定疾病的进展、消退或发作的方法。取自患病个体的样本可以进一步用于选定SGK1单核苷酸多态性变体的分析及其与疾病患病倾向之间的联系。
本发明另一方面还涉及鉴定调节SGK1、SGK2或SGK3相关疾病的候选新药的筛选方法。干扰SGK1功能因而下调谷氨酸受体活性的化合物是尤其有用的调节剂。SGK1的抑制剂用于治疗选自下列病症折磨的病患特别有效,包括:癫痫、中风、外伤后行为障碍、焦虑、精神分裂症、双极紊乱(bipolar disorders)、抑郁症、肝性脑病(hepatic enzephalopathy)、新生儿溶血性疾病(morbus hmolyticus neonatorum)、成瘾症(addiction)、酒精中毒、HIV脑病(HIV-enzephalopathy)、神经变性障碍(neurodegenerative disorders)、锥体外运动失调(extrapyramidal motordisturbance)、共济失调、肌萎缩性侧索硬化(amyotroph lateralsklerosis)、M.阿尔茨海默病(M.Alzheimer)、黄斑变性(macula degeneration)、聋症。应用根据本发明进行的药物筛选方法已发现了针对SGK1、SGK2或SGK3的治疗性化合物。两类不同的化合物已被确认,一类属于酰腙衍生物,另一类属于吡啶并嘧啶衍生物。在包括药物有效载体、赋形剂或稀释剂的药物组合物中,所选的抑制SGK1的化合物对于治疗上述疾病是有效的。对于本发明重要的是根据期望的治疗情况鉴别新药的筛选方法不局限于本申请公开的化合物。而且对于熟练技术人员显而易见的是,可有益地应用一步法或两步法筛选调节SGK1、SGK2、SGK3的化合物。这类筛选的第一步包括鉴别干扰SGK激酶活性的化合物。许多测定形式可用于检测,优选的测定法是测量以蛋白质或肽连同γATP为底物由SGK催化的放射性磷酸化作用。当存在SGK抑制性化合物时,将检测不到放射性的信号或检测到下降的放射性信号。在另一读出系统中,监测SGK1抑制性化合物恢复谷氨酸受体活性的潜能,不过,测量其它读出活性可能也是有用的。
发明详述
谷氨酸受体激活突触后神经元上的多条生化通路,最终导致突触后神经可塑性,因此,本发明的一个重要方面在于教导谷氨酸受体是如何被调控的。
对GluR1调控的研究需要一起共表达多种同工型SGK。为此,在爪蟾卵母细胞中将SGK1、SGK2或SGK3与AMPA受体GluR1亚基一起共表达。一种非脱敏型(non-desensitizing)GluR1突变体,GluR1(L479Y)(Y.Stern-Bach,S.Russo,M Neumann,C.Rosenmund,Neuron 21,907,1998)被用于实验。
如图1所示,共表达GluR1和SGK3的爪蟾卵母细胞与单独表达GluR1的卵母细胞相比,细胞膜上GluR1蛋白的丰度显著增加。GluR1蛋白丰度在与SGK2共表达时倾向于更高,而SGK1的共表达对GluR1的表达没有影响。GluR1蛋白丰度的实验结果相应于得到相似效果的谷氨酸诱导的电流的实验结果(图2)。共表达GluR1和SGK3的爪蟾卵母细胞中,谷氨酸诱导的电流显著大于单独表达GluR1的爪蟾卵母细胞。共表达GluR1和SGK2的爪蟾卵母细胞中,谷氨酸诱导的电流显著小于共表达GluR1和SGK3的爪蟾卵母细胞中的电流,但是显著大于单独表达GluR1的爪蟾卵母细胞中的电流。共表达SGK1对GluR1介导的电流没有明显的改变。
本(申请的)观察结果揭示了调控AMPA受体GluR1亚基的新机制。运送GluR1到神经元表面受到NMDA受体激活的调控,导致Ca2+通路开放(M.Sheng,M.J.Kim,Science 298,776,2002)和随后PI3-激酶的激活(M.S.Perkinton,J.K.Ip,G.L.Wood,A.J.Crossthwaite,R.J.Williams,J.Neurochem.80,239,2002)。激活PI3-激酶触发信号传递级联反应,最终导致激活SGK3,SGK3随后增加细胞膜上GluR1蛋白的丰度。SGK3使得形成膜上稳定的GluR1,因此阻止其回收(retrieval)和随后的降解,和/或增加蛋白质到细胞膜上的运输。因此,本观察结果第一次描述了SGK2和SGK3具有精密调节GluR1丰度的重要作用。
根据本发现,预期SGK3参与依赖GluR1的神经元功能。GluR1在异源二聚体GluR1-GluR2受体中较之于GluR2占优势(Y.Hayashi等人,Science 287,2262,2000;S.Shi,Y.Hayashi,J.A.Esteban,R.Malinow,Cell105,331,2001),是海马CA1区长时程增强所必需的(D.Zamanillo等人,Science 284,1805,1999),并且参与产生空间记忆(H.K.Lee等人,Cell 112,631,2003;D.Reisel等人,Nat.Neurosci.5,868,2002)。
为了检测同工型SGK对GluR3的调控,AMPA受体GluR3亚基在爪蟾卵母细胞中单独表达,或与SGK1、SGK2或SGK3其中之一共表达。在共表达GluR3和SGK2的爪蟾卵母细胞中,谷氨酸诱导的电流显著小于单独表达GluR3的爪蟾卵母细胞中的电流(图5),而共表达目关蛋白质激酶B(PKB)对电流强度没有显著影响。SGK1和SGK3同样能减少电流幅值,但是影响效果弱于SGK2。
地塞米松是一种已知的SGK活性调节剂,在GluR6多克隆抗体染色的脑切片上可见,地塞米松给药8天或20天,小鼠海马CA3神经元的GluR6蛋白丰度发生显著增加(图6)。用突触位点标志MAP2的抗体染色海马CA3神经元,确定增强的GluR6染色发生在突触处。
因此,可推断GluR6的丰度在海马CA3神经元的突触位点上被地塞米松增强。然而,这并不能区分GluR6在突触前或突触后的表达。特异染色星型胶质细胞的GFAP染色揭示,与对照动物相比,经过地塞米松处理的动物的星型胶质细胞中GluR6的表达丰度没有增加(图6)。该结果与基于原位杂交研究发现SGK1在星型胶质细胞中没有表达而做出的推测相一致(Waerntges等人)。
为了检测SGK1与GluR6之间的功能联系,在爪蟾卵母细胞中单独表达了大鼠KA受体GluR6亚基,或将GluR6和SGK1、SGK2或SGK3其中之一共表达。如图4所示,共表达GluR6和SGK1的爪蟾卵母细胞中GluR6蛋白丰度相对于单独表达GluR6的爪蟾卵母细胞有显著增加。共表达SGK2或SGK3对GluR6蛋白丰度影响较小,但其增强效果仍具有统计学上的显著性意义,而共表达相关蛋白质激酶B(PKB)对GluR6蛋白丰度没有明显效果。与蛋白质丰度实验结果相似,在共表达GluR6和SGK1的爪蟾卵母细胞中,谷氨酸诱导的电流相对于单独表达GluR6的爪蟾卵母细胞显著增大,结果如图3所示。同样相似的是,SGK2和SGK3相似地刺激电流产生,但是效果显著弱于SGK1。
本观察结果揭示了关于调控KA受体的GluR6亚基的新机制。红藻酸受体与GluR6亚基的装配对于锥体神经元CA3和CA1对红藻酸和多摩酸(domoate)的敏感性非常重要(Bureau等人,653-63)。由于GluR6不含SGK1识别位点RXRXXS/T,所以不可能是SGK1的直接靶蛋白。然而,不能排除SGK1识别除了该已知氨基酸序列以外的其他位点的可能。业已表明膜蛋白stargazin(痫蛋白)对于指导AMPA受体运输到细胞表面并将其特异性地靶向于突触后位点非常关键。stargazin含有SGK1的识别位点。然而,新近公布KARs不受到stargazin的调控(Chen 2003)。因此,并不能预期SGK1对GluR6的调控是由stargazin介导的,这一点我们通过卵母细胞的共注射实验得以确认(数据未出示)。
该创新性的调节机制涉及新鉴定的激酶,是GluR6的强有力的调控因子。SGK1提高GluR6在质膜上的丰度并增加由GluR6介导的谷氨酸诱导产生的电流。因此,SGK1参与红藻酸受体运输、突触可塑性和神经元兴奋性的调控。
附图的简短说明
图1:共表达SGK的爪蟾卵母细胞膜上GluR1亚基蛋白丰度增加。
(A)代表性的Western印记实验。使用免疫亲和纯化过的抗GluR1的兔抗体(1μg/μl,Upstate)作为检测GluR1蛋白的一抗。使用抗β-微管蛋白的小鼠单克隆抗体(1∶250,Santa Cruz)作为检测β-微管蛋白的一抗。GluR1蛋白质的表观分子量约为105kDa。(B)表示质膜GluR1蛋白质相对丰度的柱形图。蛋白质条带的强度使用Sion image软件经算法分析而量化。不同批次实验得到的三个不同的印记值被用于统计分析。I表示有显著性差异(p<0.05)。
图2:同工型SGK2和SGK3引起GluR1电流增加,而SGK1和PKB无此作用。
用含300μM谷氨酸的ND96Ringer溶液灌流爪蟾卵母细胞而引发并被检测的代表性的电流迹线(A)。卵母细胞被单独注射GluR1 cRNA(4ng/卵母细胞),或共注射SGK cRNA(6ng/卵母细胞)。(B)以表达GluR1(L479Y)+DEPC-H2O的卵母细胞中的电流幅值标准化表示的表达GluR1(L479Y)+DEPC-H2O、GluR1(L479Y)+SGK1、GluR1(L479Y)+SGK2、GluRl(L479Y)+SGK3和表达GluR1(L479Y)+PKB的卵母细胞中的GluR1电流幅值。水平刻度代表5sec,垂直刻度代表1μA。卵母细胞数在括号中给出,显著性差异(p<0.001)以***表示。
图3:SGK同工型引起GluR6电流增加,而PKB无此作用。
(a)用300μM谷氨酸溶液灌流爪蟾卵母细胞引发的代表性的电流迹线。所有电流在70mV检测,并事先对卵母细胞用Con A做了预处理以最小化脱敏反应。(b)检测了表达GluR6+DEPC-H2O(n=20)、GluR6+SGK1(n=12)、GluR6+SGK2(n=10)、GluR6+SGK3(n=9)和GluR6+SGK1(n=7)的卵母细胞中的GluR6电流幅值,以表达GluR6+DEPC-H2O的卵母细胞中的电流幅值标准化表示。显示了显著水平在p=0.001(***)、p=0.01(**)和p=0.05(*)之上的显著性差异。
图4:证明SGK调控GluR6亚基蛋白表达的Western印迹实验。
质膜蛋白质用生物素化-ConA标记,溶解,而后用链霉抗生物素蛋白沉淀。包括来自未注射的卵母细胞的对照的样品用SDS胶分离,进行Western印迹,并用经免疫亲和纯化的抗GluR6蛋白C端16个氨基酸的片段的抗体(Upstate)探测。GluR6蛋白的表观分子量约为119kDa(I)
图5:共表达SGK2对GluR3介导的电流的抑制。
(A)用300μM谷氨酸溶液灌流爪蟾卵母细胞引起并测量的代表性的电流迹线。所有电流在70mV检测,并事先对卵母细胞用ConA做预处理以最小化脱敏反应。(B)测量了表达GluR3+DEPC-H2O(n=20)、GluR3+SGK1(n=12)、GluR3+SGK3(n=10)、GluR3+SGK1(n=9)、GluR3+SGK3(n=9)和表达GluR3+SGK1(n=7)的卵母细胞中的GluR3电流幅值,以表达GluR3+DEPC-H2O的卵母细胞中的电流幅值标准化显示。显示了显著水平在p=0.001(***)、p=0.01(**)和p=0.05(*)之上的显著性差异。
图6:地塞米松处理的小鼠以及对照小鼠海马中GluR6的表达。
(A)GluR6在小鼠海马、肾脏和心脏中的表达。如GluR6多克隆抗体染色的脑切片所示,地塞米松给药8或20天在小鼠海马CA3神经元引起GluR6蛋白丰度显著增加(B)。用突触位点标志MAP2抗体染色海马CA3神经元,证明增强的GluR6染色位于突触处。
其他方法和材料
实施例1:爪蟾卵母细胞的电生理学检测
将第5-6期的卵母细胞从光滑爪蟾(Xenopus laevis)的卵巢手术移出,方法如别处的文献所述(Seebohm,Sanguinetti,Pusch,2003)。卵母细胞用Nanoliter 2000注射器(WPI inc.,Florida,USA)或仅注射4ng的GluR1、GluR3或GluR6中的任一种cRNA,或同时共注射6ng的SGK1、SGK2、SGK3或PKB中的任一种cRNA。在注射cRNA 5-8天后,标准双电极电压膜片钳实验经由Turbo Tec 03放大器(npi,Tamm,Germany)和Axon器械公司的DIGIDATA 1322A接口执行记录。数据用pClamp 9.0/clampfit9.0软件(Axon inc.)和Origin 6.0软件(Microcal)分析。激动剂溶液用ND-96缓冲液配制(以mM计:NaCl,96;CaCl2,1.8;KCl,2.0;MgCl2,1.0;HEPES-NaOH,5,用NaOH调至PH 7.2)。电流和电压电极用3M KCl注满,电阻为0.5-1.5MΩ。卵母细胞被维持在约70mV,激动剂(300μM谷氨酸)以10-14ml/min的流速灌流约10秒而加入。加入激动剂之前,卵母细胞先与伴刀豆球蛋白A(concanavalin A)孵育8min以避免脱敏反应。
实施例2:用生物素化-ConA标记细胞表面蛋白质
为了鉴定插入质膜的受体蛋白质片段,表面蛋白质用生物素化的ConA标记,并经过链霉抗生物素蛋白/琼脂糖介导的沉淀分离生物素化-ConA/蛋白质复合物。简言之,完整的卵母细胞在10μM生物素化-ConA(Sigma,Münche,German)中室温孵育30分钟。普通青蛙林格氏液(frogRinger)洗涤卵母细胞5次,每次洗10分钟后,将完整的卵母细胞用H缓冲液(20μl/卵母细胞;100mM NaCl,20mM Tris-HCl,pH 7.4,1%Triton X-100,1mM苯甲基磺酰氟,以及蛋白酶抑制剂混合物(CompleteTM tablets,Boehringer))在Teflon(聚四氟乙烯)乳钵中均质化,随后置于4℃旋转器上混合1小时。16000×g离心60秒,取上清,补加20μl洗过的链霉抗生物素蛋白-琼脂糖珠(Sigma,München,Germany),置于4℃旋转器上混合3小时。链霉抗生物素蛋白-琼脂糖珠以120秒,1600×g旋转分离,H缓冲液洗涤3遍。将最终得到的链霉抗生物素蛋白-琼脂糖珠加入40μl十二烷基磺酸钠-聚丙烯酰胺凝胶电泳(SDS-PAGE)上样缓冲液(0.8M β-巯基乙醇、6%SDS、20%甘油、25mM Tris-HCl,pH 6.8、0.1%溴酚蓝)煮沸,酶联免疫吸附试剂盒检测(Mercodia,Uppasala,Sweden)。
实施例3:凝胶电泳和Western印迹
从均质化的卵母细胞获取的蛋白质用SDS电泳分离并被转移到硝酸纤维素滤膜上。用含5%奶粉的1×PBS溶液于室温封闭印迹至少1小时。为了检测GluR1、GluR3或GluR6,使用经过免疫亲和纯化的GluR1、GluR3或GluR6的兔源一抗(1μg/μl,Upstate)和辣根过氧化物酶缀合的驴抗兔的二抗(1∶1000稀释,Amersham Bioscience)。采用丽春红染色法(Ponceau red staining)确定蛋白质水平。
实施例4:调节SGK1的化合物
4.1通式I的化合物及其可药用的衍生物、盐、溶剂合物和立体异构体,包括混合物。
Figure A20058000779300131
其中
R1、R5 是H、OH、OA、OAc或甲基,
R2、R3、R4、R6、R7、R8、R9、R10是H、OH、OA、OAc、OCF3、Hal、NO2、CF3、A、CN、OSO2CH3、SO2CH3、NH2或COOH,
R11 H或CH3
A 具有1、2、3或4个C原子的烷基,
X CH2、CH2CH2、OCH2或-CH(OH)-,
Hal F、Cl、Br或I。
式I的化合物,其选自下组的化合物:
(3-羟基-苯基)-乙酸-(4-羟基-2-甲氧基-亚苄基)-酰肼,
(3-羟基-苯基)-乙酸-[1-(4-羟基-2-甲氧基-苯基)-亚乙基]-酰肼,
(3-甲氧基-苯基)-乙酸-(4-羟基-2-甲氧基-亚苄基)-酰肼,
苯乙酸-(3-氟-4-羟基-亚苄基)-酰肼,
(4-羟基-苯基)-乙酸-(4-羟基-2-甲氧基-亚苄基)-酰肼,
(3,4-二氯-苯基)-乙酸-(4-羟基-2-甲氧基-亚苄基)-酰肼,
间甲苯基-乙酸-(4-羟基-2-甲氧基-亚苄基)-酰肼,
邻甲苯基-乙酸-(4-羟基-2-甲氧基-亚苄基)-酰肼,
(2-氯-苯基)-乙酸-(4-羟基-2-甲氧基-亚苄基)-酰肼,
(3-氯-苯基)-乙酸-(4-羟基-2-甲氧基-亚苄基)-酰肼,
(4-氟-苯基)-乙酸-(4-羟基-2-甲氧基-亚苄基)-酰肼,
(2-氯-4-氟-苯基)-乙酸-(4-羟基-2-甲氧基-亚苄基)-酰肼,
(3-氟-苯基)-乙酸-(4-羟基-2-甲氧基-亚苄基)-酰肼,
(3-甲氧基-苯基)-乙酸-(4-羟基-亚苄基)-酰肼,
(3-甲氧基-苯基)-乙酸-(4-羟基-2,6-二甲基-亚苄基)-酰肼,
(3-甲氧基-苯基)-乙酸-(3-氟-4-羟基-亚苄基)-酰肼,
(3-甲氧基-苯基)-乙酸-[1-(4-羟基-2-甲氧基-苯基)-亚乙基]-酰肼,
(3-甲基磺酰氧基-苯基)-乙酸-(4-羟基-2-甲氧基-亚苄基)-酰肼,
(3,5-二羟基-苯基)-乙酸-(4-羟基-2-甲氧基-亚苄基)-酰肼,
(3-氟-苯基)-乙酸-(3-氟-4-羟基-亚苄基)-酰肼,
(3-甲氧基-苯基)-乙酸-(4-乙酰氧基-2-甲氧基-亚苄基)-酰肼,
(3-三氟甲基-苯基)-乙酸-(4-羟基-2-甲氧基-亚苄基)-酰肼,
3-(3-甲氧基-苯基)-丙酸-(4-羟基-2-甲氧基-亚苄基)-酰肼,
(3-甲氧基-苯基)-乙酸-(2,4-二羟基-亚苄基)-酰肼,
(3-甲氧基-苯氧基)-乙酸-(4-羟基-2-甲氧基-亚苄基)-酰肼,
(3-硝基-苯基)-乙酸-(4-羟基-2-甲氧基-亚苄基)-酰肼,
(3-甲氧基-苯基)-乙酸-(5-氯-2-羟基-亚苄基)-酰肼,
(3-甲氧基-苯基)-乙酸-(2-羟基-5-硝基-亚苄基)-酰肼,
2-羟基-2-苯基-乙酸-(4-羟基-2-甲氧基-亚苄基)-酰肼,
(3-甲氧基-苯基)-乙酸-(2-乙氧基-4-羟基-亚苄基)-酰肼,
(3-溴-苯基)-乙酸-(4-羟基-2-甲氧基-亚苄基)-酰肼,
(3-甲氧基-苯基)-乙酸-[1-(4-羟基-苯基)-亚乙基]-酰肼,
(3,5-二氟-苯基)-乙酸-(4-羟基-2-甲氧基-亚苄基)-酰肼,
(3-羟基-苯基)-乙酸-(4-羟基-2-甲基-亚苄基)-酰肼,
(3-羟基-苯基)-乙酸-(2-乙氧基-4-羟基-亚苄基)-酰肼,
(3-羟基-苯基)-乙酸-(2-甲氧基-4-羟基-6-甲基-亚苄基)-酰肼,
(2-氟-苯基)-乙酸-(2-甲氧基-4-羟基-亚苄基)-酰肼,
4.2.通式II的化合物及其可药用的衍生物、盐、溶剂合物和立体异构体,包括混合物。
Figure A20058000779300151
其中
R1、R2、R3、R4、R5是H、A、OH、OA、链烯基、炔基、NO2、NH2、NHA、NA2、Hal、CN、COOH、COOH、COOA、-OHet、-O-亚烷基-Het、-O-亚烷基-NR8R9或CONR8R9,选自R1、R2、R3、R4、R5的两个基团还可以是-O-CH2-CH2-、-O-CH2-O-或-O-CH2-CH2-O-
R6、R7是H、A、Hal、OH、OA或CN,
R8、R9是H或A、
Het是饱和或不饱和的具有1到4个氮、氧和/或硫原子的杂环,该杂环被由一个或多个Hal、A、OA、COOA、CN或羰基氧(=O)取代
A具有1到10个C原子的烷基,其中1至7个氢原子可被氟和/或氯取代,
X、X’为NH或不存在,
Hal F、Cl、Br或I。
式II的化合物,其选自下组的化合物:
1-[4-(4-氨基-5-氧代-5H-吡啶并[2,3-d]嘧啶-8-基)-苯基]-3-(2-氟-5-三氟甲基-苯基)-脲,
1-[4-(4-氨基-5-氧代-5H-吡啶并[2,3-d]嘧啶-8-基)-苯基]-3-(4-氯-5-三氟甲基-苯基)-脲,
1-[4-(4-氨基-5-氧代-5H-吡啶并[2,3-d]嘧啶-8-基)-苯基]-3-(2,4-二氟-苯基)-脲,
1-[4-(4-氨基-5-氧代-5H-吡啶并[2,3-d]嘧啶-8-基)-苯基]-3-(2,6-二氟-苯基)-脲,
1-[4-(4-氨基-5-氧代-5H-吡啶并[2,3-d]嘧啶-8-基)-苯基]-3-(3-氟-5-三氟甲基-苯基)-脲,
1-[4-(4-氨基-5-氧代-5H-吡啶并[2,3-d]嘧啶-8-基)-苯基]-3-(4-氟-5-三氟甲基-苯基)-脲,
1-[4-(4-氨基-5-氧代-5H-吡啶并[2,3-d]嘧啶-8-基)-苯基]-3-(4-甲基-5-三氟甲基-苯基)-脲,
1-[4-(4-氨基-5-氧代-5H-吡啶并[2,3-d]嘧啶-8-基)-苯基]-3-(2,3,4,5,6-五氟-苯基)-脲,
1-[4-(4-氨基-5-氧代-5H-吡啶并[2,3-d]嘧啶-8-基)-苯基]-3-(2,4-二溴-6-氟-苯基)-脲,
1-[4-(4-氨基-5-氧代-5H-吡啶并[2,3-d]嘧啶-8-基)-苯基]-3-(2-氟-6-三氟甲基-苯基)-脲,
1-[4-(4-氨基-5-氧代-5H-吡啶并[2,3-d]嘧啶-8-基)-苯基]-3-(2-氟-5-甲基-苯基)-脲,
1-[4-(4-氨基-5-氧代-5H-吡啶并[2,3-d]嘧啶-8-基)-苯基]-3-(2,3,4-三氟-苯基)-脲,
1-[4-(4-氨基-5-氧代-5H-吡啶并[2,3-d]嘧啶-8-基)-苯基]-3-(4-溴-2,6-二氟-苯基)-脲,
1-[4-(4-氨基-5-氧代-5H-吡啶并[2,3-d]嘧啶-8-基)-苯基]-3-(2-氟-3-三氟甲基-苯基)-脲,
1-[4-(4-氨基-5-氧代-5H-吡啶并[2,3-d]嘧啶-8-基)-苯基]-3-[2-(1-叔丁氧羰基-哌啶-4-基)-苯基]-脲,
N-[4-(4-氨基-5-氧代-5H-吡啶并[2,3-d]嘧啶-8-基)-苯基]-2,4-二氯-苯甲酰胺,
N-[4-(4-氨基-5-氧代-5H-吡啶并[2,3-d]嘧啶-8-基)-苯基]-4-氯-5-三氟甲基-苯甲酰胺,
N-[4-(4-氨基-5-氧代-5H-吡啶并[2,3-d]嘧啶-8-基)-苯基]-2-氟-5-三氟甲基-苯甲酰胺,
1-[4-(4-氨基-5-氧代-5H-吡啶并[2,3-d]嘧啶-8-基)-苯基]-3-[3-氯-5-三氟甲基-2-(哌啶-4-基氧基)-苯基]-脲,
1-[4-(4-氨基-5-氧代-5H-吡啶并[2,3-d]嘧啶-8-基)-苯基]-3-[2-氟-5-(2-二甲氨基-乙氧基)-苯基]-脲,
1-[4-(4-氨基-5-氧代-5H-吡啶并[2,3-d]嘧啶-8-基)-苯基]-3-[5-氟-2-(哌啶-4-基氧基)-苯基]-脲,
1-[4-(4-氨基-5-氧代-5H-吡啶并[2,3-d]嘧啶-8-基)-苯基]-3-[4-氯-5-三氟甲基-2-(哌啶-4-基氧基)-苯基]-脲,
1-[4-(4-氨基-5-氧代-5H-吡啶并[2,3-d]嘧啶-8-基)-苯基]-3-[2-(哌啶-4-基氧基)-苯基]-脲,
1-[4-(4-氨基-5-氧代-5H-吡啶并[2,3-d]嘧啶-8-基)-苯基]-3-[2-氟-5-(2-二乙氨基-乙氧基)-苯基]-脲,
1-[4-(4-氨基-5-氧代-5H-吡啶并[2,3-d]嘧啶-8-基)-苯基]-3-[2-氟-5-[2-(哌啶-1-基)-乙氧基]-苯基]-脲,
1-[4-(4-氨基-5-氧代-5H-吡啶并[2,3-d]嘧啶-8-基)-苯基]-3-[4-氟-2-(2-二甲氨基-乙氧基)-苯基]-脲,
1-[4-(4-氨基-5-氧代-5H-吡啶并[2,3-d]嘧啶-8-基)-苯基]-3-[4-氟-2-(2-二乙氨基-乙氧基)-苯基]-脲,
1-[4-(4-氨基-5-氧代-5H-吡啶并[2,3-d]嘧啶-8-基)-苯基]-3-[3-氯-4-[2-(吗啉-4-基)-乙氧基]-苯基]-脲,
1-[4-(4-氨基-5-氧代-5H-吡啶并[2,3-d]嘧啶-8-基)-苯基]-3-[4-氟-2-[2-(吗啉-4-基)-乙氧基]-苯基]-脲,
1-[4-(4-氨基-5-氧代-5H-吡啶并[2,3-d]嘧啶-8-基)-苯基]-3-[3-氯-4-(2-二甲氨基-乙氧基)-苯基]-脲,
1-[4-(4-氨基-5-氧代-5H-吡啶并[2,3-d]嘧啶-8-基)-苯基]-3-[3-氯-4-(2-二乙氨基-乙氧基)-苯基]-脲,
1-[4-(4-氨基-5-氧代-5H-吡啶并[2,3-d]嘧啶-8-基)-苯基]-3-[4-氯-4-(2-二甲氨基-乙氧基)-苯基]-脲,
1-[4-(4-氨基-5-氧代-5H-吡啶并[2,3-d]嘧啶-8-基)-苯基]-3-[2-氯-5-(2-二乙氨基-乙氧基)-苯基]-脲,
实施例5:SGK1核苷酸多态性
定义兼性(facultative)高血压患者第6内含子的核苷酸序列为...aattacatt Cgcaacccag...,然而代表健康人群的核苷酸序列为...aattacatt Tgcaacccag...。所述序列可由登录号GI 2463200的2071位得到。
兼性高血压患者第8外显子序列是纯合的...tactga Cttcggact...或...tactgaTttcggact...,或者是杂合的...tactga Cttcggact...和...tactgaTttcggact...。所述序列可由登录号NM_005627.2的777位得到。
具有TT核苷酸组合的纯合子个体是受保护的,即使在第6内含子中同时存在CC的单核苷酸多态现象也是如此。
实施例6:地塞米松处理的小鼠以及对照小鼠的海马中GluR6的表达
年龄和性别匹配的同胞Sv129J小鼠被用于本研究。2-3月龄的小鼠事先用克他命(Ketamin)(100mg/kg体重,Sigma)和甲苯噻嗪(xylazine)(100mg/kg体重,Sigma)麻醉,皮下植入安慰剂或地塞米松药丸(均来自Innovative Research of America,Sarasota,USA)。地塞米松药丸以每天238μg的量持续线性地释放地塞米松药物,其被用于8天或20天的实验中。为了获取脑,用上述混合物麻醉的小鼠最终放血入胸腔,置于冰上,继而脑被从颅骨中取出并立即冻于液氮中。
参考文献
Berk M,Plein H,Ferreira D.Platelet glutamate receptor supersensitivityin major depressive disorder.Clin Neuropharmacol。2001;24:129-32.
Bhmer,C.,Wagner,C.A.,Beck,S.,Moschen,I.,Melzig,J.,Werner,A.,Lin,J.-T.,Lang,F.,Wehner,F.The Shrinkage-activated Na+Conductance of Rat Hepatocytes and its Possible Correlation to rENaC.Cell Phys Biochem.2000;10:187-194.
Brenan FE,Fuller PJ.Rapid upregulation of serum andglucocorticoid-regulated kinase(sgk)gene expression by corticosteroids invivo.Mol CeH Endocrinol.2000;30;166:129-36.
Busjahn A,Aydin A,Uhlmann R,Feng Y,Luft FC,Lang F.Serum-andglucocorticoid-regulated kinase(SGK1)gene and blood pressure.Hypertension 40(3):256-260,2002.
Chase TN,Bibbiani F,Oh JD.Striatal glutamatergic mechanisms andextrapyramidal movement disorders.Neurotox Res.2003;5:139-146.
Chen SY,Bhargava A,Mastroberardino L,Meijer OC,Wang J,Buse P,Firestone Gl,Verrey F,Pearce D:Epithelial sodium channel regulated byaldosteroue-induced protein sgk.Proc Natl Acad Sci USA 1999;96:2514-2519.
Cowling RT,Birnboim HC.Expression of serum-andglucocorticoid-regulated kinase(sgk)mRNA is up-regulated by GM-CSFand other proinflammatory mediators in human granulocytes.J LeukocBiol.2000;67:240-248.
Danysz W,Parsons CG.The NMDA receptor antagonist memantine as asymptomatological and neuroprotective treatment for Alzheimer’:preclinical evidence.Int J Geriatr Psychiatry.2003;18:S23-32.
Davis KM,Wu JY.Role of glutamatergic and GABAergic systems inalcoholism.J Biorned Sci.2001;8:7-19.
De la Rosa DA,Zhang P,Naray-Fejes-Toth A,Fejes-Toth G,CanessaCM:The serum and glucocorticoid kinase sgk increases the abundance ofepithelial sodium channels in the plasma membrane of Xenopus oocytes.JBiol Chem 1999;274:37834-37839.
Farber NB,Kim SH,Dikranian K,Jiang XP,Heinkel C.Receptormechanisms and circuitry underlying NMDA antagonist neurotoxicity.MolPsychiatry 2002;7:32-43.
Francis PT,Poynton A,Lowe SL,Najlerahim A,Bridges PK,BartlettJR,Procter AW,Bruton CJ,Bowen DM.Brain amino acid concentrationsand Ca2+-dependent release in intractable depression assessedantemortem.Brain Res.1989;494:315-324.
Frandsen A,Schousboe A.AMPA receptor-mediated neurotoxicity:role ofCa2+and desensitization.Neurochem Res.2003;28:1495-1499.
Ghose S,Weickert CS,Colvin SM,Coyle JT,Herman MM,Hyde TM,Kleinman JE.Glutamate carboxypeptidase II gene expression in thehuman frontal and temporal lobe in schizophrenia.Neuropsychopharmacology.2004;29:117-125.
Gras G,Chretien F,Vallat-Decouvelaere AV,Le Pavec G,Porcheray F,Bossuet C,Leone C,Mialocq P,Dereuddre-Bosquet N,Clayette P,Le Grand R,Creminon C,Dormont D,Rimaniol AC,Gray F.Refulatedexpression of sodium-depenent glutamate transporters and synthetase:aneuroprotective role for activated microglia and macrophages in HIVinfection?Brain Pathol.2003;13:211-222.
Kawahara Y,Kwak S,SunH,Ito K,Hashida H,Aizawa H,Jeong SY,Kanazawa I.Human spinal motoneurons express low relative abundance ofGluR2 mRNA:an implication for excitotoxicity in ALS.J Neurochem.2003;85:680-689.
Kobayashi T,Cohen P:Activation of serum-and glncocorticoid-regulatedprotein kinase by agonists that activate phosphatidylinositide 3-kinase ismediated by 3-phosphoinositide-dependent protein kinase-1(PDK1)andPDK2.Biochem J 1999;339:319-328.
Kobayashi T,Deak M,Morrice N,Cohen P.Characterization of thestructure and regulation of two novel isoforms of serum-andglucocorticoid-induced protein kinase.Biochem.J.1999;344:189-197.
Kolson DL.Neuropathogenesis of central nervous system HIV-1infection.Clin Lab Med.2002;22:703-717.
Kornhuber J,Weller M.Amantadine and the glutamate hypothesis ofschizophrenia.Experiences in the treatment of neuroleptic malignantsyndrome.J Neural Transm Gen Sect.1993;92:57-65.
Lang F,Cohen P.Regulation and physiological roles of serum-andglucocorticoid-induced protein kinase isoforms.Science STKE.2001 Nov13;2001(108):RE17.
Lang F,Klingel K,Wagner CA,Stegen C,Wrntges S,Friedrich B,Lanzendrfer M,Melzig J,Moschen I,Steuer S,Waldegger S,Sauter M,Paulmichl M,Gerke V,Risler T,Gamba G,Capasso G,Kandolf R,Hebert SC,Massry SG,Brer S:Deranged transcriptional regulation ofcell volume sensitive kinase hSGK in diabetic nephropathy.Proc Natl AcadSci USA 2000;97:8157-8162.
Llansola M,Erceg S,Hernandez-Viadel M,Felipo V.Prevention ofammonia and glutamate neurotoxicity by carnitine:molecularmechanisms.Metab Brain Dis.2002;17:389-397.
Leski ML,Hassinger LC,Valentine SL,Baer JD,Coyle JT.L-type calciumchannels reduce ROS generation in cerebellar granule cells followingkainite exposure.Synapse.2002;43:30-41.
Lifton RP.Molecular genetics of human blood pressure variation.Science1996;272:676-680.
Lipsky RH,Goldman D.Genomics and variation of ionotropic glutamatereceptors.Ann N Y Acad Sci.2003;1003:22-35.
McCullumsmith RE,Meador-Woodruff JH.Striatal excitatory aminoacid transporter expression in schizophrenia,bipolar disorder,and majordepressive disorder.Neuropsychopharmacology.2002;26:368-375.
McDonald JW,Shapiro SM,Silverstein FS,Johnston MV.Role ofglutamate receptor-mediated excitotoxicity in bilirubin-induced braininjury in the Gunn rat model.Exp Neurol.1998;150:21-29.
Meador-Woodruff JH,Clinton SM,Beneyto M,McCullumsmith RW.Molecular abnormalities of the glutamate synapse in the thalamus inschizophrenia.Ann N Y Acad Sci.2003;1003:75-93.
Meador-Woodruff JH,Hogg AJ Jr,Smith RE.Striatal ionotropicglutamate receptor expression in schizohrenia,bipolar disorder,and majordepressive disorder.Brain Res Bull.2001;55:631-640.
Michael-Titus AT,Bains S,Jeetle J,Whelpton R.Imipramine andphenelzine decrease glutamate overflow in the prefrontal cortex-a possiblemechanism of neuroprotection in major depression?Neuroscience.2000;100:681-684.
Náray-Fejes-Tóth A,Canessa C,Cleaveland ES,Aldrich G,Fejes-TóthG:sgk is an aldosteone-induced kinase in the renal collecting duct.Effectson epithelial Na+Channels.J Biol Chem 1999;274:16973-16978.
Niederberger E,Schmidtko A,Rothstein JD,Geisslinger G,Tegeder I.Modulation of spinal nociceptive processing through the glutamatetransporter GLT-1.2003;116:81-87.
Park J,Leong ML,Buse P,Maiyar AC,Firestone GL,Hemmings BA:Serum and glucocorticoid-inducible kinase(SGK)is a target of the PI3-kinase-stimulated signaling pathway.EMBO J 1999;18:3024-3033.Riedel G,Sandager-Nielsen K,Macphail EM.Impairment of contextualfear conditioning in rats by Group I mGluRs:reversal by the nootropicnefiracetam.Pharmacol Biochem Behav.2002;73:391-399.
Schiffer HH.Glutamate receptor genes:susceptibility factors inschizophrenia and depressive disorders?Mol Neurobiol.2002;25:191-212.
Shigaev A,Asher C,Latter H,Garty H,Reuveny E:Regulation of sgkby aldosterone and its effects on the epithelial Na(+)channel.Am J Physiol2000;278:F613-F619.
Staessen JA,Wang J,Bianchi G,Birkenhager WH.Essential hypertension.Lancet.2003;361:1629-1641.
Taylor DL,Diemel LT,Cuzner ML,Pocock JM.Activation of group IImetabotropic glutamate receptors underlies microglial reactivity andneurotoxicity following stimulation with chromogranin A,a peptideup-regulated in Alzheimer’s disease.J Neuro Chem.2002;82:1179-1191.
Taylor DL,Diemel LT,Pocock JM.Activation of microglial group IIImetabotropic glutamate receptors protects neurons against microglialneurotoxicity.J Neurosci.2003;23:2150-2160.
Wagner CA,Ott M,Klingel K,Beck S,Melzig J,Fredrich B,Wild NK,Brer S,Moschen I,Albers A,Waldegger S,Tümler B,Egan E,GeibelJP,Kandolf R,Lang F.Effects of serine/threonine kinase SGK1 on theepithelial Na+channel(EnaC)and CFTR.Cell Physiol Biol 2001;11:209-218.
Warnock DG.Liddle syndrome:genetics and mechanisms of Na+channeldefects.Am J Med Sci.2001;322:302-307.
Webster MK,Goya L,Ge Y,Maiyar AC,Firestone GL:Characterizationof sgk,a novel member of the serine/threonine protein kinase gene familywhich is transcriptionally induced by glucocorticoids and serum.Mol CellBiol 1993;13:2031-2040.
Zieminska E,Stafiej A,Lazarewicz JW.Role of gronp I metabotropicglutamate receptors and NMDA receptors in homocysteine-evoked acuteneurodegeneration of cultured cerebella granule neurons.Neurochem Int.2003;43:481-492.

Claims (7)

1.一种改变谷氨酸受体活性的方法,包括将表达SGK1、SGK2或SGK3的细胞与调节血清和糖皮质激素诱导的激酶的物质接触。
2.根据权利要求1的方法在制备治疗谷氨酸受体上调或下调相关疾病的药物中的用途。
3.根据权利要求2的方法,其中疾病选自:癫痫、中风、外伤后行为障碍、焦虑、精神分裂症、双极紊乱、抑郁症、肝性脑病、新生儿溶血性疾病、成瘾症、酒精中毒、HIV脑病、神经变性障碍、锥体外运动失调、共济失调、肌萎缩性侧索硬化、M.阿尔茨海默病、黄斑变性、聋症。
4.一种通过检测组织样本及标本中SGK1、SGK2或SGK3上调的表达来确定神经精神疾病的进展、消退或发作的方法。
5.根据权利要求4的方法,其中SGK1包括选定的单核苷酸多态性变体。
6.根据权利要求4至5的方法,用于疾病的诊断,其中疾病选自:癫痫、焦虑、精神分裂症、双极紊乱、精神抑郁症、成瘾症、酒精中毒、神经变性、锥体外运动失调、神经变性障碍、共济失调、M.阿尔茨海默病、黄斑变性、聋症。
7.选自通式I或II中所列化合物的SGK1抑制剂在制备治疗由谷氨酸受体失调引起的疾病的药物中的用途。
CNA2005800077939A 2004-03-11 2005-02-08 包括采用血清和糖皮质激素诱导的激酶的调节物来调节谷氨酸受体以治疗神经精神障碍的方法 Pending CN1929846A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP04005761.4 2004-03-11
EP04005761 2004-03-11

Publications (1)

Publication Number Publication Date
CN1929846A true CN1929846A (zh) 2007-03-14

Family

ID=34960898

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2005800077939A Pending CN1929846A (zh) 2004-03-11 2005-02-08 包括采用血清和糖皮质激素诱导的激酶的调节物来调节谷氨酸受体以治疗神经精神障碍的方法

Country Status (12)

Country Link
US (1) US20070191326A1 (zh)
EP (1) EP1732563A1 (zh)
JP (1) JP2007529423A (zh)
KR (1) KR20070015148A (zh)
CN (1) CN1929846A (zh)
AU (1) AU2005229496A1 (zh)
BR (1) BRPI0508574A (zh)
CA (1) CA2559136A1 (zh)
MX (1) MXPA06010268A (zh)
RU (1) RU2006135654A (zh)
WO (1) WO2005094829A1 (zh)
ZA (1) ZA200608447B (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1979747A1 (en) * 2006-01-31 2008-10-15 Merck Patent GmbH Methods for interfering with glucocorticoid induced gastric acid secretion
JP2009528367A (ja) * 2006-03-02 2009-08-06 サイガ・テクノロジーズ・インコーポレーテッド アレナウイルス感染の治療のための抗ウイルス薬剤
WO2007127479A2 (en) * 2006-04-28 2007-11-08 Redpoint Bio Corporation Triaryl substituted imidazole derivatives and taste-inhibiting uses thereof
EP2310016B1 (en) 2008-08-05 2017-10-04 Omeros Corporation Pde10 inhibitors and related compositions and methods
US20130017188A1 (en) 2009-07-31 2013-01-17 The Brigham And Women's Hospital, Inc. Modulation of sgk1 expression in th17 cells to modulate th17-mediated immune responses
RU2580654C1 (ru) * 2015-04-16 2016-04-10 Государственное бюджетное образовательное учреждение высшего профессионального образования "Российский национальный исследовательский медицинский университет им. Н.И. Пирогова" Министерства здравоохранения Российской Федерации (ГБОУ ВПО РНИМУ им. Н.И. Пирогова Минздрава России) Способ лечения эпилепсий с продолженной спайк-волновой активностью во сне
WO2018156401A1 (en) * 2017-02-24 2018-08-30 Indiana University Research And Technology Corporation Methods of inhibiting serum glucocorticoid induced kinase 1 (sgk1) as a treatment for salt and water balance diseases
KR102331240B1 (ko) * 2019-03-21 2021-11-29 재단법인대구경북과학기술원 Sgk3 유전자를 이용한 뇌신경계 질환의 진단 및 치료
KR20210008193A (ko) * 2019-07-10 2021-01-21 한양대학교 산학협력단 염증성 신경 질환의 치료제로서 Sgk1 저해제의 용도
KR102645546B1 (ko) * 2021-06-10 2024-03-08 전남대학교 산학협력단 간성뇌증에 의해 유발되는 신경학적 또는 정신학적 장애 관련 질환 진단용 마커 및 이를 이용한 간성뇌증에 의해 유발되는 신경학적 또는 정신학적 장애 관련 질환 진단에 필요한 정보를 제공하는 방법

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19708173A1 (de) * 1997-02-28 1998-09-03 Dade Behring Marburg Gmbh Zellvolumenregulierte humane Kinase h-sgk
EP0889127A1 (en) * 1997-07-01 1999-01-07 Smithkline Beecham Corporation Serine/threonine protein kinase (H-SGK2)
JPH11106371A (ja) * 1997-07-04 1999-04-20 Nisshin Flour Milling Co Ltd アシルヒドラゾン誘導体
EP1141003B9 (en) * 1998-12-14 2008-07-02 The University of Dundee Methods of activation of SGK by phosphorylation.
DE19917990A1 (de) * 1999-04-20 2000-11-02 Florian Lang Arzneimittel enthaltend Hemmstoffe der zellvolumenregulierten humanen Kinase h-sgk
US20050064501A1 (en) * 1999-04-20 2005-03-24 Prof. Dr. Med. F. Lang Medicaments comprising inhibitors of the cell volume-regulated human kinase h-sgk
DE10042137A1 (de) * 2000-08-28 2002-03-14 Florian Lang sgk2 und sgk3 als diagnostische und therapeutische Targets
DE10305212A1 (de) * 2003-02-07 2004-08-19 Florian Prof. Dr.med. Lang Verwendung der sgk-Genfamilie zur Diagnose und zur Therapie von Katarakt und Glaukom
DE10346913A1 (de) * 2003-10-09 2005-05-04 Merck Patent Gmbh Acylhydrazonderivate
DE10352979A1 (de) * 2003-11-13 2005-06-09 Merck Patent Gmbh Pyridopyrimidinone

Also Published As

Publication number Publication date
CA2559136A1 (en) 2005-10-13
BRPI0508574A (pt) 2007-08-14
RU2006135654A (ru) 2008-09-10
JP2007529423A (ja) 2007-10-25
AU2005229496A1 (en) 2005-10-13
WO2005094829A1 (en) 2005-10-13
KR20070015148A (ko) 2007-02-01
US20070191326A1 (en) 2007-08-16
EP1732563A1 (en) 2006-12-20
ZA200608447B (en) 2008-07-30
MXPA06010268A (es) 2007-04-23

Similar Documents

Publication Publication Date Title
CN1929846A (zh) 包括采用血清和糖皮质激素诱导的激酶的调节物来调节谷氨酸受体以治疗神经精神障碍的方法
Naumenko et al. Interplay between serotonin 5‐HT 1A and 5‐HT 7 receptors in depressive disorders
Sari et al. Role of the serotonergic system in alcohol dependence: from animal models to clinics
Hansen et al. Synthesis and structure–activity relationships of N-benzyl phenethylamines as 5-HT2A/2C agonists
Chen et al. TRPA1 as a drug target—promise and challenges
Fell et al. Group II metabotropic glutamate receptor agonists and positive allosteric modulators as novel treatments for schizophrenia
Bagal et al. Ion channels as therapeutic targets: a drug discovery perspective
Nakamura et al. Novel HCN2 mutation contributes to febrile seizures by shifting the channel's kinetics in a temperature-dependent manner
Petralia et al. Pathogenic contribution of the Macrophage migration inhibitory factor family to major depressive disorder and emerging tailored therapeutic approaches
Breysse et al. Metabotropic glutamate 5 receptor blockade alleviates akinesia by normalizing activity of selective basal-ganglia structures in parkinsonian rats
Hamid et al. Should antidepressant drugs of the selective serotonin reuptake inhibitor family be tested as antiepileptic drugs?
Gantz et al. Delta glutamate receptor conductance drives excitation of mouse dorsal raphe neurons
US7585627B2 (en) Polymorphism in tryptophan hydroxylase-2 controls brain serotonin synthesis
JP2008506778A (ja) 免疫抑制のためのflt3阻害剤
CN1849131A (zh) 用白介素-21/白介素-21受体的激动剂治疗免疫性疾病
Yocum et al. Targeting the γ-aminobutyric acid A receptor α4 subunit in airway smooth muscle to alleviate bronchoconstriction
CN1596119A (zh) 饮食行为的改进
Levit Kaplan et al. Structure-based design of a chemical probe set for the 5-HT5A serotonin receptor
CN1993125A (zh) 涉及嘧啶合成抑制剂的组合物和方法
Sniecikowska et al. Discovery of novel pERK1/2-or β-arrestin-preferring 5-HT1A receptor-biased agonists: diversified therapeutic-like versus side effect profile
SM Hung et al. Serotonin and its receptors in the human CNS with new findings-a mini review
Ohno et al. Hcn1 is a tremorgenic genetic component in a rat model of essential tremor
Uehling et al. Design, synthesis, and characterization of 4-aminoquinazolines as potent inhibitors of the G protein-coupled receptor kinase 6 (GRK6) for the treatment of multiple myeloma
Simon et al. Vasopressin antagonists as anxiolytics and antidepressants: recent developments
de Groote et al. Extracellular serotonin in the prefrontal cortex is limited through terminal 5-HT 1B autoreceptors: a microdialysis study in knockout mice

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication